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Abstract: Robotic calligraphy is a very challenging task for the robotic manipulators, which can
sustain industrial manufacturing. The active mechanism of writing robots require a large sized
training set including sequence information of the writing trajectory. However, manual labelling work
on those training data may cause the time wasting for researchers. This paper proposes a machine
calligraphy learning system using a Long Short-Term Memory (LSTM) network and a generative
adversarial network (GAN), which enables the robots to learn and generate the sequences of Chinese
character stroke (i.e., writing trajectory). In order to reduce the size of the training set, a generative
adversarial architecture combining an LSTM network and a discrimination network is established for
a robotic manipulator to learn the Chinese calligraphy regarding its strokes. In particular, this learning
system converts Chinese character stroke image into the trajectory sequences in the absence of the
stroke trajectory writing sequence information. Due to its powerful learning ability in handling
motion sequences, the LSTM network is used to explore the trajectory point writing sequences.
Each generation process of the generative adversarial architecture contains a number of loops of
LSTM. In each loop, the robot continues to write by following a new trajectory point, which is
generated by LSTM according to the previously written strokes. The written stroke in an image
format is taken as input to the next loop of the LSTM network until the complete stroke is finally
written. Then, the final output of the LSTM network is evaluated by the discriminative network.
In addition, a policy gradient algorithm based on reinforcement learning is employed to aid the
robot to find the best policy. The experimental results show that the proposed learning system can
effectively produce a variety of high-quality Chinese stroke writing.

Keywords: robotic calligraphy system; robotic learning; motion planning; Long Short-Term Memory
network; adversarial learning

1. Introduction

Robot is becoming an important role in improving efficiency of recycling and sustaining industrial
manufacturing [1]. Furthermore, robotic manipulators show their advantages in garbage sorting,
waste removal, component disassembling, and so on [2–4]. The writing of Chinese characters is a
very task for robotic manipulators since a single Chinese character is formed by orderly organizing a
set of stokes in a certain structure [5]. This structural complexity of Chinese character makes robotic
calligraphy often to be used as a test bed for control method evaluation.
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Calligraphic robots are built to learn the ways of calligraphers’ writing and then perform its own
calligraphy. These kind of robots can be used to help people learn the fundamental skill of Chinese
calligraphy. Furthermore, they can engage in the repair of calligraphic collections in order to protect
the cultural heritages [6,7]. Traditional calligraphic robots only mimic the writing of calligraphers
regarding the shape of Chinese characters [8]. This leads to the lack of aesthetic preferences in robotic
calligraphy. Therefore, these traditional calligraphic robots is not capable of developing new writing
styles [9]. The situation is worsened due to the limited training data set. A new framework of robotic
calligraphy which allows writing robots to learn aesthetic preferences with the small size of human
calligrapher samples is very meaningful.

Many learning-based approaches to robotic calligraphy have attempted to build automatic
calligraphic robots. However, these methods cannot generate the correct writing sequences for Chinese
strokes. There have been two classes of solutions in literature. One is to manually pre-define the
robot’s end joint angles for each writing action to write Chinese characters or letters [10,11]. However,
such methods may require a lot of work from human engineers. The other is to use the learning from
demonstration (LfD) approach [12] and imitation learning method [5]. This type of methods do not
need an understanding of the control or programming model of robots. However, it requires a lot of
labour costs and possesses the poor generalization ability.

Furthermore, many scientists have tried to use generative adversarial nets (GANs) combining
with other main machine learning techniques to find writing sequence information. For example,
Chao et al. [13] used a GAN-based method to produce stroke trajectories. Although this method can
realize the writing of various strokes, the writing sequence of strokes was generated in accordance with
the rules predefined by humans. We noticed that the Long Short-Term Memory (LSTM) networks [14] is
effective for solving time series problems. Two groups of researchers: Gregor et al. [15] and Im et al. [16]
attempted to achieve the sequential painting by using the LSTM network. In the field of robotics,
Rahmatizadeh et al. [12] tried to use GAN to transform an input image into a low-dimensional space
and use LSTM to predict their robot’s each joint value. However, all of these methods must require the
massive training data to obtain action sequence information.

To beat the above challenges, we introduce an LSTM network into a GAN-based robotic
calligraphy system [13], so as to implement an LSTM-based generative adversarial architecture. In this
work, the generator network inside a GAN is replaced by an LSTM. Thus, within a single generation
process, the LSTM network contains multiple loops, each of which generates a new trajectory point.
A calligraphic robot then uses the point to write a segment of a stroke. The written stroke in an image
format is taken as input to the next loop of the LSTM network, until the whole stroke is finally written.
Additionally, a reinforcement learning algorithm is adopted by using the output of a discriminator
network as a reward for training the LSTM network. The main contribution of this work is that in
the absence of the robot motion trajectory dataset, the generative adversarial architecture can convert
the pixel stroke image to the vector trajectory of the controllable robot, so that the robot can write
high-quality Chinese character strokes and finally the pixel image information can be used to control
the robot. The rest of this article is organized as follows. Section 2 details the calligraphy robot’s
learning system. Section 3 specifies the experimental setup and discusses the experimental results.
Section 4 concludes the paper and gives perspectives of future work.

2. Proposed Framework

2.1. Framework Architecture

Figure 1a shows the training procedures of the proposed architecture for the robotic calligraphy
system. The architecture consists of an LSTM-based stroke generation module and a convolutional
neural network (CNN)-based discriminator module. The generation module produces the probability
distribution of the stroke points of the strokes in sequence. The discriminator determines whether
an input image is real (training data) or fake (written by the robot). Then, the generative adversarial
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training scenario is used to train the entire architecture. However, since a robot system participates in
the training process, the error back-propagation method of the traditional GAN cannot be applied for
the architecture. To solve this problem, with reference to our previous work [13], the policy gradient
method of reinforcement learning is employed to train the system.

(a) The training procedures of robotic calligraphy systems.

(b) The real operations of robotic calligraphy systems for users.

Figure 1. The training procedures and the real operations of robotic calligraphy systems.

Policy gradient are normally used to solve reinforcement learning problems. The methods based
on policy gradient target at modelling and optimizing the policy directly while the goal of reinforcement
learning is to encourage the agent to obtain optimal rewards. The policy is often modelled with a
parameterized function with respect to θ and its mathematical expression is πθ(a|s) where a are actions
while s are observations.

In the stroke generation module, the input of the LSTM is a blank image. Then, the robot obtains
information of the stroke position from the output of the LSTM by using Gaussian sampling.
Afterwards, the robot uses the inverse kinematics calculation to convert the stroke position information
into the manipulator’s joint values. The robot uses this mechanical arm joint value to continue writing
the stroke by linking the last point of the previous loop to the new point of the current loop. The robot
captures an image of the current stroke with a camera and transmits the image to the next loop of the
LSTM network. This process is repeated until all the points are generated.

Figure 1b illustrates the usage of the trained robotic calligraphy systems. Only the LSTM-based
generation module is used in the system operation. A user first inputs a stroke type and the stroke
style into the generation module. The module then generates all the robot joint values of a stroke and
the robot writes out the whole stroke in turn. A detailed description of the implementation of the three
modules in the framework is given below.

2.2. Stroke Generation Module

The stroke generation module is implemented using a LSTM network for a robot. An example of
using five-epochs LSTM networks in dealing with the stroke generation is shown in Figure 2. The LSTM
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network generates a probability distribution at each loop. The robot obtains a three-dimensional
coordinate value, Mi, by the sampling on this distribution. The robot subsequently uses inverse kinematics
to convert the stroke position to its robot joint value. The robot needs to connect the previous trajectory
point to the current trajectory point on the drawing board until all the trajectory values of the vector
M = [M0, M1, ..., Mk−1] are obtained. The number of loops, k, of the LSTM network is preset according
to the complexity of the strokes. For example, for simple strokes, the LSTM network only undergoes
two loops. In other words, the LSTM outputs two coordinate values, and then, the robot connects the
two coordinate values in a sequence. For complex strokes, the number of epochs of the LSTM network
is set to a larger value. A complex stroke requires the LSTM network to undergo five loops. In this
case, the robot obtains a trajectory vector M = [M0, M1, ..., M4], which means that the robot needs to
write five times in succession to complete a stroke.

LSTM

Probability distribution

Point VPoint IVPoint IIIPoint I

Robotic System Robotic SystemRobotic SystemRobotic SystemRobotic System

LSTM LSTM LSTM LSTM

One_point Two_points_stroke Three_points_stroke Four_points_stroke Five_points_stroke

h h h h h1 2 3 4 5

c c c c1 2 3 4c0 hh h h 41 2 3h0

Blank paper

Point II

Probability distribution Probability distribution Probability distribution Probability distribution

Figure 2. An example of the stroke generation module using five epochs of the LSTM networks.

The LSTM network used in this work is a 60-dimensional single hidden layer cyclic neural
network for all strokes. In each loop of the LSTM, the input of the LSTM is labeled as pi−1. In the first
loop of the LSTM, the input is a 28× 28 pixel blank vector, p0. The image sample is averaged as the
global feature of the network and set to an initial value, h0, of the LSTM hidden layer. C0 is a random
vector of 28× 28 dimensions also as the global feature of the network. The input of the ith loop of
the LSTM network is a set of 28× 28 pixel vectors pi−1, hi−1 and ci−1 while the outputs are hi and ci,
which are formulated as follows:

hi, ci = LSTM(pi−1, hi−1, ci−1), i ∈ (0, k] (1)

where hi is used to predict the mean, µi, of the Gaussian distribution of the three-dimensional
coordinates through a fully connected layer. µi is defined as follows:

µi = sigmoid( f (hi)), i ∈ (0, k] (2)

where f (·) represents the two-layer full connection layer of the neural network. The sigmoid function
is used to map variables between 0 and 1.

The variance of Gaussian distribution is fixed on the identity matrix, E, with a diagonal of 1.
The sampling on Gaussian distribution, N(x|µ, E), is used by the robotic arm to generate 3-dimensional
coordinates Mi = (xi, yi, zi) that need to be written. Represented by:

N(x|µ, E) =
1

(2π)
D
2

1

|E| 12
exp{−1

2
(x− µ)TE−1(x− µ)} (3)
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Mi ∼ t× N(x|µ, E) (4)

where t is the maximum value of [28, 28, 4]. N is the Gaussian distribution.
Figure 3 shows the experimental system and the figuration of the robot. The robotic system

used in this experiment includes a three-degree-of-freedom robot arm, a camera, and a writing board.
The tip of the soft pen is mounted on the arm and operated in the working range of the arm. l denotes
a mechanical linking rod, (x, y, z) denotes the coordinate axis of the robot, and J denotes the steering
gear of the robotic arm. The robot converts the three-dimensional coordinate point ti into three joint
values θi = (θ1, θ2, θ3) of the robot by inverse kinematics. The camera is used to capture the completed
characters written on the board and the captured images are sent back to the neural network afterwards.
The specific calculation method is as follows:

θ1 = arctan
yi
xi

(5)

θ2 = π − arccos(
(l2 − l3 cos θ3) · (zi − l1 + l4)− dil3 sin θ3

(l2 − l3 cos θ3)2 − (l3 sin θ3)2 ) (6)

θ3 = arccos(
l2
2 + l2

3 − (zi − l1 + l4)− d2
i

2l2l3
) (7)

θi = T(Mi) (8)

where d2
i = x2

i + y2
i and T(·) represents the transformation process of inverse kinematics.

Figure 3. The hardware of the proposed framework and the structure of the robot.

The robot continues to write the stroke by following the previous trajectory point generated in
the last cycle, i.e., connecting the coordinate point Mi−1 of the last loop to the coordinate point Mi of
this cycle. If it is the first loop of LSTM, only the coordinate point is generated. In addition, the camera
next to the robot captures, binarizes, and trims the written result to an image with 28× 28 pixels.
This process is expressed as W(·). The image is used as the input pi of the LSTM for the next loop.
The writing result of the robot system is expressed as:

pi =

{
W(T(Mi)), i = 0

W(T(Mi−1), T(Mi)), i > 0
(9)

Finally, the output of the generation module is as follows:

pk = G(p0, h0, c0) (10)
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2.3. Stroke Discrimination Module

The stroke discrimination module is built on a CNN network. The input of the stroke
discrimination module is divided into two categories. The first type is the image X f ake, the writing
result of a robot taken by a camera, which is binarized and trimmed. The second type is the real
stroke image Xreal . The size of the input image layer is set to 28× 28 while the size of the network’s
output is 1. The output predicts the probability of the data distribution of X from the real image, Xreal ,
or the image generated by the robot, X f ake. The hidden layer of the CNN network consists of two
convolutional layers and two fully connected layers. The network’s structure is shown in Figure 4.
The image is up-sampled at the convolutional layer to 320 dimensions and passed through the fully
connected layer to produce the one-dimensional output.

INPUT
28×28

C1:feature maps
10@24×24 S2:f. maps

10@12×12

C3:f. maps
20@8×8

S4:f. maps
20@4×4 C5:layer

100

Convolutions Convolutions

Subsampling

Subsampling

Full connections

Full connections

OUTPUT
1

Figure 4. D network structure diagram.

2.4. Training Algorithm

The objective function of this architecture is expressed as:

min
G

max
D

V(D, G) = Ex[sigmoid(D(x))]

+ Eh0,c0 [sigmoid(1− D(G(p0, h0, c0)))]
(11)

where D(·) represents the output of a CNN network, G(·) represents the output of a LSTM network
and E[·] represents the expected value of the LSTM network. The target of the CNN network is
expressed as the following loss function:

Dloss =− Ex[sigmoid(D(x))]

− Eh0,c0 [sigmoid(1− D(G(p0, h0, c0)))]
(12)

D(x) represents the score of the CNN network for the real stroke sample, and D(G(p0, h0, c0))

represents the score of the CNN network for the stroke sample generated by the LSTM network,
ranging from 0 to 1.

In order to make the LSTM network obtain higher rewards, the LSTM network must guarantee the
quality of each trajectory point. Therefore, the goal of the LSTM network is to increase the occurrence
probability of the trajectory with a high score in the CNN network. The loss function of the LSTM
network is as follows:

Gloss = Eh0,c0 [(
k

∏
i=0

logprob(LSTM(pi, hi, ci))) · D(G(p0, h0, c0))] (13)



Sustainability 2020, 12, 9092 7 of 11

where logprob(LSTM(pi, hi, ci)) represents the probability of the output trajectory points of the

LSTM for the ith loop; ∏k
i=0 logprob(LSTM(pi, hi, ci)) represents the occurrence probability of the

stroke calculated by multiplying the likelihood probabilities of all the trajectory points in the stroke.
D(G(p0, h0, c0)) represents the output from the CNN network, of which values are ranged from 0 to 1.

The gradient of the objective function J(θ) and the LSTM network parameter, θ, are derived by:

∇θ J(θ) = Eh0,c0 [

∇θ(
k

∏
i=0

logprob(LSTM(pi, hi, ci))) · Dθ(Gθ(p0, h0, c0))]
(14)

Since the expectation E[·] can be approximated by sampling, the parameters of the LSTM network
are updated in the following ways:

θ ← θ + α∇θ J(θ) (15)

where α is the learning rate. The training procedures are presented in pseudo code listed at Algorithm 1.

Algorithm 1 Training Procedure Pseudocode

Require: Real stroke images database Xreal , mean of real stroke images h0, random number c0, blank
vector p0.

1: Initialize LSTM and CNN network with random weights;
2: repeat
3: for g-step do
4: Input p0 , h0 , c0 into LSTM;
5: for i in 0 : k do
6: Use Equation (4) to sample a trajectory point Mi;
7: Robot writes the trajectory, which is captured as a input image for the next cycle;
8: end for
9: Update LSTM parameters via Equation (15);

10: end for
11: for d-step do
12: Combine the new stroke images X f ake with real stroke images Xreal ;
13: Train CNN by Equation (12);
14: end for
15: until GAN Converges

3. Experimentation

3.1. Training Data

The architecture proposed above was applied to the task of robotic writing on Chinese character
strokes, which is also used for system verification and evaluation. The images of the stroke training
data were extracted from the Chinese character images, normalized and classified. Then, the training
processes of the CNN network and LSTM network and the robot writing action were carried out,
and the learning performance of the policy gradient was obtained.

First, we adopt the method proposed in [17] to automatically extract the strokes of a character.
Next, the stroke images are converted into binary forms. An else CNN network is used to classify the
binary-valued strokes into 31 categories, which will be stored in the database. In addition, we also
calculated the mean value of all the types of stroke S = [S1, S2, ..., Sm] as the h0 in the LSTM to facilitate
the network to learn features of the stroke style. m is the number of images in this category. h0 is
given as:

h0 =
1
m

m

∑
i=0

Si. (16)
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In this experiment, we selected six different Chinese character strokes to train and test our
proposed architecture. Each class of strokes have 500 sample images. Figure 5 shows the training
samples used in the experiment of the six types of stroke, each row shows one type of stroke with
various variants. From Figure 5, we can see that the strokes in the same type are not exactly identical to
each other. The types of strokes from top to bottom are: “horizontal stroke”, “short left-falling stroke”,
“right-falling stroke”, “vertical, turn-right and hook stroke” and “horizontal hook stroke”.

（a）

（b）

（c）

（d）

（e）

（f）

Figure 5. Illustrative training samples used in the experiment: each sub-image indicates a stroke while
every single row of rows (a–f) signifies 10 variants of a specific stroke.

3.2. Training Process and Writing Results

Figure 6 shows the writing process and results of the robot for the “vertical, turn-right and
hook stroke”. The figure shows the three stages of the training process: (1) early stage, (2) medium
stage, and (3) final stage. In every row of each stage, the images from left-to-right show the robot’s
writing results after each loop of the LSTM. The images at far right are the image to be passed to the
discriminating module after color inversion. Results from the other five strokes show a similar training
process. Before passing to the LSTM of the next loop, the image was binarized and reversed to ensure
the consistency of the input image of each LSTM.

In the early stage of training, the writing results of strokes were chaotic; the shapes were not close
to the target stroke. In the medium stage of training, the written results got closed to the target stroke.
However, a large detailed difference between the results and target image still existed. In contract,
the final stage of writing shows a high level of quality, and the shapes produced at this stage are very
similar to the target strokes.

In Figure 6, we also noticed that: during the training process, some stroke’s writing sequence was
in accordance with human writing habits even without the stroke’s intermediate sequence process.
This proves that it is possible to write strokes that conform to human writing habits even when
LSTM does not have the intermediate sequence process. However, not all the strokes were written by
following human’s writing sequence; more future efforts will focus on this problem.

Figure 7 illustrates the evaluation results of the LSTM network’s output for the “vertical, turn-right
and hook stroke”. The starting value of the LSTM network is about 0.7, that is, since the LSTM network
has not been fully trained, the CNN network can have a high possibility to determine whether a stroke
is from the robot or not. As the LSTM network continued to be strengthened, the loss function of the
CNN network gradually decreases and becomes stable. Since the robot participated in the generation
process of the LSTM network, some unexpected errors still existed in the written results; therefore,
the errors prevented the CNN network from achieving the standard loss. However, in this experiment,
even the loss cannot achieve the lowest value, the written results can still be accepted by human users.
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Figure 8 shows the final writing results of the six strokes, all of which are trimmed but not
binarized. The variety of results was obtained based on the random vector of the c0 in the LSTM.
The results show that: the trajectories of the same stroke are different, and the part of results are written
in accordance with human writing habits. Meanwhile, we found that the trajectories of some strokes
are very close to those written by humans. For example, the first stroke in (e) and the last stroke in
(f) owned beautiful appearances.

Training  
Stage one two three four five Writing  

Result

Early stage

Medium stage

Final stage

2

3

1

1

1

2

2

3

3
Figure 6. The writing process and results of the robot with vertical hook hooks.

Figure 7. The training epochs evaluation results of D network’s output for vertical, turn-right and
hook stroke.
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(d)

(f)

(e)

(a)

(c)

(b)

Figure 8. The results of the six strokes written by the robot: each row of rows (a–f) is a type of stroke
with 10 various calligraphic styles and each sub-image is the writing of a single one stroke.

4. Conclusions

This paper proposes a system of robotic calligraphy based on the LSTM and generative adversarial
network. The system enabled the robot to learn and generate trajectory writing motions of Chinese
character strokes independently. Without the writing sequence information, the method can realize
the conversion from input stroke images to the robot motion sequences, thereby enabling the robot to
write high-quality Chinese character strokes. Meanwhile, the robot system can write some strokes that
conform to the human writing sequences without any human pre-defined rules. Experimental results
based on six strokes demonstrated the effectiveness of the proposed method with several results
attaining the human writing level.

Although our approach is effective, it can be improved regarding the following two aspects.
First of all, our approach can only write Chinese character strokes at present. However, how to write a
complete Chinese character is still a problem. It is worth further consideration. Secondly, the proposed
work cannot guarantee all the strokes can have a correct writing sequence; thus, more future efforts
are required.

Author Contributions: Conceptualization, F.C. and G.L.; methodology, F.C. and L.Z.; software, G.L.;
validation, X.C., and C.-M.L.; formal analysis, L.Y.; investigation, C.S.; resources, G.L.; data curation, X.C.;
writing—original draft preparation, F.C. and G.L.; writing—review and editing, F.C., L.Z., and L.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No. 61673326, 61673322,
and 91746103), the Fundamental Research Funds for the Central Universities (No. 20720190142), and the European
Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement
No. 663830.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Pujol, F.A.; Tomás, D. Introducing Sustainability in a Robotic Engineering Degree: A Case Study.
Sustainability 2020, 12, 5574. [CrossRef]

2. Rivera, R.G.; Alvarado, R.G.; Martínez-Rocamora, A.; Auat Cheein, F. A Comprehensive Performance
Evaluation of Different Mobile Manipulators Used as Displaceable 3D Printers of Building Elements for the
Construction Industry. Sustainability 2020, 12, 4378. [CrossRef]

http://dx.doi.org/10.3390/su12145574
http://dx.doi.org/10.3390/su12114378


Sustainability 2020, 12, 9092 11 of 11

3. Zhang, Q.; Li, H.; Wan, X.; Skitmore, M.; Sun, H. An Intelligent Waste Removal System for Smarter
Communities. Sustainability 2020, 12, 6829. [CrossRef]

4. Gualtieri, L.; Palomba, I.; Merati, F.A.; Rauch, E.; Vidoni, R. Design of Human-Centered Collaborative
Assembly Workstations for the Improvement of Operators’ Physical Ergonomics and Production Efficiency:
A Case Study. Sustainability 2020, 12, 3606. [CrossRef]

5. Chao, F.; Huang, Y.; Zhang, X.; Shang, C.; Yang, L.; Zhou, C.; Hu, H.; Lin, C.M. A robot calligraphy system:
From simple to complex writing by human gestures. Eng. Appl. Artif. Intell. 2017, 59, 1–14. [CrossRef]

6. Zeng, H.; Huang, Y.; Chao, F.; Zhou, C. Survey of robotic calligraphy research. CAAI Trans. Intell. Syst. 2016,
11, 15–26. [CrossRef]

7. Jian, M.; Dong, J.; Gong, M.; Yu, H.; Nie, L.; Yin, Y.; Lam, K. Learning the Traditional Art of Chinese
Calligraphy via Three-Dimensional Reconstruction and Assessment. IEEE Trans. Multimed. 2020, 22, 970–979.
[CrossRef]

8. Gao, X.; Zhou, C.; Chao, F.; Yang, L.; Lin, C.M.; Xu, T.; Shang, C.; Shen, Q. A data-driven robotic Chinese
calligraphy system using convolutional auto-encoder and differential evolution. Knowl. Based Syst. 2019,
182, 104802, [CrossRef]

9. Gan, L.; Fang, W.; Chao, F.; Zhou, C.; Yang, L.; Lin, C.M.; Shang, C. Towards a Robotic Chinese Calligraphy
Writing Framework. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics
(ROBIO), Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 493–498.

10. Zhang, X.; Li, Y.; Zhang, Z.; Konno, K.; Hu, S. Intelligent Chinese calligraphy beautification from handwritten
characters for robotic writing. Vis. Comput. 2019, 35, 1193–1205. [CrossRef]

11. Li, J.; Min, H.; Zhou, H.; Xu, H. Robot Brush-Writing System of Chinese Calligraphy Characters. In Intelligent
Robotics and Applications; Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D., Eds.; Springer International
Publishing: Cham, Switzerland, 2019; pp. 86–96.

12. Rahmatizadeh, R.; Abolghasemi, P.; Bölöni, L.; Levine, S. Vision-based multi-task manipulation for
inexpensive robots using end-to-end learning from demonstration. In Proceedings of the 2018 IEEE
International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018;
pp. 3758–3765.

13. Chao, F.; Lv, J.; Zhou, D.; Yang, L.; Lin, C.; Shang, C.; Zhou, C. Generative Adversarial Nets in Robotic
Chinese Calligraphy. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 1104–1110. [CrossRef]

14. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

15. Gregor, K.; Danihelka, I.; Graves, A.; Rezende, D.J.; Wierstra, D. DRAW: A Recurrent Neural Network for
Image Generation. arXiv 2015, arXiv:1502.04623.

16. Im, D.J.; Kim, C.D.; Jiang, H.; Memisevic, R. Generating images with recurrent adversarial networks.
arXiv 2016, arXiv:1602.05110.

17. Lian, Z.; Zhao, B.; Xiao, J. Automatic Generation of Large-Scale Handwriting Fonts via Style Learning;
Siggraph Asia 2016 Technical Briefs (SA’16); ACM: New York, NY, USA, 2016; pp. 1–4, [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/su12176829
http://dx.doi.org/10.3390/su12093606
http://dx.doi.org/10.1016/j.engappai.2016.12.006
http://dx.doi.org/10.11992/tis.201507067
http://dx.doi.org/10.1109/TMM.2019.2937187
http://dx.doi.org/10.1016/j.knosys.2019.06.010
http://dx.doi.org/10.1007/s00371-019-01675-w
http://dx.doi.org/10.1109/ICRA.2018.8460787
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1145/3005358.3005371
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed Framework
	Framework Architecture
	Stroke Generation Module
	Stroke Discrimination Module
	Training Algorithm

	Experimentation
	Training Data
	Training Process and Writing Results

	Conclusions
	References

