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Abstract: The growth of environmental awareness and more robust enforcement of numerous
regulations to reduce greenhouse gas (GHG) emissions have directed efforts towards addressing
current environmental challenges. Considering the Vehicle Routing Problem (VRP), one of the
effective strategies to control greenhouse gas emissions is to convert the fossil fuel-powered fleet
into Environmentally Friendly Vehicles (EFVs). Given the multitude of constraints and assumptions
defined for different types of VRPs, as well as assumptions and operational constraints specific to each
type of EFV, many variants of environmentally friendly VRPs (EF-VRP) have been introduced. In this
paper, studies conducted on the subject of EF-VRP are reviewed, considering all the road transport
EFV types and problem variants, and classifying and discussing with a single holistic vision. The aim
of this paper is twofold. First, it determines a classification of EF-VRP studies based on different
types of EFVs, i.e., Alternative-Fuel Vehicles (AFVs), Electric Vehicles (EVs) and Hybrid Vehicles
(HVs). Second, it presents a comprehensive survey by considering each variant of the classification,
technical constraints and solution methods arising in the literature. The results of this paper show
that studies on EF-VRP are relatively novel and there is still room for large improvements in several
areas. So, to determine future insights, for each classification of EF-VRP studies, the paper provides
the literature gaps and future research needs.

Keywords: environmentally friendly VRP; alternative-fuel VRP; electric VRP; hybrid electric VRP;
green VRP; literature review

1. Introduction

The increased social and environmental awareness has created growing support for environmental
regulations to control GHG emissions. This trend and the rising energy costs have led to increased
attempts to address emerging environmental challenges. Generally, state-owned and private sectors
are both responsible for the GHG emissions (i.e., CO2, N2O) and pollutants (i.e., CO, SOx, NOx, soot,
PM10, contrails, etc.) across the world as well as the associated negative consequences by various
activities in construction, transportation, manufacturing, etc. [1,2]. However, the environmental efforts
in these two sectors mainly affect transportation because it influences the environment in several ways
by various modes including road, rail, waterborne transports, and air freight. The vehicles used in
these modes are responsible for emissions of air pollutants and GHG, and the environment is also

Sustainability 2020, 12, 9079; doi:10.3390/su12219079 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-9034-1225
https://orcid.org/0000-0003-1521-790X
https://orcid.org/0000-0003-0279-5137
https://orcid.org/0000-0001-6900-9917
http://dx.doi.org/10.3390/su12219079
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/21/9079?type=check_update&version=2


Sustainability 2020, 12, 9079 2 of 71

affected by the infrastructure required by the vehicles. For instance, the transportation sector in Europe
accounts for 30% of CO2 emissions, a share that rises to 40% in urban areas [3]. To address this issue,
the European Union plans to achieve a 40% reduction by 2030 [4]. The Green Vehicle Routing Problem
(G-VRP), which seeks to incorporate the environmental aspects of transportation into VRP, is one of
the most interesting problems in the field of logistics and transportation. The goal of this problem is to
earn economic benefits while also taking into account environmental considerations. It is necessary to
specify the recipients of these benefits to catch their value proposition. Thus, it is necessary to define
the main actors involved in logistics and transportation and analyze their business models and the
interaction between them. In this context, some studies have explored the business models based
on new transportation options (e.g., green vehicles adoption, etc.) and on collaborative strategies
for achieving reasonable levels of sustainability and efficiency in logistics activities. Examples of the
operational advantages of an integrated vision of the business models and methods can be found in
Perboli and Rosano [5], Rosano et al. [6], Perboli et al. [7], and Brotcorne et al. [8].

One of the available strategies for achieving the goals of the G-VRP is to use environmentally
friendly vehicles (EFVs). The sustainability benefits of alternative and green fuel resources, such as
biodiesel, electricity, ethanol, hydrogen, methanol, natural gas, as a potential substitute for Internal
Combustion Engine Vehicles (ICEVs) leads to the adoption of alternative fuel utilization in VRP
by defining Alternative Fuel Vehicles (AFVs) as a general type of EFVs. In the relevant literature,
some of the studies have been presented as Alternative-Fuel Vehicle Routing Problem (AF-VRP)
and do not explicitly refer to the type of vehicle fuel. In particular, Electric Vehicles (EVs) and
Hybrid Vehicles (HVs) have been considered as specialized types of AFVs and studied separately
with their special characteristics. In most of the studies, EVs have been considered as an idealistic
alternative to the ICEVs for freight distribution, as they are emission-free when used, and produce little
noise pollution [9]. However, due to the occurrence of combustion emissions for EVs in generating
electricity, the different assumptions in the time of charging and the country-specific electricity
generation mix, assessing combustion emissions of EVs in different countries is an important issue
(see Jochem et al. [10] and Ji et al. [11] for examples of assessments of the EVs emissions in Germany
and China, respectively). According to the U.S. Department of Energy, EVs can convert around 59–62%
of the received electrical energy to the power in the wheels, but for ICEVs, this ratio is as low as
17–21% [12]. However, there are still constraints on the EVs usage, including the limited availability of
recharging stations, the limited driving range of EVs, and the relatively long time used for recharging
of these vehicles. Another alternative that has been used in the literature is the HVs, which can
consume both electricity and conventional fuel. This capability of HVs provides a solution to reduce
transportation costs and emissions while avoiding the operational constraints of EVs [13]. So, two other
problems in the routing of EFVs have been introduced in the literature: Electric VRP (E-VRP) and
Hybrid VRP (H-VRP). As a result, the classification scheme on the EFVs routing problem (EF-VRP) can
be constituted based on the problem characteristics and their application scenarios, by considering
three different variants of routing problem as follows: Alternative-Fuel VRP (AF-VRP), Electric VRP
(E-VRP), and Hybrid VRP (H-VRP). (Figure 1).
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Despite the significant volume of works published in the field of EF-VRPs, there is no review
paper focusing on EF-VRPs, considering all the different road EFVs types and problem variants,
and classifying and discussing with a single holistic vision. The review papers that are somewhat
related to this area are those published by Pelletier et al. [14], Juan et al. [15], Margaritis et al. [16],
Crainic et al. [17], Schiffer et al. [18], and Erdelić and Carić [19]. These works have addressed the general
usage of EVs in transportation and logistics and have partly mentioned the studies in the field of routing
problem with AFVs, EVs, and HVs. The mentioned reviews did not present a proper classification for
the EF-VRPs and did not discuss the technical characteristics of the variety of problems in this area.
These points are crucial both from a modeling and solving point of view. First, technical constraints
can drastically change the behavior and properties of the model. Second, a similar characteristic can
arise in different settings, giving a plethora of solving methods and redefining the same characteristics
or constraints with different names. Thus, the literature presents some lacks.

Therefore, this study is aimed to fulfill this gap along two axes: First, it determines a classification of
EF-VRP studies based on different types of EFVs, i.e., Alternative-Fuel Vehicles (AFVs), Electric Vehicles
(EVs), and Hybrid Vehicles (HVs). All of the existing problems which have applied environmentally
friendly vehicles are classified under the name of Environmentally Friendly Vehicle Routing Problem
(EF-VRP). Given the variety of vehicles with unique characteristics that can be considered in EF-VRPs,
they are far more complex than VRP that uses a fleet of fossil-fueled vehicles. The first studies in the
field of EF-VRP were those carried out by Conrad and Figliozzi [20], Erdoğan and Miller-Hooks [21],
Abdallah [22], and Schneider et al. [23]. Later, and particularly in recent years, many other works
in the form of journal papers, conference papers, research reports, thesis, and books have been
published in this area. Second, it presents a comprehensive survey by considering each variant of
the classification, technical constraints, and solution methods arising in the literature. The search
conducted on the databases is based on 125 studies on EF-VRP extracted from the main relevant
databases, making our study the one based on the largest database of works from the literature. As a
result, the main contributions of this paper may be summarized as follows:

• A comprehensive and relevant classification for the literature devoted to Environmentally Friendly
Vehicle Routing Problems (EF-VRPs) is presented.

• The survey is conducted to cover the literature related to Alternative-Fuel, Electric and Hybrid
Vehicle Routing Problems.

• 125 publications are analyzed in three categories and new problem variants are discussed
and classified.

• The existing research gaps are discussed, and some suggestions are provided for future works in
each classification.

The remainder of the paper is organized as follows: Section 2 describes the technical constraints
and assumptions used in EF-VRPs. Section 3 investigates the studies on AFV routing problems.
The EVs routing problem and its variants are reviewed in Section 4. Section 5 describes the HEV routing
problem and studies in this area. Section 6 reviews the solution methods for EF-VRPs, followed by
conclusions and potential future research directions in Section 7.

Methodology of Survey Research

The classical VRP is one of the fundamental problems in operational research, which seeks to
determine how a set of vehicles can serve a set of customers in such a way as to minimize the total cost of
travel in a transportation network. The green VRP is a variant of VRP, which seeks to minimize both the
economic cost and the environmental cost of vehicle routing [24]. According to Lin et al. [25], the VRPs
that follow a green approach can be divided into three broad categories: Green-VRP, Pollution-Routing
Problem (PRP), and VRP in Reverse Logistics (VRPRL) (Figure 2). One of the subcategories of the
Green-VRP is to use EFVs (EF-VRP in Figure 2) [25].
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The search for the existing works on the EF-VRP was conducted in prominent databases including
Scopus, Web of Science, Science Direct, Springer Link EBSCO, Taylor & Francis Elsevier, Wiley,
Springer, and IEEE Xplore. To cover a wide range of research, including books, papers, journals,
and conferences, and according to the availability of certain information, data were gathered from
Google Scholar, extracting from the pages with a minimum number of publications equal to 10.
After filtering them by keywords (environmentally friendly vehicles, electric vehicle, hybrid vehicle
routing, hybrid electric vehicle routing, plug-in hybrid electric vehicle routing, time windows, pickup
and delivery, time-dependent, mixed fleet, alternative fuel vehicle routing problem, green-VRP,
and green vehicle routing problem), the data sources were limited to 125 studies. Since the first study
on the EF-VRP subject was published in 2011, the time span of this study was limited to the period of
2011–2020. After a manual filtering based on the analysis of the abstracts, our final database was then
based on 125 studies on EF-VRP.

2. Technical Constraints and Assumptions in EF-VRPs

The unique characteristics of EFVs have limited their use in VRPs. These characteristics include
maximum battery capacity and maximum travel distance without refueling (recharging or battery
swapping), duration of refueling (recharging or battery swapping), location of refueling (recharging
or battery swapping) stations, fuel (charge) consumption rate, etc. These technical constraints and
characteristics can be addressed by a variety of creative solutions, such as establishing battery swapping
stations and partial recharge or refueling stations at customer sites. In this section, some of the significant
constraints and assumptions of EFVs are explained, as follows:

Full refueling (recharging): In this assumption, a vehicle that visits a refueling (recharging) station
is fully refueled (recharged) and continues its service as long as its fuel tank (battery) can support it.

Partial refueling (recharging): In this assumption, a vehicle can decide to only partially fill its fuel
tank (recharge its battery) to spend less time at the refueling (recharging) station. Felipe et al. [24]
were the first researchers to consider the partial recharging in EF-VRPs. A significant portion of recent
studies on EF-VRPs have chosen to use this assumption.

No intraroute recharging (refueling) facility: In some studies, it is possible to refuel (recharge) vehicles
only in the depot and there are no intraroute facilities for refueling (recharging) in the middle of the
route. Hence, in order to cover the fuel tank or battery capacity constraints, authors cover the vehicles’
maximum driving range, and consider the refueling (recharging) process in the base location of the
EFVs where the vehicles can be parked overnight and recharged.
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Battery swapping: One method to recharge a group of vehicles along a route is to establish some
stations for swapping batteries. Logistics companies can benefit from this approach in several ways.
The most significant benefit of the battery swapping approach is the increased recharging speed and
reduced time loss. A battery swapping operation can be completed in less than 10 min, which makes it
significantly faster than recharging operation [26]. Another advantage of battery swapping is that the
used-up batteries can be recharged at night when electricity is charged at a discount [27].

Refueling (recharging) or battery swapping at customers sites: In this assumption, it is supposed that
refueling (recharging) or battery swapping services are made available at all or some of the customers’
sites [20].

Refueling (recharging) or battery swapping at specific vertices: In this approach, refueling (recharging)
or battery swapping services are not permissible at all customer sites. The assumption of having
specific vertices on the network as refueling (recharging) stations was first introduced by Li-ying and
Yuan-bin [28].

Simultaneous refueling (recharging) station siting: EFVs have a shorter driving range than ICEVs.
Thus, the proper placement of refueling (recharging) stations can result in a timely provision of the
energy needed by vehicles to continue visiting the remaining customers. This assumption involves
combining the routing problem with the location problem, and therefore, the expansion of the EF-VRP
into Environmentally Friendly Location Routing Problem (EF-LRP). Given the investment needed
to construct refueling (recharging or battery swapping) stations at multiple sites, many studies have
focused on the goal of minimizing the number of refueling (recharging) stations in the distribution
network. Yang and Sun [29] were the first to consider the problem of establishing and operating battery
swapping stations to minimize the number of these facilities in a network.

Fixed refueling (recharging) time: The time spent for refueling (recharging or battery swapping) is
one of the critical factors in the use of EFVs. One assumption commonly used in the vehicle routing
literature is that the refueling (recharging) time is constant across a network.

Nonlinear refueling (recharging) process: This assumption involves considering a more realistic
nonlinear relationship between the time spent on recharging (refueling) and the amount of fuel
(energy) transferred to the vehicle [30]. In most of the existing E-VRP models, the battery charging
level is assumed to be a linear function of charging time, but in reality, this function is nonlinear.
Accordingly, the use of a practical linear estimation for nonlinear charging behavior can significantly
contribute to making the problem and its solutions more realistic.

Battery life degradation: The investment loss due to battery degradation is too costly to be ignored.
Battery life degradation can be considered as a function of three factors: temperature, State of Charge
(SOC), and Depth of Discharge (DOD). In a study by Barco et al. [31], battery degradation in E-VRP
was modeled alongside other assumptions of this problem. In this model, the three factors mentioned
above are integrated into a degradation cost (cdeg), which is defined as follows:

cdeg = cbat
(
LQT + LQ,SOC + LQ,DOD

)
, (1)

where cdeg is the initial cost of the battery and LQT, LQ,SOC, and LQ,DOD are the initial cost of the battery,
the percentages of battery degradation due to temperature, SOC and DOD, respectively. Further details
on battery degradation and other technical characteristics of electric vehicles are available in the study
of Pelletier et al. [32].

Effect of load, traveling speed, and ambient temperature on fuel (charge) consumption: Speed and
weight variation are essential determinants of the vehicles energy consumption while traveling [33].
Additionally, temperature affects energy consumption due to heater use and decreased battery
efficiency in cold temperatures, and increased use of air conditioning in hot temperatures [34]. In the
literature related to EFVs, these factors are referred to as load, speed, and ambient temperature effects.
In this regard, Lin et al. [35] stated that the effect of the load on routing strategies of EFVs could
not be ignored. They developed a model for the E-VRP, where the effect of the load on the battery
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consumption rate was considered and evaluated in a case study. According to this study, the rate of
acceleration/deceleration, which is affected by traffic conditions and environmental factors, plays a
significant role in vehicle energy consumption [31]. Furthermore, Rastani et al. [34] investigated the
impact of ambient temperature on the fleet sizing, battery recharging, and routing decisions of EVs in
logistics operations for the first time.

Refueling (recharging or battery swapping) cost: Generally, the refueling (recharging or swapping)
process is a costly operation that should be optimized to minimize the total cost of a distribution
network. The assumption of time-dependent charging cost was first introduced by Sassi et al. [36],
who considered three different charging technologies, namely, slow charging, moderate charging,
and fast charging with different costs.

Different charging technologies: Decision-making on the selection of possible charging technologies
could also be an effective way to better control charging time in the E-VRP context. For customers who
have narrow time windows, this issue could make them more accessible by fast charging at recharging
stations, or if the time windows are long, a better economic approach could be slow charging [19].
Sassi et al. [36] and Felipe et al. [24] analyzed the effect of different charging technologies on the
recharge cost for the first time.

Multiple driving modes (Multi-mode): A Hybrid Electric Vehicle (HEV) is powered by two power
sources, it consumes both electricity and gasoline during driving. The energy consumption of an HEV
on each road segment depends on the HEV driving modes. For the first time, Doppstadt et al. [37]
assumed four different modes of operation: pure combustion (conventional) mode, pure electric mode,
charging mode in which the battery is charged while driving with the combustion engine, and a boost
mode in which combustion and electric engines are combined for the drive. Further, Zhen et al. [37]
considered this conception and defined four modes including the electric motor (battery-based
mode), being mainly powered by the engine (gasoline-based mode), the two being jointly driven
(balance mode), or only powered by the engine (only gasoline mode).

Wait in queue before the recharging (refueling) service: The number of chargers or servers in a
recharging (refueling) station is limited and the chargers or servers may be occupied and may not be
available at the time of the vehicle’s arrival. Hence, the EFV may need to queue for some time before
it starts recharging (refueling) its battery or fuel tank [38,39]. Recently, Keskin et al. [38,40,41] and
Poonthalir and Nadarajan [39] extended the EF-VRP by considering queue formation at the recharging
(refueling) stations using M/M/1 and M/G/1 queueing systems.

As a result, it should be noted that the limited driving range of EFVs, the existence of
a set of refueling (recharging) stations vertices which may be visited more than once or not
at all, and the possibility of the vehicles’ driving range extension due to the facilities visiting,
represent the complications that were not be presented in the classical VRP or most variants thereof.
Thus, heuristics and exacts solutions used for the classical VRP or related variants cannot directly be
applied in solving the EF-VRPs. Not only might such heuristics and exact algorithms result in solutions
that perform poorly, but these solutions may not even be feasible [21]. So, AF-VRP, E-VRP, and H-VRP
can be considered as distinct classes of the VRP and particular variants of the EF-VRP because of
its complexity, technical constraints, and new solution methods which have been implemented to
solve them.

Vehicle types. 23 (18%), 90 (72%), and 12 (10%) studies belong to the AF-VRP, E-VRP, and H-VRP,
respectively. Figure 3 shows the share of research on the EF-VRP variants. As indicated in this figure,
previous works have mostly been focused on E-VRPs, and there exists a research gap on the other
two variants of the problem, especially the H-VRP. Figure 4 shows the number of papers published
on each variant of the problem since 2011. In the mentioned subcategories, there are multiple and
technical constraints that can create different variants of the EF-VRP. The most important constraints
and assumptions are described in the following subsections.



Sustainability 2020, 12, 9079 7 of 71

Sustainability 2020, 12, x FOR PEER REVIEW 7 of 99 

 
Figure 3. Contribution of research on Alternative-Fuel VRP (AF-VRP), Electric VRP (E-VRP), and 
Hybrid VRP (H-VRP) from all studies related to the Environmentally Friendly Vehicle Routing 
Problem (EF-VRP). 

 

Figure 4. The number of papers published on AF-VRP, E-VRP, and H-VRP. 

3. Alternative Fuel Vehicle Routing Problem 

One group of EFVs is known as Alternative Fuel Vehicles (AFVs). Their primary characteristic 
is use of alternative and green fuel resources, such as biodiesel, electricity, ethanol, hydrogen, 
methanol, natural gas, which limit the maximum distance that can be traveled by them. Moreover, 
due to type of fuel (energy) consumed by AFVs, their refueling (recharging) stations require special 
equipment and cannot be established by a distributor company. So, AFVs can be considered as a 
general type of EFVs, while EVs and HEVs are specialized types. Although most AFV studies do not 
explicitly refer to the type of vehicle fuel, they do use the assumptions stated in Section 2. 

In this paper, these works are also placed in the category of AF-VRP. It should be noted that 
many researchers have referred to this problem as Green-VRP, but the present paper uses the term 
Alternative Fuel Vehicle Routing Problem (AF-VRP), in order to avoid confusion with the broader 
definition of G-VRP. 

The AF-VRP was first introduced by Erdoğan and Miller-Hooks [21]. In that work, a set of AFVs 
fleet located in a central depot has to serve a set of customers in a distribution network. The AFSs are 
placed along the paths to ensure that the AFVs can serve customers adequately. In that study, the 

AF-VRP
18%

E-VRP
72%

H-VRP
10%

AF-VRP E-VRP H-VRP

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
H-VRP 0 0 1 1 0 1 2 0 2 5
E-VRP 2 1 3 5 14 8 5 15 21 16
AF-VRP 0 2 0 1 0 3 4 4 6 3

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

Nu
m

be
r o

f P
ap

er
s

Year

AF-VRP E-VRP H-VRP

Figure 3. Contribution of research on Alternative-Fuel VRP (AF-VRP), Electric VRP (E-VRP), and
Hybrid VRP (H-VRP) from all studies related to the Environmentally Friendly Vehicle Routing Problem
(EF-VRP).
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3. Alternative Fuel Vehicle Routing Problem

One group of EFVs is known as Alternative Fuel Vehicles (AFVs). Their primary characteristic is
use of alternative and green fuel resources, such as biodiesel, electricity, ethanol, hydrogen, methanol,
natural gas, which limit the maximum distance that can be traveled by them. Moreover, due to type of
fuel (energy) consumed by AFVs, their refueling (recharging) stations require special equipment and
cannot be established by a distributor company. So, AFVs can be considered as a general type of EFVs,
while EVs and HEVs are specialized types. Although most AFV studies do not explicitly refer to the
type of vehicle fuel, they do use the assumptions stated in Section 2.

In this paper, these works are also placed in the category of AF-VRP. It should be noted that
many researchers have referred to this problem as Green-VRP, but the present paper uses the term
Alternative Fuel Vehicle Routing Problem (AF-VRP), in order to avoid confusion with the broader
definition of G-VRP.

The AF-VRP was first introduced by Erdoğan and Miller-Hooks [21]. In that work, a set of AFVs
fleet located in a central depot has to serve a set of customers in a distribution network. The AFSs
are placed along the paths to ensure that the AFVs can serve customers adequately. In that study,
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the problem had been formulated in the form of a Mixed Integer Linear Problem model, which ensures
that all customers are visited only once, fuel tank level upon arrival at a node is non-negative,
and conformity to the maximum tour duration constraint is guaranteed provided that each tour begins
and ends at the depot. The problem was solved by two heuristic methods with an improvement
technique. An example of a feasible solution for this AF-VRP is illustrated in Figure 5. In this example,
there are 17 customers and 6 AFSs, and refueling operations are performed to continue the route at
AFSs, and the level of vehicle tanks is refilled when the vehicles arrive at AFSs vertices. In the first tour,
the AFV moves from the depot to the customer 5 considering relatively a long path and consumes
considerable stored fuel. So, before arriving at the location of customer 5, it needs to refuel at AFS 2.
To arrive at the depot on the first tour, the vehicle must visit another AFS one more time. Because of
the short distance on the second tour, there is no need to refuel. Serving customers is provided on
tours 3 and 4, similar to the first tour.
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3.1. Reviewing the Studies Conducted on AF-VRP

In addition to Erdoğan and Miller-Hooks [21], some other studies also used the AFV fleet
to serve customers. By presenting a problem entitled Sustainable Vehicle Routing, Omidvar and
Tavakkoli-Moghaddam [42] set the economic profit as their primary objective, and considered avoiding
congestion and traffic, reducing GHG, and reducing fuel consumption in AFVs in the proposed model.
Taha et al. [43] introduced a variant of the one given by Erdoğan and Miller-Hooks [21] with multiple
depots. The new model of Koç and Karaoglan [44] has fewer variables and constraints, and more than
one stop is not allowed for refueling each vehicle between two nodes in a transportation network.
Montoya et al. [45] presented an effective two-phase heuristic method for solving the AF-VRP. Bruglieri
et al. [46] introduced a new model for the AF-VRP without cloning AFSs. Yavuz and Çapar [47]
presented a model that can consider several alternative-fuel vehicles by adopting different driving
ranges, refueling times, and availability of refueling stations. Andelmin and Bartolini [48] modeled the
AF-VRP using a multi-graph, in which there is no need to model the refueling stops en-route. Leggieri
and Haouari [49] gave a nonlinear compact formulation for the time and energy consumption constraints
of the AF-VRP. They used an approach to reduce the use of several variables and constraints, included
a set of preprocessing conditions, and applied a reduction procedure to solve the AF-VRP. Yavuz [50]
proposed an iterated beam search algorithm for the AF-VRP. Affi et al. [51] presented a Variable
Neighborhood Search (VNS) algorithm for solving the AF-VRP. Madankumar and Rajendran [52]
presented a basic model for the AF-VRP. The paper also investigated the scenario of considering
different fuel prices at different AFSs as an extension of the proposed model. Moreover, in another
model, the problem of Pickups and Deliveries in a Semiconductor Supply Chain (PDP-SSC) was
provided regardless of AFVs and AFSs, to evaluate the performance of the first model, which is
consistent with the PDP-SSC model. Poonthalir and Nadarajan [53] presented a bi-objective problem
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considering fuel consumption efficiency. Zhang et al. [54] developed Erdoğan and Miller-Hooks’s [21]
work by incorporating the limited loading capacity. Hooshmand and MirHassani [55] presented an
AF-VRP in a densely populated urban area, taking into account traffic constraints and minimizing
CO2 emissions, under time-dependent travel speeds, limited driving range, and the limited capacity of
vehicles with alternative fuels. Koyuncu and Yavuz [56] established a unified framework for mixed
fleet AF-VRP, which considers three different types of refueling policies to shorten the time for refueling
stops. Bruglieri et al. [57] presented a precise two-phase method called the path-based solution for
solving the AF-VRP. Normasari et al. [58] presented a new variant of the AF-VRP, namely, Capacitated
G-VRP (CGVRP) and solved the problem by applying a Simulated Annealing (SA) heuristic algorithm.
Ashtine and Pishvaee [59] analyzed the economic and environmental impacts of different AFVs,
and qualified that biodiesel can reduce GHG by 37% compared to conventional diesel based on
equivalent carbon dioxide measure. They proposed two base models in which, routing optimization
for each vehicle with the total pollution costs or Carbon Dioxide Equivalent (CO2eq), for a single fuel
fleet or a fleet composed of different alternative and petroleum vehicles, is minimized. Poonthalir and
Nadarajan [39] integrated M/M/1 queue model at the AFSs and AF-VRP and proposed an enhanced
Chemical Reaction Optimization (e-CRO) algorithm with the bacterial transformation to solve it.
Shao and Dessouky [60] considered Compressed Natural Gas (CNG) as one of the possible solutions
for fossil fuel substitution because of its wide availability, engine compatibility, and low operations
costs in routing AFVs including the choice of CNG fuel stations. Zhang et al. [61] proposed the
Multi-Depot Green Vehicle Routing Problem (MDGVRP) as a new variant of AF-VRP to minimize
the total carbon emissions. Nosrati and Arshadi Khamesh [62] considered the risk management
by integrating the reliability concept into the AF-VRP. They modeled the problem as nonlinear and
bi-objective mixed-integer programming to minimize the total cost of routing and maximize the
system reliability.

Table 1 briefly presents the assumptions and constraints of the AFV. The first two columns indicate
the references and their publication year. The next twelve columns pertain to the assumptions and
constraints of the VRP. It should be noted that the diversity of the VRP is much more than the twelve
cases mentioned, but due to the importance and usage of the assumptions raised in the EF-VRP, these
constraints and assumptions have been considered. The eleven columns considered in the classification
of AFV’s Related Technical Constraints and Assumptions relate to the special characteristics of AFVs.
This table also features calculated percentages of usage for each characteristic. This value is equal
to a percentage of papers that have considered the intended characteristic, obtained as the ratio of
the number of papers containing the corresponding characteristic over the total number of papers.
The last column illustrates the type of objective functions including minimization of Total Traveled
Distance, Overall Costs, Emission or Energy Consumption, Total Time Duration (including traveling
time, servicing time, recharging time, and waiting time), Number of Vehicle and Number of Refueling
(Recharging) Stations which have been reported as Dist., Costs (including acquisition cost of the
vehicles, recharging, refueling, or battery swapping cost, Station installation cost, etc.), Em., TTD, NV,
and NS, respectively.
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Table 1. Summary of studies conducted on AF-VRPs.
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2012
Erdoğan and
Miller-Hooks
(EMH) [21]

√ √ √ √
Dist.

2012

Omidvar and
Tavakkoli

-Moghaddam
[42]

√ √ √ √ √ √ √ Dist, Em,
NV TTD

2014 Taha et al. [43]
√ √ √ √

Dist.

2016
Koç and

Karaoglan
(KK) [44]

√ √ √ √ √
Dist

2016 Montoya et al.
(MSH) [45]

√ √ √ √
Dist

2016 Bruglieri et al.
[46]

√ √ √ √
Dist

2017
Yavuz and
Çapar (YÇ)

[47]

√ √ √ √ √ √ Dist., Em,
Costs

2017
Andelmin and
Bartolini (AB)

[48]

√ √ √ √
Dist

2017 Leggieri and
Haouari [49]

√ √ √ √
Dist

2017 Yavuz [50]
√ √ √ √ √

Dist
2018 Affi et al. [51]

√ √ √ √
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Madankumar

and
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√ √ √ √ √ √ √ √
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Poonthalir
and

Nadarajan
[53]

√ √ √ √ √ √
Dist. Em

2018 Zhang et al.
[54]

√ √ √
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Hooshmand
and

MirHassani
[55]

√ √ √ √ √ √ √
Em

2019 Koyuncu and
Yavuz [56]

√ √ √ √ √ √ √ √ Dist.,
Costs

2019 Bruglieri et al.
[57]

√ √ √ √
Dist

2019 Normasari
et al. [58]

√ √ √ √ √
Dist
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2019
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and

Nadarajan
[39]

√ √ √ √ √
Dist

2019 Ashtine and
Pishvaee [59]

√ √ √ √ √ √ √
Costs, Em
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Dessouky [60]

√ √ √ √ √ √ √
TTD

2020 Zhang et al.
[61]

√ √ √ √
Em

2020
Nosrati and
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Khamesh [62]

√ √ √ √ √
Costs
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3.2. AF-VRP Literature Gaps and Future Research

Studying the routing problem of AFVs from two different perspectives, namely, VRP constraints
and characteristics, and AFV’s related technical constraints and assumptions, will determine the
research gaps of the AF-VRP literature and provide the potential future researches in this field
(as shown in Table 1). For example, by considering VRP constraints, using a set of AFVs to serve the
final customers can be an attractive and economical issue in a two-echelon distribution system, due to
the environmental regulations in the urban environment. Moreover, a Periodic AF-VRP, in which
requested demands must be satisfied over a multi-period, or considering the size of items to be
distributed in loading VRP application, can be interesting to analyze for future research. In addition,
in the field of AFVs’ related technical constraints and assumptions, different strategies of refueling
AFVs such as partial or nonlinear refueling process, simultaneous refueling (recharging) station siting,
analysis of the potential of load, traveling speed, ambient temperature effect in fuel consumption,
emission reduction, and different patterns of energy consumption can be considered more for future
studies to make AF-VRPs comprehensive, more applicable, and closer to real-world issues.

4. Route Planning on Electric Vehicles

Generally, the E-VRP is defined on an undirected, complete graph G = (V; A). In this problem,
a set of electric vehicles serves as environmentally friendly vehicles. Figure 6 presents an example of
E-VRP. In this example, there are 15 customers and 4 charging stations, and full charging in the depot
and charging stations is made possible. For better understanding, the battery state of charge at the
time of arriving each node is specified in the figure. In the first tour, when the EV moves from the
depot to customer 10, considering the relatively long path and using half of the stored energy, it visits
charging station 3 to continue the path and serve customers 11 and 12, and continues its path after the
recharging process. In the second tour, considering the proximity of customers 1, 2, and 3, there is
no need to recharge, and the EV returns to the depot after servicing the customers. On the third tour,
after visiting customers 13 and 14, and considering the long path to customer 15, the EV returns to the
charging station and fully charges itself.
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4.1. Reviewing the Studies Conducted on E-VRP

The E-VRP is similar in definition to the AF-VRP. It can even be considered as a more specialized
variant of the AF-VRP. However, the unique characteristics of the EVs and the specific strategies to
deal with these features include battery swapping, partial recharging, recharging rate, battery life, etc.,
which have been considered in various studies alongside different solution methods. Since this study
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attempts to concentrate on the nature of the problem and application of EF-VRP, our E-VRP classification
scheme is based on the technical and operational characteristics of the problem (e.g., time windows
structure, vehicle heterogeneity, recharging scenarios, locating strategies, charging function) and their
application scenarios, rather than the solution methods and related algorithms. Based on implementing
different and integrated characteristics of VRPs, and the most frequent and essential technical constraints
of EVs, E-VRP studies can be classified in eleven different variants based on the nature of these
characteristics which have been used in the EF-VRP literature. These variants are: 1. E-VRP with Time
Windows (E-VRP-TW), 2. E-VRP with Partial Recharging (E-VRP-PR), 3. E-VRP with Mixed Fleet
(E-VRP-MF), 4. E-VRP with Battery Swapping Stations (E-VRP- BSS), 5. Electric Location- Routing
Problem (E-LRP), 6. E-VRP with Nonlinear Charging function (E-VRP-NL), 7. Time-Dependent Electric
Vehicle Routing Problem (TD-E-VRP), 8. Loading E-VRP (L-E-VRP), 9. Periodic E-VRP (P-E-VRP),
and 10. Two-Echelon E-VRP (2E-E-VRP). Other works of literature that have applied some particular
constraints and EV features have been put in one another category, namely, other related studies.

4.1.1. Electric Vehicle Routing Problem with Time Windows (E-VRP-TW)

The E-VRP-TW is an extension of the well-known VRP-TW, which has a higher complexity than
the classical VRP-TW problem. The E-VRP-TW was considered earlier than other E-VRPs. In this
problem, a set of EVs served customers, each with a predetermined time window. Not visiting in
pre-specified intervals reduces customers’ satisfaction or, in the worst cases, even creates to solutions
not usable in practice. Considering the constraints of battery capacity and recharging time of batteries
challenge serving to customers in predetermined periods, and solution faces more difficulty compared
to using ICEVs. The first formal publication on the E-VRP-TW was presented by Schneider et al. [23],
who extended the VRP-TW. Afroditi et al. [3] extended the E-VRP, taking into account vehicle capacity
constraints, time windows, and predetermined vehicle charging levels. Taking into account some
factors such as rolling resistance, air resistance, gradient resistance, and energy recuperation and
minimizing energy consumption in the problem, Preis et al. [63] developed the new variant of
E-VRP-TW. Bruglieri et al. [64] used VNS Branching (VNSB) as a math-heuristic method for solving
the problem. Considering the dependence of energy consumption of EVs on various factors such
as ground gradient, weight, and speed of the vehicle, Basso et al. [65] developed a new E-VRP-TW
model so that the speed of vehicles during different hours of the day was considered as a variable
due to the volume of traffic. Barco et al. [31] proposed a method for transporting passengers using
E-VRP-TW, in which the vehicle charging schedule was considered to minimize costs and reduce
battery degradation. Kancharla and Ramadurai [66] considered significant parameters such as speed,
acceleration, load, and grade, which affect the battery consumption rate, and estimated the amount
of energy required by the EV engine. Zuo et al. [67] applied factors such as limited battery capacity,
charging station selection, and determining the battery charging time to improve the efficiency of
EVs in the logistics system. Keskin et al. [40] developed the problem considering time-dependent
queueing times at the stations. Erdem and Koç [68] combined the Home Health Care Routing Problem
(HHCRP) and E-VRP-TW, namely, Electric Vehicles in Home Care Routing Problem, to reduce the
environmental impact of home health care operations. Zhang et al. [69] developed a model that takes
into consideration visiting the charging station in the routing in reverse logistics. Keskin et al. [41]
considered EVs’ possible waiting in the queue before recharging their battery due to a limited number
of available chargers in E-VRP-TW. M/M/1 queueing system equations have been used to model waiting
times. Recently, Keskin et al. [38] extended the previous work by considering stochastic waiting times
at the recharging stations and using M/G/1 queueing system to model the waiting times. Goeke [70]
extended the well-known Pickup and Delivery Problem with Time Windows (PDPTW) by applying
EVs to serve the customer demand. Xiao et al. [71] introduced the energy/electricity consumption rate
(ECR) per unit of traveled distance into the E-VRP-TW for the first time. Meng and Ma [72] presented a
new problem by calculating more accurate cost of the logistics includes fixed, transportation, charging,
and time-windows violation penalty costs and combining the two charging strategies of fast charging
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and battery swapping and each EV can charge its battery or replace it according to the minimum of the
battery replacement time and fast charging time. In order to optimize resource allocation, and reduce
energy consumption and road congestion, soft time-windows was considered in this study. Similar to
the previous paper, Taş [73] considered soft time-windows constraints and proposed Electric Vehicle
Routing Problem with Flexible Time Windows (E-VRP-FTW) to minimize the traveling costs, the costs
of using electric vehicles and the penalty costs incurred for earliness and lateness. Löffler et al. [74]
extended the E-VRP-TW by considering possibility of both full and partial recharge, in which at most
one recharge per vehicle route is allowed.

4.1.2. Electric Vehicle Routing Problem with Partial Recharging (E-VRP-PR)

Considering the assumption of the partial recharge and overnight charge for EVs results in one
of the operational and functional variants of the E-VRP. Conrad and Figliozzi [20] considered the
possibility of a partial recharge. The remarkable point of that study was the possibility of recharging
electric vehicles at customer sites. Accordingly, Felipe et al. [24], for the first time, formulated a formal
problem as a variant of the E-VRP, namely, E-VRP-PR. They formulated the problem using a set of EVs
in the model presented by Erdoğan and Miller-Hooks [21]. Ding et al. [75] extended the E-VRP-TW
model, taking into account additional technical constraints such as the limited number of chargers in
a charging station. In his proposed model, Moghaddam [76] sought to achieve the optimal number
of EVs and charging stations with a limited number of EVs and the number of charging stations.
Keskin and Çatay [77] combined the problem with the E-VRP-TW. Desaulniers et al. [78] presented
four different variants of the E-VRP-TW-PR with different possibilities of full or partial recharging.
Considering the possibility of equipping charging stations with new facilities that affect the duration of
the recharge process, Keskin and Çatay [79] presented the E-VRP-TW model taking into account partial
recharging by three configurations of normal, fast, and super-fast charging. A matheuristic for a similar
problem with partial recharging was proposed by Bruglieri et al. [80]. To reduce the impact of the long
recharging times associated with the intra-route stops, Cortés-Murcia et al. [81] proposed a routing
problem that takes E-VRP-TW constraints, partial recharges, as well as the possibility of serving a
customer during the recharging operation. In other words, for each visit to a recharging station, it is
possible to visit one customer, namely, a satellite customer while the vehicle is in the charging process.
The visit could represent any type of alternative mode (walking, bikes, drones, segways, etc.) A fuzzy
optimization model is proposed by Zhang et al. [82] based on credibility theory for electric vehicle
routing problem with time windows and recharging stations. In this study, the partial recharge was
considered under the uncertain environment, and fuzzy numbers were used to denote the uncertainties
of service time, battery energy consumption, and travel time.

4.1.3. Electric Vehicle Routing Problem with Battery Swapping Stations (E-VRP-BSS)

The concept of BSS was first considered by Yang and Sun [29] to address simultaneous decisions
regarding the location of battery swapping facilities and EV routing. Goeke et al. [83] present an
Adaptive VNS (AVNS) for the BSS-EV-LRP which leads to better results than TS-MCWS and SIGALNS
in nearly all of the given test instances. Regardless of battery swapping facility siting decisions,
Chen et al. [84] developed a new E-VRP-BSS model. This problem was studied considering customers’
time windows, BSSs, and constant battery swapping time. Hof et al. [85] proposed the development of
solving methods of problems with intermediate stops, namely, Battery Swap Station Location-Routing
Problem with Capacitated Electric Vehicles (BSS-EV-LRP), considering the location of battery swapping
stations and EV routing, and minimizing the number of BSSs and routing of EVs. Verma [86] developed
the VRP with time windows, charging stations, and battery swapping stations. Taking into account the
lengthy process of recharging, as well as the costly battery swapping, he considered the possibility to
conduct both processes at the stations considered in the model. Mao et al. [87] presented an E-VRP-TW
problem in which two recharging options are provided at each charging station. The first one is to
recharge the battery partially which is cost efficient and the second one is battery swapping whose
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operation time is very short compared to the travel time of the route, but the cost is higher than the
former option. Recently, Raeesi et al. [88] introduced the mobile battery swapping for the first time,
by considering Battery Swapping Vans (BSVs) to swap the depleted battery on an EVs with a fully
charged one at a designated time and space, and provide the battery swapping service to multiple EVs.

4.1.4. Electric Vehicle Routing Problem with Mixed Fleet (E-VRP-MF)

By and large, if the assumption of identical vehicles is freed in the classical VRP, it becomes possible
to use different vehicles in terms of capacity, speed, energy consumption, etc. [25]. This new assumption
is called “mixed fleet” in different studies. Regarding the applied EVs in the load transportation
industry, and in order to implement this assumption in the E-VRP, the two problem types have been
proposed as follows:

A mixed fleet for combining different variants of vehicles. This approach seeks to simultaneously
use various variants of vehicles, including EVs, AFVs, ICEVs, etc., in a distribution fleet. This is
because heterogeneous and different vehicles are considered to be more applied in the real world
due to the different speed, price, equipment, technology, and capacity [25]. Due to the increased
use of EVs in distribution systems, optimal route planning can provide cost-effective interactions
among different variants of vehicles, considering different vehicles. In this regard, some studies were
presented which are discussed below: Gonçalves et al. [89] investigated three different scenarios in the
routing problem of vehicles with the pickups and delivery with the heterogeneous fleet of EVs and
ICEVs. Sassi et al. [36] presented a new formulation for combining heterogeneous ICEVs and EVs to
serve a set of customers. In two other studies, i.e., Sassi et al. [90] and Sassi et al. [91], an Iterated TS
(ITS) and multi-start Iterated Local Search (ILS) were proposed for solving the problem. Goeke and
Schneider [92] considered a set of similar EVs with a set of similar ICEVs for customer service provision.
Murakami and Morita [93] presented a variant of the VRP for EVs and ICEVs, which can be considered
as a variant of the E-VRP-MF. In this problem, the EVs were used as an aid to the transportation
fleet, and not recharged. Sundar et al. [94] developed a problem to efficiently manage a group of
independent vehicles (AFVs and EVs). Kopfer and Vornhusen [95] analyzed various vehicle fleets with
differently sized EVs and ICEVs. Macrina et al. [96] presented a variant of the E-VRP-MF, considering
the time windows and partial recharging. Villegas et al. [97] studied a problem in which a set of ICEVs
and EVs are used and a set of technicians serve a set of customers in a geographical zone. The problem
is a combination of Workforce Scheduling and Routing Problem (WSRP) and the E-VRP-MF problem,
leading to the formation of the routing and scheduling problem of technicians with the ICEVs and EVs.

Mixed fleet of pure EVs. In this approach, there are EV types with different features, such as
driving range, load capacity, and acquisition cost [98]. Thus, companies are forced to have a smaller
number of larger EVs. Accordingly, considering different types of EVs in a distribution system can be
cost-effective and provide optimal freight distribution operations with more flexibility. Considering
the distribution of urban load, Van Duin et al. [99] used a variety of different types of EVs to meet the
demand for a set of customers. In this problem, the stop time for eating lunch was considered by the
driver at the customer’s site. Hiermann et al. [100] presented the mixed fleet concept in E-VRP-TW
by a working paper. Then, Hiermann et al. [101] combined the E-VRP-TW and the Fleet Size Mix
Vehicle Routing Problem with Time Windows (FSM-VRPTW) and introduced a new E-VRP. In this
study, a series of EVs were used that are different in purchasing cost, load capacity, battery capacity,
power consumption rate/distance, and exclusive charging rate. In the problem of Lebeau et al. [102],
EVs were used, which varied in terms of load capacity, weight, maximum battery capacity, fixed costs,
and running costs of each vehicle and driver costs, and recharging is possible for EVs at the depot only.
Zhao and Lu [103] combined the features of the E-VRP-TW and E-VRP-MF with some other classical
VRP assumptions and applied it in a real-world E-VRP raised by a logistics company.
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4.1.5. Electric Location-Routing Problem (E-LRP)

Some studies on the EVs routing focused both on deciding on the route planning of this vehicle
variant, with an emphasis on the driving range and the long times of recharging process, and the siting
of charging stations to utilize the necessary charging infrastructure. Accordingly, another kind of the
E-VRP called E-LRP was provided, which simultaneously focused on the EVs routing and charging
station siting decisions. In this regard, the following studies are examined below. Worley et al. [104]
simultaneously provided a model for EVs routing with the siting of recharging stations and used
the model to solve a case study related to a company in Chicago. Li-ying and Yuan-bin [28]
considered the strategy of locating recharging stations in the E-VRP-TW problem. In this study,
the strategy of charging stations includes selecting the type of charging station and their location.
Schiffer et al. [105] investigated the competitiveness of EVs in the load logistics industry in a case
study. This evaluation was based on simultaneous decisions on vehicle routing and location of
charging stations. Schiffer and Walther [106] presented a problem, in which in addition to the routing
decisions of the EVs, the siting decision of charging stations and partial recharging were also taken into
account. Schiffer and Walther [107] present a generic problem formulation for LRP with Intra-route
Facilities (LRPIF), in which the location of facilities for intermediate stops has to be determined to
keep vehicles operational. Considering the uncertainty patterns in a spatial distribution, demand and
time windows of customers in location-routing problem, Schiffer and Walther [108] used a robust
approach to cover the assumption of uncertainty raised and decided on how to route the EV and how
to establish charging stations. Paz et al. [109] presented the Multi-Depot E-LRP with Time Windows
(MD-EV-LRP-TW), in which three different models formed were investigated based on the assumptions
of battery switching stations, partial recharging of EVs, and the combination of these two assumptions.
Zhou and Tan [110] presented a problem to manage EV routing planning and location decisions
about BSSs. Schiffer et al. [111] extended the LRPIF considering different types of facilities at which
either freight replenishment or energy recharging is possible or both. Gatica et al. [112] used four
strategies of Random Generation, Customer Location, Great Route, and K-Means to locate charging
stations and a heuristic method to route the EVs fleet. Almouhanna et al. [113] addressed LRP with a
Constrained Distance (LRPCD) which is used by EVs in location and routing decisions. In this study,
decisions related to opening multiple depots, allocating customers to them, simultaneously locating
depots (not recharging facilities), and routing EVs with limited driving ranges are considered.

4.1.6. Electric Vehicle Routing Problem with Nonlinear Charging Function (E-VRP-NL)

The assumption of nonlinear charging of EVs is a significant hypothesis considered only in recent
years and it has led to the formation of another variant of the E-VRP called E-VRP-NL. For the first
time, Montoya et al. [114] considered the amount of charge as the decision variable and the concave
function of charging time and partial recharging and in the E-VRP model and presented a new formula.
In this problem, each recharging station has a slow, moderate, or fast charging mode that is considered
in modeling battery charging functions of EVs and allows for partial recharging of EVs. Montoya [115]
researched several variants of the E-VRP: green VRP (GVRP), E-VRP with partial recharging and
nonlinear charging functions, and the technician routing problem with a mixed fleet of ICEVs and
EVs. For each problem, effective solving procedures were proposed: multi-space sampling heuristic,
iterated local search enhanced with heuristic concentration, and two-phase parallel metaheuristic
based on solving a set of sub-problems and extended set-covering formulation. Montoya et al. [116]
presented a problem that seeks to minimize the total travel time, including the driving time, and the
vehicle recharging time. Froger et al. [30] presented two new formulations based on an arc-based
tracking of the time and the SOC and classical node-based tracking for the E-VRP-NL. In both models
provided, a procedure was used to prevent the repetition of charging nodes. Zuo et al. [117] considered
new practical factors such as the nonlinear SOC time charging function, the charging options of
multiple visits of CSs with flexible charging time, and maintaining the battery SOC above a safe level.
Koç et al. [118] developed the E-VRPNL problem, taking into account the various companies able to
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conduct a joint investment in CSs, and presented the E-VRP with Shared Charging Stations (E-VRP-SCS).
Lee [119] presented a novel branch-and-price-based approach for the EVRP with nonlinear charging
functions by introducing an extended charging stations network. The application of the extended
charging stations network with the column generation approach has provided the possibility of
explicitly considering the nonlinear charging function without any approximations. Kancharla and
Ramadurai [120] integrated the load-dependent discharging assumption in the energy estimation with
E-VRP-NL. They developed a modified ALNS algorithm delivering improved performance with new
removal and insertion operators specific to the proposed problem.

4.1.7. Time-Dependent Electric Vehicle Routing Problem (TD-E-VRP)

In environments with high congestion such as urban areas, failing to pay attention to urban
traffic in routing leads to non-optimal solutions to the problem, because in environments with traffic
congestion, the time required to traverse the road depends not only on the distance of the road but
also on the starting time of travel. So, traffic congestion is an important factor that affects the use of
EVs and routing decisions in city logistics [121]. The time-dependency assumption is a feature that
has covered this real-world constraint in the VRP literature. In the E-VRP, two studies have focused
on this issue. First, Shao et al. [122] considered travel time variable to reflect the dynamic traffic
environment with some of the operational scales considered in EVs and provided the E-VRP with
Charging Time and Variable Travel Time (E-VRP-CTVTT). Recently, Lu et al. [123] used the well-known
time-dependency assumption in E-VRP-TW and proposed the TD-E-VRP for the first time. Zhang
et al. [124] introduced time-dependent travel speeds and congestion tolls into the E-VRP-TW. In this
problem, a fixed congestion toll needs to be paid when a vehicle enters a peak period.

4.1.8. Loading Electric Vehicle Routing Problem (L-E-VRP)

The size of items to be distributed is an important factor that decides whether it is possible to
load them into loading space in some VRP applications. Such problems are solved through solving
a variety of two- or three-dimensional bin packing problems (2BPP-3BPP) and by using separate
processes to solve VRP and loading problem. Incorporation of the features and constraints of the
loading problem into VRP has led to the development of new problems that simultaneously assess
both issues. Two-dimensional loading capacitated vehicle routing problem and three-dimensional
loading capacitated vehicle routing problem (2L-CVRP and 3L-CVRP) are among the most applicable
approaches in this regard. The difference between these two is in the nature of demanded items;
the basic assumption of 2L-CVRP is that items cannot be loaded on top of each other, while 3L-CVRP
has no such assumption [125]. Recently, Zhu et al. [126] examined this feature in the E-VRP by
defining a multi-depot capacitated electric vehicle routing problem where client demand is composed
of two-dimensional weighted items. They considered the effect of items’ weight on the battery
consumption and provided the possibility for the EVs to decide when and where to charge or replace
the batteries in the distribution network.

4.1.9. Periodic Electric Vehicle Routing Problem (P-E-VRP)

Most of the time, customers make their demands in set of periods (days) in a planning horizon.
In other words, each customer has one or more visit combinations which include one or more periods
(days) [127]. Once a customer’s visit combination is selected, the customer must be satisfied in the
existing day(s) in the visit combination. In this approach, route planning must be performed in
each period which is affected by other periods, integrally. Kouider et al. [128] combined this concept
with E-VRP and introduced the Periodic Electric Vehicle Routing Problem (P-E-VRP), in which the
routing and charging are planned over a multi-period horizon. This work aimed to minimize the total
cost of routing and charging over the time horizon. They did not propose any mathematical model
for the problem, and just presented two constructive heuristics based on clustering technique and
insertion strategy.
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4.1.10. Two-Echelon Electric Vehicle Routing Problem (2E-E-VRP)

An increase in environmental, social, and regulatory concerns, as well as an increase in
traffic volumes in cities, caused the public and private organizations to change their attitudes
towards designing the transportation system and the freight distribution in the supply chain.
The implementation of multi-echelon distribution systems, and especially the two-echelon freight
distribution, is an approach to face these challenges [129]. In the two-echelon distribution system,
which is a multi-echelon distribution system, the freight is delivered to the intermediate depots
and then to intermediate customers [130]. The two studies presented in recent years are as follows:
Breunig et al. [131] presented the Two-Echelon VRP by adding the EV fleet to serve customers and
introduced the Electric Two-Echelon VRP (E2E-VRP). In this problem, EVs were used to deliver goods
to customers and in the second echelon of the problem. It was also possible to recharge EVs in a
set of charging stations available at the second echelon. Jie et al. [132] investigated the Two-Echelon
E-VRP with BSS (2E-E-VRP-BSS), considering the limited driving range of EVs and battery swapping
strategies. Vehicles at both echelons were electric, with the difference that the first-echelon vehicles
had more battery capacity than the second echelon vehicles. Moreover, a cost was considered in the
proposed model for battery swapping. The objective is to minimize the cost of driving EVs at both
echelons, loading and unloading operations in the intermediate depots, and the cost of the battery
swapping of the EVs.

4.1.11. Other Related Studies of E-VRPs

Recently, a new design, the modular EVs, was introduced. In this case, the EV charging is split into
separate modules that can be loaded/unloaded at specified locations, allowing the possibility of having
more charge. Using modular EVs in the VRP was raised by Aggoune-Mtalaa et al. [133] for the first time
in an urban distribution of goods to demonstrate the added value of using this variant of the vehicle,
and presented the Modular electric Vehicle Routing Problem (Me-VRP). Rezgui et al. [134] extended
the Me-VRP which involves electric modular vehicles for goods distribution in the urban environment,
by fleet size, mixed fleet, and time windows, well-known VRP concepts. Schneider et al. [135] presented
the E-VRP with Recharging Facilities (E-VRP-RF) as a particular case of the VRP with Intermediate Stops
(VRPIS) and developed an Adaptive VNS (AVNS) to solve the problem. Zhang et al. [136] presented
an E-VRP model that sought to minimize energy consumption by EVs, in which a comprehensive
approach was used to calculate the energy consumption rate of EVs. For integrating energy consumption
estimation into a E-VRP, Basso et al. [137] proposed a two-stage E-VRP that integrates path finding
with route planning. The energy consumption of electric trucks in Gothenburg, Sweden, has been
estimated based on a comparison between numerical simulations and the actual consumption data
measured on the public transport route. Pelletier et al. [138] introduced a practical transportation
problem that can deal with the presence of uncertainties surrounding the energy consumption of EFVs,
and solve it by a robust optimization framework and a two-phase heuristic method based on large
neighborhood search. Lu and Wang [139] proposed the Dynamic Capacitated E-VRP (DC-E-VRP),
in which the information of partial customers is unknown and revealed during the execution of the
plan in the dynamic problem. An effective scheduling generation scheme, population initialization,
two search strategies on representation and scheduling and crossover operators have been designed
to solve the problem. Granada-Echeverri et al. [140] proposed the Electric Vehicle Routing Problem
with Backhauls (E-VRP-B) that includes both a set of customers to whom products are to be delivered
and a set of customers whose goods need to be transported back to the distribution center. Both the
linehaul customers and the backhaul customers must be visited contiguously, and all routes must
contain at least one linehaul customer. Reyes-Rubiano et al. [141] considered both driving range
limitations and uncertainty conditions in E-VRP, which might cause route failures when the vehicle
runs out of battery, and presented the Electric Vehicle Routing Problem with Stochastic Travel Times
(E-VRP-ST). Kullman et al. [142,143] offered an implementation of a solution method that suffers
none of the issues which are common in solving the E-VRP. The issues are inexactness, inefficiency,
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and lack of robustness of the solution methods. So, they used the Fixed Route Vehicle Charging
Problem (FRVCP) as a subproblem in E-VRP based on the labeling algorithm of the Froger et al. [30].
The solution implementation has been provided in an open-source Python package to remove the
burden of implementation for future E-VRP researchers. Kullman et al. [144] proposed a new extension
of the E-VRP called E-VRP with Public-Private Recharging Strategy (E-VRP-PP), in which demand for
charging stations was unclear and followed a real queue process. In this regard, the Markov decision
process (MDP) was used for modeling the E-VRP-PP. They utilized the piece-wise linear charging
time function to consider the public charging stations, at which waiting time may incur due to the
unknown demand using the same charging station. They developed a decomposition approach to
separate the routing decision from the charging decision. Table 2 determines the classification of each
study on the E-VRP-TW (TW), E-VRP-PR (PR), E-VRP-BSS (BSS), E-VRP-MF (MF), E-LRP (LRP),
E-VRP-NL (NL), L-E-VRP (Lo), P-E-VRP (Pe), 2E-E-VRP (2E), and Other Related Studies (ORS) and
covers several classifications. This table also calculates the contribution of each variant in the E-VRP
literature. Table 3 summarizes the assumptions and constraints of the E-VRPs. The first two columns
indicate the references and their publication year. The next twelve columns pertain to the assumptions
and constraints of the VRP. The diversity of the VRP is far more than the twelve cases mentioned;
however, these characteristics are included considering the importance and usage of the assumptions
made in the E-VRP. The next fourteen columns relate to the operational assumptions of the EVs.
The type of the objective functions is shown in the last column. The percentage of usage for each
feature is computed the in the same way as that of Table 1.



Sustainability 2020, 12, 9079 20 of 71

Table 2. Classification of papers based on different variants of E-VRP.

Year Reference Name
Variants

TW PR BSS MF LRP NL TD Lo Pe 2E ORS

% of papers # 65% 33% 14% 22% 17% 15% 4% 1% 1% 2% 12%
2011 Conrad and Figliozzi [20] Recharging VRP (R-VRP) TW PR
2011 Gonçalves et al. [89] E- VRP-MF MF
2012 Worley et al. [104] E-VRP LRP

2013 Van Duin et al. [99] EV Fleet Size and Mix VRP–TW
(E-FSM-VRP-TW) TW MF

2014 Afroditi et al. [3] E-VRP-TW TW
2014 Preis et al. [63] E-VRP-TW TW
2014 Schneider et al. (SSG) [23] E-VRP-TW TW

2014 Hiermann et al. (HPH) [100] Electric Fleet Size and Mix VRP-TW and
Recharging Station (E-FSMVRPTW) TW MF

2014 Felipe et al. (FORT) [24] G-VRP with Multiple Technologies and PR PR

2014 Sassi et al. [36]
Heterogeneous E-VRP with Time

Dependent Charging Costs and a MF
(HE-VRP-TD-MF)

TW PR MF

2015 Sassi et al. [90] VRP with MF of conventional and
heterogeneous EVs (VRP- MFHEV) TW PR MF

2015 Sassi et al. [91] VRP with MF of conventional and
heterogeneous EVs (VRP- HFCC) TW PR MF

2015 Schneider et al. [135] E-VRP with recharging facilities
(E-VRP-RF) ORS

2015 Bruglieri et al. [64] E-VRP-TW TW

2015 Lebeau et al. [102] Fleet Size and VRP-TW for EV
(FSM-VRP-TW-EV) TW MF

2015 Yang and Sun (YS) [29] EVs BSS LRP (EV-BSS-LRP) BSS LRP
2015 Goeke et al. (GHS) [83] EVs BSS LRP (EV-BSS-LRP) BSS LRP

2015 Li-ying and Yuan-bin [28] EV Multiple CS LRP with TW
(EV-MCS-LRPTW) TW LRP

2015 Goeke and Schneider (GS) [92] E-VRP-TW-MF TW MF NL

2015 Ding et al. [75] Conflict-Free E-VRP with Capacitated
Charging Stations and PR TW PR

2015 Moghaddam [76] E-VRP-TW-PR TW PR

2015 Montoya et al. [114] E-VRP with PR and NL charging function
(E-VRP-NL) PR NL

2015 Aggoune-Mtalaa et al. [133] Modular electric VRP (Me-VRP) TW ORS
2015 Murakami and Morita [93] Electric and Fuel-engine VRP (EFVRP) MF
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Table 2. Cont.

Year Reference Name
Variants

TW PR BSS MF LRP NL TD Lo Pe 2E ORS

2016 Keskin and Çatay (KÇ) [77] E-VRP-TW with fast charge
(E-VRP-TW-FC) TW PR

2016 Desaulniers et al. [78]

E-VRP-TW with Single (S) recharge per
route and Full (F) recharge (E-VRP-TW-SF)
E-VRP-TW with Multiple and Partial (P)

recharge (E-VRP-TW-SP)
E-VRP-TW with Single (S) recharge per

route and Full (F) recharge (E-VRP-TW-SF)
E-VRP-TW with Multiple and PR

(EVRPTW-MP)

TW PR

2016 Sundar et al. [94] Fuel-Constrained Autonomous Vehicle
Path Planning Problem (FCAVPP) MF

2016 Schiffer et al. [105] E-LRP TW MF LRP
2016 Chen et al. [84] E-VRP-TW-BSS TW BSS

2016 Hiermann et al. (HPRH) [101] Electric Fleet Size and Mix VRP-TW and
Recharging Stations (E-FSM-TW) TW MF

2016 Montoya (MSH 1 2 3) [115] E-VRP-NL
E-FSMFTW TW MF NL

2016 Lin et al. [35] E-VRP MF
2016 Basso et al. [65] E-VRP-TW TW TD
2017 Barco et al. [31] E-VRP TW
2017 Schiffer and Walther [106] E-LRP with TW and PR (E-LRP-TW-PR) TW PR LRP
2017 Montoya et al. (MGMV17) [116] E-VRP-NL NL
2017 Bruglieri et al. [80] E-VRP-TW-PR TW PR
2017 Hof et al. (HSG) [85] BBS-EV-LRP BSS LRP

2017 Shao et al. [122] E-VRP with Charging Time and Variable
Travel Time (E-VRP-CTVTT) TW TD

2018 Schiffer and Walther (SW) [107] LRP with intra-route facilities (LRPIF) TW PR BSS LRP

2018 Schiffer and Walther [108] Robust E-LRP with TW and PR
(R-E-LRP-TW-PR) TW PR LRP

2018 Paz et al. [109] Multi-Depot E-LRP with TW
(MD-EV-LRP-TW) TW PR LRP

2018 Kancharla and Ramadurai [66] E-VRP-TW TW

2018 Zhang et al. [136] E-VRP with minimizing
energy consumption ORS

2018 Verma [86] E-VRP-TW-BSS TW BSS

2018 Zhou and Tan [110] Electric Vehicle Handling Routing and BSS
Location Problem (EV-HR-BSSL) BSS LRP

2018 Villegas et al. [97]
Technician Routing and Scheduling

Problem with Conventional and Electric
Vehicles (TRSP-CEV)

MF
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Table 2. Cont.

Year Reference Name
Variants

TW PR BSS MF LRP NL TD Lo Pe 2E ORS

2018 Kullman et al. [142] NL ORS
2018 Keskin and Çatay [79] E-VRP-TW TW PR
2018 Zuo et al. [67] E-VRP-TW TW
2018 Gatica et al. [112] E-LRP LRP
2018 SSL [111] LRPIF with multiple resources (LRPIF-MF) TW PR BSS LRP

2018 Zhang et al. [69] E-VRP with Soft TW and Recharging
Stations in the Reverse Logistics TW PR

2018 Kouider et al. [128] Periodic E-VRP (P-E-VRP) PR Pe

2019 Kopfer and Vornhusen [95] Energy VRPTW, Recharge Stations and
Vehicle Classes (EVRPTW-R-VC) TW MF

2019 Froger et al. [30] E-VRP-NL NL

2019 Macrina et al. [96] Green Mixed VRP with Partial Battery
Recharging and TW (G-MF-VRP-PR-TW) TW PR MF

2019 Jie et al. [132] Two-Echelon E-VRP with BSS
(2E-E-VRP-BSS) BSS 2E

2019 Zuo et al. [117] E-VRP-TW with concave nonlinear
charging function (EVRPTW-CNCF). TW NL

2019 Koç et al. [118] E-VRP with Shared Charging Stations
(E-VRP-SCS) PR LRP NL

2019 Breunig et al. [131] Electric Two-Echelon VRP (E2E-VRP) 2E

2019 Keskin et al. [40] E-VRP-TW with time-dependent waiting
times at recharging stations TW NL

2019 Zhao and Lu [103] Real World E-VRP TW MF

2019 Erdem and Koç [68] E-VRP-TW with Home Care Routing
Problem TW PR MF

2019 Rastani et al. [34] E-VRP-TW-PR TW PR

2019 Pelletier et al. [138] E-VRP with Energy Consumption
Uncertainty (E-VRP-ECU) ORS

2019 Keskin et al. [41] E-VRP-TW with Stochastic Waiting Times
at Recharging Stations TW NL

2019 Cortés-Murcia et al. (Hybrid-ILS) [81] E-VRPTW with Satellite Customers
(E-VRTWsc) TW PR

2019 Rezgui et al. [134] Modular electric VRP (Me-VRP) TW MF ORS
2019 Basso et al. [137] Two-stage E-VRP (2sEVRP) TW ORS

2019 Goeke [70]
Pickup and Delivery Problem with Time

Windows and Electric Vehicles
(PDPTW-EV)

TW PR

2019 Lu and Wang [139] Dynamic Capacitated E-VRP (DC-E-VRP) TW ORS

2019 Xiao et al. [71]
E-VRP-TW considering

the energy/electricity consumption rate
(E-VRP-TW-ECR)

TW
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Table 2. Cont.

Year Reference Name
Variants

TW PR BSS MF LRP NL TD Lo Pe 2E ORS

2019 Lu et al. [139] Time-Dependent E-VRP (TD-E-VRP) TW TD

2019 Reyes-Rubiano et al. [141] E-VRP with stochastic travel times
(E-VRP-ST) ORS

2020 Meng and Ma [72] E-VRP-TW TW BSS

2020 Taş [73] E-VRP with Flexible Time Windows
(E-VRP-FTW) TW

2020 Granada-Echeverri et al. [140] E-VRP with Backhauls (E-VRP-B) ORS

2020 Kullman et al. [143] Fixed Route Vehicle Charging Problem
(FRVCP) NL ORS

2020 Kullman et al. [144] E-VRP with public-private recharging
strategy (E-VRP-PP) NL ORS

2020 Lee [119] E-VRP with nonlinear charging
Time NL

2020 Mao et al. [87] E-VRP-TW and Multiple Recharging
Options (E-VRP-TW&MC) TW PR BSS

2020 Almouhanna et al. [113] LRP with a Constrained Distance (LRPCD) LRP
2020 Zhang et al. [82] Fuzzy E-VRP-TW (F-E-VRP-TW) TW PR

2020 Zhang et al. [124]
A time-dependent E-VRP with

congestion tolls and time window
constraints (TD-E-VRP-CT)

TW PR TD

2020 Zhu et al. [126] Two-Dimensional Multi-Depot E-VRP
(2L-MDEVRP) BSS Lo

2020 Kancharla and Ramadurai [120]

E-VRP-NL and Load-Dependent
Discharging (E-VRP-NL-LD)

E-VRP-NL-LD with Capacitated Charging
Stations (E-VRP-NL-LD-CCS)

PR NL

2020 Löffler et al. [74] E-VRP-TW with and Single recharge
(E-VRP-TW-S) TW PR NL

2020 Raeesi et al. [34] E-VRP-TW and Synchronised Mobile
Battery Swapping (EVRPTW-SMBS) TW BSS

2020 Keskin et al. [38] E-VRP-TW and stochastic waiting times at
recharging stations TW
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Table 3. Summary of studies conducted on E-VRP.
Ye
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VRP Constraints and Characteristics EV’s Related Technical Constraints and Assumptions Objective

Function

Ti
m

e
W

in
do

w
s

Pi
ck

up
an

d
D

el
iv

er
y

Tr
av

el
Ti

m
e

C
ap

ac
it

at
ed

Fl
ee

tS
iz

e Mixed
Fleet

Pe
ri

od
ic

St
oc

ha
st

ic

Ti
m

e
-D

ep
en

de
nt

M
ul

ti
-D

ep
ot

M
ul

ti
-E

ch
el

on

Lo
ad

in
g

Fu
ll

R
ec

ha
rg

es

Pa
rt

ia
l

R
ec

ha
rg

es

N
o

In
tr

a-
R

ou
te

R
ec

ha
rg

in
g

Fa
ci

li
ty

C
ha

rg
in

g
or

Sw
ap

pi
ng

at
C

us
to

m
er

Si
te

C
ha

rg
in

g
or

Sw
ap

pi
ng

at
sp

ec
ia

lv
er

ti
ce

s

B
at

te
ry

Sw
ap

pi
ng

Fi
xe

d
C

ha
rg

in
g

or
B

at
te

ry
Sw

ap
pi

ng
Ti

m
e

Si
m

ul
ta

ne
ou

s
C

ha
rg

in
g

St
at

io
n

Si
ti

ng

B
at

te
ry

Li
fe

D
eg

ra
da

ti
on

Lo
ad

,S
pe

ed
Tr

av
el

in
g

or
Te

m
pe

ra
tu

re
Eff

ec
t

R
ec

ha
rg

in
g

(S
w

ap
pi

ng
)

C
os

t

N
on

li
ne

ar
R

ec
ha

rg
in

g

D
iff

er
en

t
C

ha
rg

in
g

Te
ch

no
lo

gi
es

W
ai

ti
n

Q
ue

ue
at

R
ef

ue
li

ng
St

at
io

ns

EVs
and
Other
Types

Pure
Evs

% of papers 65% 10% 76% 84% 36% 13% 11% 1% 9% 4% 4% 2% 1% 82% 35% 8% 7% 75% 15% 25% 14% 2% 21% 25% 19% 19% 4% #

2011 Conrad and
Figliozzi [20]

√ √ √ √ √ √ √ √
NV

2011 Gonçalves et
al. [89]

√ √ √ √ √
Costs

2012 Worley et al.
[104]

√ √ √ √ √ √ √
Costs, NS

2013 Van Duin et
al. [99]

√ √ √ √ √ √ √ Costs, NV,
TTD

2014 Afroditi et al.
[3]

√ √ √ √ √ √ √
Dist, NV

2014 Preis et al.
[63]

√ √ √ √ √ √ √
Em

2014 SSG [23]
√ √ √ √ √ √

Dist
2014 HPH [100]

√ √ √ √ √ √ √
Dist., NV

2014 FORT [24]
√ √ √ √ √ √ √ √

Costs

2014 Sassi et al.
[36]

√ √ √ √ √ √ √ √ √
Costs

2015 Sassi et al.
[90]

√ √ √ √ √ √ √ √ √ √
Costs

2015 Sassi et al.
[91]

√ √ √ √ √ √ √ √ √
Costs

2015 Schneider et
al. [135]

√ √ √ √ √
Costs, NV

2015 Bruglieri et al.
[64]

√ √ √ √ √ √ √
NV, TTD

2015 Lebeau et al.
[102]

√ √ √ √ √ √ √ √ √ √ √
Costs

2015 YS [29]
√ √ √ √ √

Costs, NS
2015 GHS [83]

√ √ √ √ √ √
Costs, NS

2015 Li-ying and
Yuan-bin [28]

√ √ √ √ √ √ √ √ √ √
Costs

2015 GS [92]
√ √ √ √ √ √ √ Dist.,

Costs, Em

2015 Ding et al.
[75]

√ √ √ √ √ √ √ √
Dist.

2015 Moghaddam
[76]

√ √ √ √ √ √ √
NV, NS

2015 Montoya et al.
[114]

√ √ √ √ √ √
TTD

2015 Aggoune-Mtalaa
et al. [133]

√ √ √ √ √ √
Costs, Em

2015
Murakami
and Morita

[93]

√ √ √ √
Costs

2016 KÇ [77]
√ √ √ √ √ √

Dist
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2016 Sundar et al.
[94]

√ √ √ √
Dist

2016 Schiffer et al.
[105]

√ √ √ √ √ √ √ √
Costs,

Dist, NS
NV, Em

2016 Desaulniers
et al. [78]

√ √ √ √ √ √ √ √
Costs

2016 Chen et al.
[84]

√ √ √ √ √ √ √
Dist

2016 HPRH [101]
√ √ √ √ √ √

Costs

2016 MSH 1 2 3
[115]

√ √ √ √ √ √ √ √ √ √ Costs,
TTD

2016 Lin et al. [35]
√ √ √ √ √ √ √

Costs

2016 Basso et al.
[65]

√ √ √ √ √ √ √
Em, TTD

2017 Barco et al.
[31]

√ √ √ √ √ √ √ √
Em

2017 Schiffer and
Walther [106]

√ √ √ √ √ √ √ √ √ Dist, NV,
NS

2017 MGMV17
[116]

√ √ √ √ √ √
TTD

2017 Bruglieri et al.
[80]

√ √ √ √ √ √ √
TTD

2017 HSG [85]
√ √ √ √ √

Costs

2017 Shao et al.
[122]

√ √ √ √ √ √ √ √
Costs

2018 SW [107]
√ √ √ √ √ √ √ √ Costs, NV,

NS

2018 Schiffer and
Walther [108]

√ √ √ √ √ √ √ √ √ Costs, NV,
NS

2018 Paz et al.
[109]

√ √ √ √ √ √ √ √ √ √
Dist.

2018 Verma [86]
√ √ √ √ √ √

Costs

2018

Kancharla
and

Ramadurai
[66]

√ √ √ √ √ √
Em

2018 Zhang et al.
[136]

√ √ √
Em

2018 Zhou and
Tan [110]

√ √ √ √ √
Costs

2018 Villegas et al.
[97]

√ √ √ √ √
Costs

2018 Kullman et al.
[142]

√ √ √ √
TTD

2018 Keskin and
Çatay [79]

√ √ √ √ √ √ √ √ √
Costs, NV
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2018 Zuo et al. [67]
√ √ √ √ √ √

Costs

2018 Gatica et al.
[112]

√ √ √ √
Dist.

2018 SSL [111]
√ √ √ √ √ √ √ √ Costs, NV,

NS

2018 Zhang et al.
[69]

√ √ √ √ √ √ √
Costs, NV

2018 Kouider et al.
[128]

√ √ √ √ √ √ √
Costs

2019
Kopfer and
Vornhusen

[95]

√ √ √ √ √ √ √
Em

2019 Froger et al.
[30]

√ √ √ √
TTD

2019 Macrina et al.
[96]

√ √ √ √ √ √
Costs

2019 Jie et al. [132]
√ √ √ √ √

Costs

2019 Zuo et al.
[117]

√ √ √ √ √ √
Costs, NV

2019 Koç et al.
[118]

√ √ √ √ √ √ √
Costs

2019 Breunig et al.
[131]

√ √ √ √
Dist.

2019 Keskin et al.
[40]

√ √ √ √ √ √ √
Costs,

Dist, Em,
NV

2019 Zhao and Lu
[103]

√ √ √ √ √ √ √ √ √
Costs, NV

2019 Erdem and
Koç [68]

√ √ √ √ √ √
TTD

2019 Rastani et al.
[34]

√ √ √ √ √ √ √ √
Em

2019 Pelletier et al.
[138]

√ √ √ √ √
Costs, Em

2019 Keskin et al.
[41]

√ √ √ √ √ √ √ √ √
Costs, Em

2019 Cortés-Murcia
et al. [81]

√ √ √ √ √
RT

2019 Rezgui et al.
[134]

√ √ √ √ √ √ √ √ Costs, NV,
Dist.

2019 Basso et al.
[137]

√ √ √ √ √ √
Em

2019 Goeke [70]
√ √ √ √ √ √ √

Costs

2019 Lu and Wang
[139]

√ √ √ √ √
Costs

2019 Xiao et al.
[71]

√ √ √ √ √
Costs, Em
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2019 Reyes-Rubiano
et al. [141]

√ √ √ √
TTD

2019 Lu et al. [139]
√ √ √ √ √ √ √ √

Costs, Em

2020 Meng and
Ma [72]

√ √ √ √ √ √ √ √ √
Costs

2020 Taş [73]
√ √ √ √ √ √ √

Costs, NV

2020 Granada-Echeverri
et al. [140]

√ √ √ √
Costs

2020 Kullman et al.
[143]

√ √ √ √
TTD

2020 Kullman et al.
[144]

√ √ √ √ √ √
TTD

2020 Lee [119]
√ √ √ √

TTD

2020 Mao et al.
[87]

√ √ √ √ √ √ √ √ √ √
Costs, NV

2020 Almouhanna
et al. [113]

√ √ √ Costs,
Dist., NV

2020 Zhang et al.
[82]

√ √ √ √ √ √ √ √
Dist.

2020 Zhang et al.
[124]

√ √ √ √ √ √ √ √ √ √ TTD,
Costs

2020 Zhu et al.
[126]

√ √ √ √ √ √
Dist.

2020

Kancharla
and

Ramadurai
[120]

√ √ √ √ √ √ √ √
TTD

2020 Löffler et al.
[74]

√ √ √ √ √ √ √ √
Costs

2020 Raeesi et al.
[34]

√ √ √ √ √ √ √
Costs, NV

2020 Keskin et al.
[38]

√ √ √ √ √ √ √ √ √
Costs, Em
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4.2. E-VRP Literature Gaps and Future Researcch

An overview of Table 3 shows the emerging of researches area on the problem of EVs and its
subcategories. Many of the applied assumptions in the VRP, along with the characteristics associated
with EVs have not so far been addressed, or few were addressed. What stands out most in the
issue of E-VRP is the combination of basic and classical VRP assumptions and constraints to make
the E-VRP variants comprehensive, more applicable and closer to real-world issues. For example,
using a set of EVs can be attractive and economical in a two-echelon distribution system, due to the
environmental regulations in the urban environment, to serve the final customers in the second level.
However, due to driving constraints in urban environments, the amount of charge for this type of
vehicles is affected by many obstacles in the urban environment and therefore, requires well-designed
and reliable planning. The assumption of time dependency and the existence of constraints associated
with traffic changes in urban environments in a two-echelon system introduce the problem of E-VRP
with time-dependent two-echelon systems. Moreover, in many real-world applications of distribution
systems, the decision process covers more than one period, spanning several days or even several
weeks. The investigation of the effect of using EVs can be attractive in planning for a scope longer than
a period Cacchiani et al. [127]. A combination of other practical issues of VRP can provide various
analyses of what-if scenarios, for example, depot location, fleet size and mix, departure time, customers’
demand, and their time-windows can lead to reaching more applicable and closer to real-world issues
in the field of EF-VRP. Besides, from EV’s related technical constraints and assumptions perspective,
investigating the effect of technologies used on different types of batteries in parameters such as
recharging consumption rate, recharging time duration, the effect of vehicle speed or weight on the
amount of charging, the cost of recharging, and battery degradation are among the few that are subject
to limited researches and can be interesting subjects for future research.

5. Route Planning on Hybrid Electric Vehicles

Despite the significant benefits of using EVs in goods distribution, there are some limitations in
this variant of vehicles that cannot be ignored. The limited number of recharging stations, considerable
time spent on recharging, frequent recharging, the high cost of the battery swapping, and the limited
driving range in this type of vehicles are some of the constraints [145]. Using a vehicle with two or more
power sources called a Hybrid Electric Vehicle (HEV) is considered an appropriate strategy to overcome
these constraints [21]. The term HEV is mostly used when referring to a vehicle the propulsion system
of which is an Internal Combustion Engine (ICE) (usually uses gasoline) along with one or more
electric engines, and the vehicle can use one or both sources of energy. In recent years, using HEVs has
remarkably increased in the logistics and freight sector. By and large, EHVs are categorized based on
electrical engine performance, vehicle charging supply, electric engine architecture, their capacity to
connect to the power grid to charge the battery, the hybridization factor degree, variants of electric
engines, etc. In the following, the classification of EHVs is presented.

5.1. Classification of HEVs

Considering the unique characteristics and technical specifications of different variants of HEVs,
various approaches were used by researchers to classify such variants of vehicles. The HEV uses a
combination of the output energy of the ICE and an electric engine that uses the energy stored in a
battery. Actually, in this vehicle, the benefits of using internal combustion and electric engines are
merged to achieve various goals, namely, increasing vehicle power, reducing environmental pollution,
improving fuel economy, or extra auxiliary power for EVs. Such vehicles are capable of moving
through using an ICE or an electric engine separately, as well as using both engines to increase power.
The vehicle battery is charged via regenerative braking as well as the internal combustion engine and is
not able to connect to the charging source. The Plug-in Hybrid Electric Vehicle (PHEV) is similar to the
HEV. It is powered by an ICE engine and an electric engine that uses the energy stored in the battery.
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The difference between these two vehicles resides in the fact that PHEVs can be connected to the grid to
charge their batteries. Similar to the HEVs, this energy can be provided through regenerative braking
and ICE.

The present study categorizes and investigates studies on the HEVs routing on this basis. There are
other classifications for HEVs in the literature, which are briefly mentioned for further information.

5.1.1. Classification Based on Electric Engine Architecture

Lukic et al. [146] believe that mechanical connections are considered a proper standard for
classifying HEVs. Based on the electric engine design in using fossil or electric fuel, HEVs fall into three
types of parallel hybrid, series hybrid, and parallel-series hybrid [147]. In parallel hybrid vehicles,
fossil fuels provide the energy required by the conventional engine, and the energy stored in the
battery provides the power required by the electric engine. Recharging the battery takes place using a
generator during a typical driving process. In this vehicle type, the vehicle can independently move
using either an ICE or an electric engine. On the opposite side, there are series-hybrid vehicles, in which
the ICE acts as a driver of the generator, which should recharge the vehicle battery. In this category
of vehicles, only the electric engine moves the vehicle. If the battery runs low, then the combustion
engine automatically charges the battery. In parallel-series hybrid vehicles, the characteristic of
both series-hybrid and parallel-hybrid are considered integrated, with the exception that an extra
mechanical connection is used in comparison with the hybrid series vehicles and an extra generator is
used compared to the hybrid parallel vehicles, i.e., the parallel-series hybrid vehicle provides ICEs and
electric engines with the power, either independently or in partnership. Compared to the two hybrid
vehicles mentioned above, the parallel-series hybrid is relatively complicated and more costly than the
others [148]. Both HEV and PHEV vehicles can have parallel, series, or parallel-series engine models.

Other classifications for HEVs were presented in Chan’s [148] designing perspective.
Moreover, Curtin et al. [147] used the term “hybrid electric vehicle” or HEV to identify the parallel
vehicle type and used the ”plug-in hybrid electric vehicle” or PHEV to the series vehicle.

5.1.2. Classification Based on Hybridization Degree

To better classify HEVs, Lukic et al. [146] categorized these vehicles based on the Hybridization
Factor (HF). This categorization was presented between HF = 0 (internal combustion engine vehicle
(ICEV) and HF = 1 (electric vehicle (EV)) in which HF is defined as (2):

HF =
PEM

PEM + PICE
(2)

where PEM and PICE respectively represent the maximum power of the electric and the combustion
engine, and considering their value, each of the hybrid electric vehicles mentioned is determined.
Based on this classification, hybrid vehicles can be categorized into the four following classifications:
Micro-HEVs, Mild-HEVs, Power-assisted HEVs, and Plug-In HEVs. By and large, Table 4 presents the
most significant types of HEVs, and the related characteristics of each type of vehicle appearing in the
literature. Despite the production of a wide range of HEVs, only a small part of this wide range has
been studied in the field of logistics and transportation in order to face various transportation problems
and environmental challenges. Undoubtedly, the increase in the complexity and unique characteristics
of each vehicle affects the route planning problems and creates difficulties in their optimum usage
in the distribution industry. Bearing this in mind, the number of constraints related to the HEVs is
more than the EVs constraints, and this issue complicates the design of correct planning in this area.
Accordingly, a general classification was used so far in H-VRPs, and as a result of considering other
classifications, paves the way for numerous further research areas for studying this type of vehicles in
the field of VRP. In the following, various types of H-VRP are investigated.
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Table 4. Different classifications for Hybrid Electric Vehicles.

Type of
Classification
of the Hybrid

Vehicle

General
classification

HEV

• A combination of internal combustion engine (ICE) and an electric
engine power source

• Using the electric engine of the charge available in the battery
• Charging the battery using regenerative braking and ICE

PHEV

• A combination of internal combustion engine (ICE) and an electric
engine power source

• Using the electric engine of the charge available in the battery
• Charging the battery using regenerative braking and ICE
• Chargeability through connecting to the charging source

Types of
Powertrain

Parallel-Hybrid

• Providing the ICE engine power through fossil fuels
• Providing electric engine power through the energy stored in batteries
• Ability to move the vehicle through the ICE engine and electric engine
• Ability to charge the battery while driving
• The possibility of connecting the vehicle to the power grid, in which

case the vehicle will be plug-in parallel (Parallel or Blended PHEVs)

Series-Hybrid

• The role of the ICE engine as a generator to provide the required
engine power

• Movement of the vehicle by electric engine
• The possibility of connecting the vehicle to the power grid, in which

case the vehicle will be a plug-in series called PHEVs series, or
Extended Range Electric Vehicles

Parallel-Series
Hybrid

• Considering integrated Parallel-Series Hybrid characteristics
• Movement of the vehicle by electric engine
• Use of an extra mechanical connection compared to the hybrid series
• Use of an extra generator compared to parallel-hybrid
• High cost and complex structure

Hybridization
Factor

Micro-HEVsHF
< 0.1

• Limited and automatic usage of the electric engine as a combination of
the starter and alternator to provide a fast start/stop operation

• Preventing ICE engine activity when the vehicle stops
• The movement of vehicle by ICE engine
• The electric engine alone cannot drive the vehicle
• Saves fuel by 10%

Mild-HEVsHF
< 0.25

• It enjoys a powerful electric propulsion system
• Using an electric engine to reinforce the ICE acceleration
• Absorbing energy through regenerative braking
• The energy power in batteries is more compared to Micro-HEVs.
• The electric engine alone cannot drive the vehicle
• Saves fuel by 10–20%

Power-assist
HEVS0.25 < HF

< 0.5

• Provides strong electric drive to support ICE
• The vehicle can operate as all-electric system with zero emissions
• ICE alone cannot guarantee vehicle propulsion
• Saves fuel by more than 50%

Plug-In
(HEV)HF > 0.5

• Uses batteries that can be charged with conventional power grid
• Considerably prolongs the driving range of electric vehicle
• Significantly saves fuel

5.2. Hybrid Vehicle Routing Problem

The H-VRP aims at meeting the demand for a set of customers using HVs and seeks to minimize
the distribution network costs. Studies on HV routing problem have considered the classification;
it has been presented by the Energy Efficiency & Renewable Energy [4] in the form of two types,
namely, HEV and PHEV. Figure 7 illustrates the classification of studies conducted on the HVs routing.
Figure 7 indicates that the VRP presented with this type of vehicle can be divided into two general
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classifications: Hybrid Electric Vehicle Routing Problem (HE-VRP) and the Plug-in Hybrid Electric
Vehicle Routing Problem (PHE-VRP), each of which will be elaborated in the following.Sustainability 2020, 12, x FOR PEER REVIEW 31 of 72 
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5.2.1. Hybrid Electric Vehicle Routing Problem (HE-VRP)

The only problem presented is the HEV Travelling Salesman Problem (HEVTSP) as a simplified
example of the VRP, which was published by Doppstadt et al. [37]. In order to cover the applied
assumptions of the HEV usages, four different modes of this vehicle were considered for the problem,
including: pure combustion (conventional) mode, pure electric mode (movement using the electric
engine), charging mode (in which the battery is charged while driving with the combustion engine),
boost mode (where combustion and electric engines are used in combination to move the vehicle).
They used an innovative Tabu Search (TS) to solve the proposed problem, in which two primary stages
of the initial response and recovery step were used. They generated a number of problem instances
to investigate the performance of the proposed algorithm. Doppstadt et al. [149] recently developed
the previous problem by adding Time-Windows constraints and presented a new solution approach.
They developed a new heuristic solution approach based on parallelized VNS and generated a new set
of benchmark instances to evaluate the proposed solution approach. Figure 8 presents an example of a
feasible solution for HEV-TSP [37,149]. In this example, there are six customers who are served with
an HEV. The HEV can benefit from four modes as mentioned above to complete its route.
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5.2.2. Plug-In Hybrid Electric Vehicle Routing Problem (PHE-VRP)

In the current literature, some researchers studied application of PHEVs to serve customers
in the VRP problem. The PHEVs have a high capacity battery that can be charged by the power
grid. The high capacity of the battery of such a vehicle provides the possibility of a fully electric
movement for this type of vehicles in short distances. Various studies have considered the possibility
to recharge PHEVs at a charging station, customer sites or other locations, which are discussed in the
following: Abdallah [22] investigated using PHEVs in his study for the first time and presented the
Plug-In Hybrid Electric Vehicle Routing Problem with Time Windows (PHE-VRPTW). In the model
presented in this paper, the possibility of partial recharging of PHEVs in each node of a distribution
network was considered, and the refueling process of PHEVs was not considered. Juan et al. [150]
developed the VRP with Multiple Driving Range (VRPMDR), in which there was a set of mixed
fleets consisting of different variants of EVs and PHEVs, with different driving ranges. In that
study, vehicles with different battery capacities, leading to different values of driving ranges for each
vehicle, were studied in the routing process. Mancini [145] posed a problem, in which the propulsion
switch of HVs between battery and fuel was possible considering preferences and at any time of
driving. The problem was called the Hybrid Vehicle Routing Problem (H-VRP), in which the unit
of driving cost in electric mode is far lower than other vehicle driving modes. This study has not
mentioned the type of HV used; however, regarding the possibility of recharging vehicles at recharging
stations, it can be categorized in the PHEV routing problem classification. Hiermann et al. [151]
formulated a problem, in which three types of vehicles including ICEV, EV, and PHEV were considered
to serve customers in the VRP. Vincent et al. [13] presented the H-VRP using PHEV. The model
presented for this problem was inspired by the mathematical model presented by Erdoğan and
Miller-Hooks [21]. Eskandarpour et al. [152] considered a heterogeneous fleet of EVs with respect to
loading capacities as well as driving ranges and proposed the Heterogeneous Vehicle Routing Problem
with Multiple Driving ranges and loading capacities (HeVRPMD). They considered different maximum
driving ranges for each vehicle without any recharging decisions and proposed an enhanced variant of
Multi-Directional Local Search (EMDLS) to solve the problem. Hatami et al. [153] solved the HeVRPMD
by a Multi-Round Iterated Greedy (MRIG) metaheuristic based on a successive approximations method
to solve the problem. Recently, Zhen et al. [154] proposed a new study of a PHE-VRP with mode
selection. This paper has been considered as the first study in selecting PHEVs’ different modes
for each road segment in VRP. In this problem, PHEV can choose the appropriate mode (battery-
or gasoline-based) according to different road conditions. PHEVs can be recharged at recharging
stations during the delivery tour. For efficiently solving the proposed model, they design an Improved
Particle Swarm Algorithm (IPSO) in which a labeling procedure is involved. Li et al. [155] proposed
a new hybrid optimization algorithm merging the memetic algorithm and the sequential variable
neighborhood descent to solve PHE-VRP. Bahrami et al. [156] presented a model which is distinguished
from the literature problems in considering different rates of emission for two sources of energy,
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and the total energy consumption minimization. In addition, the regenerative braking for the PHEV
was considered for the first time. The proposed model have was solved with an exact and heuristic
algorithm. Moreover, they implemented a case study for the problem

Table 5 presents a summary of the assumptions and constraints of the H-VRP. In this table, the first
column indicates the publications references. The third column specifies the type of HVs that were
investigated in two types of PHEV and HEV. The next eleven columns relate to the assumptions and
constraints of the H-VRP. The next fifteen columns relate to the operational assumptions of the HVs.
The same as Tables 1 and 3, the last column illustrates the type of objective functions and the percentage
of usage for each feature is computed.
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Table 5. Summary of studies conducted on H-VRP.
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5.3. H-VRP Literature Gaps and Future Research

The existence of a variety of HVs from the standpoint of characteristics such as type (Parallel,
Series, Parallel-Series, Micro, Mild, Power-assist, Plug-in HEVs, etc., as shown in Table 4), load-carrying
capacity, battery capacity, technology applied in batteries, and pricing raises the question of whether a
fleet of different vehicles is effective in reducing the cost of distribution. This problem is significant in
H-VRPs because various levels of hybrid vehicles with different characteristics have been developed in
recent years. In addition, determining the number of vehicles needed to meet customers’ demand along
with other distribution costs, defining planning horizon to meet customers’ demands in multi-period,
real pattern of daily traffic congestion, stochastic conditions in the distribution network, multi-depot
application, multi-echelon services, and loading issues, which is related to the size of items to be
distributed, are significant and practical assumptions that have not been effectively investigated in
the domain mentioned above. These assumptions could be studied by interested researchers for
future research in H-VRP. Investigating each of these problems can answer many questions about the
benefits of using HVs and increase using these vehicles in distribution systems throughout the world,
thereby reducing the environmental effect of transportation. As a recommendation for further research
on H-VRP in terms of HV’s related technical constraints and assumptions, interested researchers can
develop practical characteristics associated with HVs which have so far not been addressed, such as
battery swapping and life degradation assumptions, simultaneous charging station siting, load, speed
traveling or ambient temperature effect, nonlinear refueling (recharging), wait in queue at refueling
(recharging) stations, etc.

6. EF-VRP Solution Methods

Because of the higher complexity of EF-VRPs, solution methods including exact, heuristic,
and meta-heuristic algorithms designed for the classical VRP or related variants cannot directly be
used in solving these problems [21]. This section provides a comprehensive review of the solution
methods specifically developed for the EF-VRPs. Considering the explanations provided for each of
the studies published on the EF-VRP, it is possible to include the proposed solution methods in three
different classifications, namely, the exact, heuristic, and metaheuristic methods. It should be noted
that some studies arrived at a mathematical model of the problem and its solution by using some
solvers such as CPLEX, AMPL, Gurobi, etc. in the environment of some existing commercial software,
including GAMS, LINGO, etc., and such studies are categorized in the classification of solving with
using commercial software. Besides, some studies have implemented their problem in real-world case
studies to reflect real world service area. Because the evaluation and analysis of the solution methods
need a detailed discussion, this study just focuses on providing general insights and determining the
most effective solution methods in the EF-VRP literature. So, analyzing the solution methods from
different perspectives in detail can be an interesting topic to fill the gap.

In each of these studies, problem instances have commonly been used to evaluate the proposed
model and solution methods. There are two approaches to problem instances. The first approach is
that the instances have been generated by the authors, and a few of them are based on real-world
data. Most of the instances have been adopted from artificial data and derived from the classical ones,
as the Solomon [157] ones, but the problems are mainly urban delivery-related. This issue made the
studies of EF-VRPs considerably out of the real-world information and problems, and not evaluating
these kinds of real-world issues led to the lack of applied studies in this field. In the second approach,
the existing standard benchmark problem instances, which have been presented in earlier studies,
have been used to evaluate the proposed model or solution methods. In the literature, benchmark
problem instances for various EF-VRP variants have been created. These instances provide a data set
for a variety of solution methods that solve a particular EF-VRP variant. In this way, the performance
of different algorithms and solution results can be evaluated and compared in terms of different criteria,
such as Solution Quality (SQ) (i.e., total traveled distances or energy consumption), Computational or
CPU Time (CT), Number of EFVs (NV) and Number of (Refueling, Recharging, or Battery Swapping)
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Stations (NS). Accordingly, to give an overview of solution methods of each variant of the EF-VRP,
Tables 6–8 are formed, which analyze the AF-VRP, E-VRP, and H-VRP, respectively. In these tables,
the references and their publication year are shown in the first two columns. The third column specifies
the characteristics of the solution method and problem instances used in each study, divided into
four subcategories of Number of Generated and Solved Instances, Size, Instances/Algorithm Name or
Acronym, Link of Benchmark instances and Model or Solution Method Evaluation. Below the first
section, the number of generated or solved instances is presented, which is equal to the number of
newly generated benchmark problem instances or the number of solved problem instances in each
paper. The size of instances in terms of the number of customers, the number of vehicles and the
number of fuel (battery charging or swapping) stations, instance abbreviation or solving algorithm
(underlined abbreviation have been adapted from authors name) and access link to the set of benchmark
instances are specified in other columns. Below, the next section, model, or solution method evaluation
with each set of instances or data considered in each paper is addressed. In this column, performance
analysis of mathematical models or solution methods compared to other available results and methods
in the literature are presented in terms of SQ, CT, NV, and NS. For example, the phrase SQ: DBCA
outperformed MCWS in the first cell of this column in Table 6 related to the outperforming of DBCA
rather than the MCWS in Erdoğan and Miller-Hooks [21] study in terms of Solution Quality. In addition,
the best solution methods in terms of above features for solving each benchmark instances in the
literature are determined in a bold description at the end of each related cell. The fourth column covers
the solution methods presented in each paper, which are devoted to one or more methods. The studies
marked by “ *”present new benchmark instances and are used as standard benchmarks in other studies.
In the absence of an instance link, the NOI abbreviation is used, which means “Not on the Internet”.
The percentage of each of the solution approaches is specified in each table.
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Table 6. Summary of solution methods and instances provided in AF-VRP.

Year Reference

Characteristics of Solution Method and Problem Instances Solution Methods

Number of
Generated
and Solved
Instances

Size (Min-Max Number of
Vehicles/Customers/Recharging

(Swapping) Station)

Instances/Solution
Method Name or

Acronym
Link Model or Solution Method

Evaluation Exact Heuristic Metaheuristic Commercial
Software

Case
Study

% of papers # # # # # 17% 52% 26% 22% 4%

2012 EMH [21] * 52 4–84/20–500/2–28

Green-VRP/Modified
Clarke and Wright

Savings (MCWS) and
Density-Based

Clustering Algorithm
(DBCA)
(EMH)

NOI

Randomly generated small
problem instances.

Real World (larger problem
instances) data in Colombia.

SQ: DBCA outperformed MCWS.

√ √

2012
Omidvar and

Tavakkoli-
Moghaddam [42]

20 3–25/10–100/5–200
/Simulated Annealing

(SA) and Genetic
Algorithm (GA)

-

Randomly generated instances
based on Solomon [157].

SQ: SA outperformed GA, CT:
GA outperformed SA.

√

2014 Taha et al. [43] 10 (Green
–VRP) 1–3/5–10/2–3 /Formulation - Model evaluation based on EMH

[21]’s benchmark instances.
√

2016 KK [44] 40
(Green-VRP) /20/2–10

/Branch-and-Cut
(B&C)
(KK)

-

B&C performance analysis on
EMH [21]’s small instances.

SQ: B&C outperformed EMH
[21]’s small instances.

√ √

2016 MSH [45] 52
(Green-VRP) 3–73/20–500/2–28 /Multi-space Sampling

Heuristic (MSH) -

Algorithm analysis based on
EMH [21]’s benchmark instances.

SQ&CT&NV: MSH [45]
outperformed other approaches.
Fastest approach on EMH [21]

benchmark instances

√

2016 Bruglieri et al. [46] 20
(Green-VRP) /20/3–6 /Formulation -

Model performance analysis on
EMH [21]’s small instances.

SQ&CT: New model
outperformed EMH [21] and

KK’s [44] approaches.

√

2017 YÇ [47] * 190 /20–80/

Mixed-Fleet Green
Vehicle Routing

Problem
(MGVRP)/Variable

Neighborhood Search
(VNS) and Heuristic
Pareto Optimization

(YÇ)

http:
//myavuz.people.ua.edu

20 customer-modified instances
from EMH’s [21] benchmark

instances.
New generated 50 and 80

customer instances.

√ √

http://myavuz.people.ua.edu
http://myavuz.people.ua.edu
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Table 6. Cont.

Year Reference

Characteristics of Solution Method and Problem Instances Solution Methods

Number of
Generated
and Solved
Instances

Size (Min-Max Number of
Vehicles/Customers/Recharging

(Swapping) Station)

Instances/Solution
Method Name or

Acronym
Link Model or Solution Method

Evaluation Exact Heuristic Metaheuristic Commercial
Software

Case
Study

2017 AB [48] *
40 (New)

+ 9
(Green-VRP)

6–19/47–110/3–28

AB1 & AB2/Set
Partitioning
Formulation

(AB)

http://www.vrp-rep.org/
variants/item/g-vrp.html

Two new problem instances sets
based on EMH [21].

Capable to solve EMH’s [21]
instances and new instances.

SQ&CT&NV: The best approach

from AB’s [48] instances.

√

2017 Leggieri and
Haouari [49]

40
(Green-VRP) 6–10/20/2–10 /Formulation (FRLT1,

2, 3,4) -

Model performance analysis on
EMH [21]’s small instances.

SQ & CT: New approach
outperformed KK [44]’s method.

√

2017 Yavuz [50]
30 (New)

+ 12
(Green-VRP)

/10–80/ /Iterated Beam Search NOI
Solution method performance

analysis on YÇ [47] and EMH [21]
instances.

√

2018 Madankumar and
Rajendran [52]

40 (New)
+ 28 (PDP-SSC) 2–5/5–7/1–2

Green Vehicle Routing
Problems with
Pickups and

Deliveries in a
Semiconductor Supply

Chain
(G-VRPPD-SSC)/Three

new formulations

https:
//www.dropbox.com/l/sh/

c7W2AyL7AgDjFBYGnnH5gs
https:

//www.dropbox.com/l/sh/
UnJ73CAhZhTJxIZk0UmQnn

https:
//www.dropbox.com/l/sh/
Vwi8ePIeiLuTO6791bBtiq

Randomly generated problem
instances for each new model.

√

2018 Poonthalir and
Nadarajan [53]

40 (Green
–VRP) /20/3

/Particle Swarm
Optimization with
Greedy Mutation

Operator and Time
varying acceleration

coefficient
(TVa-PSOGMO)

-

Algorithm performance analysis
on EMH’s [21] instances.

Proposed algorithm works well
for all the EMH’s [21] data sets.

√

2018 Zhang et al. [54] 30 /15–150/2–8

Capacitated Green
Vehicle Routing

Problem
(CGVRP)/two-phase

heuristic and Ant
Colony System (ACS)

algorithm

NOI

Randomly generated benchmark
instances.

SQ: ACS outperformed two
phase heuristics.

CT: two-phase heuristics
outperformed ACS.

√ √

2018 Affi et al. [51] 52 (Green
–VRP) 3–72/20–500/3–21

/Variable
Neighborhood Search

(VNS)
-

VNS performance analysis on
EMH’s [21] instances.

SQ and CT: VNS outperformed
other methods on EMH [21]’s

small instances.
SQ: VNS improved some BKS in

EMH [21]’s large instances.

√

http://www.vrp-rep.org/variants/item/g-vrp.html
http://www.vrp-rep.org/variants/item/g-vrp.html
https://www.dropbox.com/l/sh/c7W2AyL7AgDjFBYGnnH5gs
https://www.dropbox.com/l/sh/c7W2AyL7AgDjFBYGnnH5gs
https://www.dropbox.com/l/sh/c7W2AyL7AgDjFBYGnnH5gs
https://www.dropbox.com/l/sh/UnJ73CAhZhTJxIZk0UmQnn
https://www.dropbox.com/l/sh/UnJ73CAhZhTJxIZk0UmQnn
https://www.dropbox.com/l/sh/UnJ73CAhZhTJxIZk0UmQnn
https://www.dropbox.com/l/sh/Vwi8ePIeiLuTO6791bBtiq
https://www.dropbox.com/l/sh/Vwi8ePIeiLuTO6791bBtiq
https://www.dropbox.com/l/sh/Vwi8ePIeiLuTO6791bBtiq
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Table 6. Cont.

Year Reference

Characteristics of Solution Method and Problem Instances Solution Methods

Number of
Generated
and Solved
Instances

Size (Min-Max Number of
Vehicles/Customers/Recharging

(Swapping) Station)

Instances/Solution
Method Name or

Acronym
Link Model or Solution Method

Evaluation Exact Heuristic Metaheuristic Commercial
Software

Case
Study

2019 Hooshmand and
MirHassani [55] 70 2–12/10–100/2–4

TDGVRP-AF/A
hybridization ofMIP
model and Greedy

Randomized Adaptive
Search Procedure

(GRASP)

NOI

Time Dependent Green VRP with
Alternative Fuel powered

vehicles problem (TDGVRP-AF).
Randomly generated instances in

different sizes.

√

2019 Koyuncu and
Yavuz [56]

10 (Green-VRP)
+ 10 (MGVRP) /20–50/2–4

/two formulations:
node- and

arc-duplicating.
Strengthened by two

label setting
algorithms and
improved lower

bound

-

MDGVRP-Node Duplicating
Formulation (MDGVRP-NDF)

MDGVRP-Arc Duplicating
Formulation (MDGVRP-ADF)
Two-formulation analysis on

EMH [21] and YÇ [47] instances.
Arc duplication formulation

outperformed node duplication
one on these instances.

√

2019 Bruglieri et al. [57]
40 (Green-VRP)

+ 40 (AB1 &
AB2)

6–25/20–100/3–11 /A Path-Based exact
Approach (PBA) -

PBA performance analysis on
EMH [21] and AB’s [48] instances.
SQ & CT: PBA outperformed all

approaches on EMH
[21]’s instances.

SQ: PBA outperformed MSH [45]
in solving AB [48]’s instances.
CT: PBA differs from AB [48]’s
methods in solving AB [48]’s

instances.
CT: The best approach for

EMH’s [21] instances.

√ √

2019 Normasari et al.
[58]

52
(Green-VRP) 3–83/20–500/2–28 /Simulated Annealing

(SA) -

New model (Capacitated Green
Vehicle Routing Problem
(CGVRP)) and algorithm

performance analysis based on
EMH [21]’s instances.

SQ: SA outperformed EMH [21]
and SSG [23] solution methods.
CT: SA outperformed EMH [21]
and SSG [23] solution methods

SQ: The best approach for

EMH’s [21] instances

√

2019 Poonthalir and
Nadarajan [39]

40 (New)
+ 52

(Green-VRP)
3–78/20–500/2–28

Green Vehicle Routing
Problem with Queues
(GVRP-Q)/enhanced
Chemical Reaction

Optimization (e-CRO)

NOI

New instances based on EMH’s
[21] instances.

Algorithm performance analysis
on EMH’s [21] instances

Proposed algorithm works well
for all the EMH’s [21] data sets

√
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Table 6. Cont.

Year Reference

Characteristics of Solution Method and Problem Instances Solution Methods

Number of
Generated
and Solved
Instances

Size (Min-Max Number of
Vehicles/Customers/Recharging

(Swapping) Station)

Instances/Solution
Method Name or

Acronym
Link Model or Solution Method

Evaluation Exact Heuristic Metaheuristic Commercial
Software

Case
Study

2019 Ashtine and
Pishvaee [59] 10 3–78/10–15/2–28 /AF-VRP - Proposed models performance

analysis
√

2020 Shao and
Dessouky [60] 30 3–5/8–32/3–10

VRP with Alternative
Fuel Vehicles with

Fixed Fueling
Time

(VRPAFVFFT)/combined
ALNS and MIP model

NOI
Algorithm performance analysis

on new randomly generated
problem instances

√

2020 Zhang et al. [61] 30 /15–150/2–8

Multi-Depot Green
Vehicle Routing

Problem
(MDGVRP)/Two-phase

heuristic
Ant Colony System

(TSACS)

NOI
Algorithm performance analysis

on new randomly generated
problem instances

√

2020
Nosrati and

Arshadi Khamesh
[62]

28 /3–16/3
/Multi-Objective

Simulated Annealing
(MOSA)

-
Algorithm performance analysis

on EMH [21]’s benchmark
instances

√

The best solution methods for solving each benchmark in the literature are highlighted in bold. The studies marked by “ *” present new benchmark instances and are used as standard
benchmarks in other studies. In the absence of an instance link, the NOI abbreviation is used, which means “Not on the Internet”.

Table 7. Summary of solution methods and instances provided in E-VRP.

Year Reference

Characteristics of Solution Method and Problem Instances Solution Methods

Number of
Generated
and Solved
Instances

Size (Min-Max Number of
Vehicles/Customers/Recharging

(Swapping) Station)

Instances/Algorithm
Name or Acronym Link Model or Solution Method

Evaluation Exact Heuristic Metaheuristic Commercial
Software

Case
Study

% of papers # # # # # 14% 44% 34% 23% 17%

2011 Conrad and
Figliozzi [20] 30 sets 5–13/40/- /Formulation - Randomly generated instances

based on Solomon instances
√

2011 Gonçalves et al.
[89] - - /Formulation - Model application in a battery

distributor company in Portugal.
√ √

2012 Worley et al. [104] - - /Formulation - Model application in parcel
delivery company in Chicago

√ √

2013 Van Duin et al.
[99] - - /Formulation - Model application in urban area

in the inner-city Amsterdam.
√ √
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Table 7. Cont.

Year Reference

Characteristics of Solution Method and Problem Instances Solution Methods

Number of
Generated
and Solved
Instances

Size (Min-Max Number of
Vehicles/Customers/Recharging

(Swapping) Station)

Instances/Algorithm
Name or Acronym Link Model or Solution Method

Evaluation Exact Heuristic Metaheuristic Commercial
Software

Case
Study

2014 SSG [23] *

92 (New) + 76
(MDVRPI)

+ 52
(Green-VRP)

1–18/5–100/2–21

E-VRP-TW/ Variable
Neighborhood Search

with Tabu
search (VNS-TS)

Schneider
(SSG)

http://evrptw.wiwi.uni-
frankfurt.de

Two new sets of problem
instances based on Solomon

instances
VNS-TS analysis on Multi-Depot

VRP with Inter-depot Routes
(MD-VRP-I) & EMH [21]’s

benchmark instances
SQ & CT: VNS-TS outperformed
the Crevier et al. [158] approach

on MD-VRP-I benchmark
instances

CT: VNS-TS outperformed the
Tarantilis et al. [159] approach.

SQ & CT: VNS-TS outperformed
EMH’s [21] two approaches
NV: The best approach on

SSG [23]’s benchmark instances

√

2014 HPH [100] 108 -/5–15/2–8

/Adaptive Large
Neighborhood Search

(ALNS)
(HPH)

-

ALNS analysis on SSG [23]’s and
FSMVRPTW instances.

SQ & CT: HPH [100] differs from
SSG [23]’s approach.

SQ & CT: HPH [100] differs from
BKSs of FSMVRPTW’s instances.

√

2014 Afroditi et al. [3] - - /Formulation - No resolution method is
proposed for solving the problem - - - - -

2014 Preis et al. [63] 160 No restriction/10–100/3 /Adapted Tabu Search NOI Randomly generated instances.
√

2014 FORT [24] *

60 (New)+ 56
(E-VRPTW)

+ 40
(Green-VRP)

25–100/100–400/5–9

GVRP-MTPR/48
improving Algorithms
(48A) and Simulated

Annealing(SA)
Felipe

(FORT)

http://www.mat.ucm.es/
_gregoriotd/GVRPen.htm

New randomly generated
instances (FORT [24])
48A & SA algorithms

performance analysis on FORT
[24], SSG [23], and EMH [21]

instances.
SQ & CT: Different results in

different size of instances.
SQ: 48A & SA outperformed
EMH’s [21] DBCA approach.

SQ: 48A & SA unable to improve
SSG [23] approach.

√ √

2014 Sassi et al. [36] 9 26/300–550/-
/Charging Routing

Heuristic
(CRH)

- Real data instances of two French
fleet management companies.

√ √

2015 Sassi et al. [90] 29 100/100/21

/Iterated Tabu Search
based on a Large

NeighborhoodSearch
(ITS-LNS)

- Use three SSG [23] instances to
evaluate the solution method.

√

http://evrptw.wiwi.uni-frankfurt.de
http://evrptw.wiwi.uni-frankfurt.de
http://www.mat.ucm.es/_gregoriotd/GVRPen.htm
http://www.mat.ucm.es/_gregoriotd/GVRPen.htm
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Table 7. Cont.

Year Reference

Characteristics of Solution Method and Problem Instances Solution Methods

Number of
Generated
and Solved
Instances

Size (Min-Max Number of
Vehicles/Customers/Recharging

(Swapping) Station)

Instances/Algorithm
Name or Acronym Link Model or Solution Method

Evaluation Exact Heuristic Metaheuristic Commercial
Software

Case
Study

2015 Sassi et al. [91] 9 26/330–550/15–35
/Multi-start Iterated

Local Search
(Multi-start ILS)

- Real data instances provided by a
French company.

√

2015 Schneider et al.
[135]

90 (New) + 52
(Green-VRP)+

76 (VRPIS)
-/20–500/2–28 EVRPRF/Adaptive

VNS (AVNS) NOI

AVNS analysis on EMH [21] and
VRP with Intermediate Stops
(VRPIS) benchmark instances.
SQ&CT: AVNS outperformed

SSG [23], and EMH [21] MCWS
approaches.

New EVRPRF instances based on
CVRP benchmark instances.

√

2015 Bruglieri et al. [64] 6 1–2/5–10/- /VNS Branching
(VNSB) NOI Use six SSG [23]’s instances to

evaluate the VNSB.
√

2015 Lebeau et al. [102] 21 2–10/5–25/- /Savings Heuristic
Algorithm

http://mamca.be/plebeau/
FSMVRPTW-EV

Randomly generated instances
based on a real case.

Evaluation the effect of different
classes of EVs.

√ √

2015 YS [29] * 68 2–38/16–480/1–14

BSS–EV–
LRP/modified Sweep

heuristic, Iterated
Greedy, Adaptive

Large Neighborhood
Search (SIGALNS) &

Tabu Search-modified
(TS-MCWS)

(YS)

NOI

New sets of instances based on
CVRP benchmark instances.

SIGALNS & TS-MCWS
algorithms performance analysis.

SQ & CT: SIGALNS
outperformed TS-MCWS.

√ √

2015 Li-ying and
Yuan-bin [28] 29 2–42/6–200/6–50 /Adaptive VNS with

tabu search (AVNS/TS) NOI

Randomly generated problem
instances based on Demir et al.

[160]. Pollution Routing Problem
(PRP) instances.

√

2015 Ding et al. [75] 24 2–10/5–100/1–20 /hybrid VNS-TS NOI New instances generated based
on SSG [23]’s instances.

√

2015 GHS [83] 30 2–10/6–480/0–2
/Adaptive VNS

(AVNS)
(GHS)

NOI

AVNS performance analysis on
YS [29]’s benchmark instances.

SQ&CT&NV&NS: GHS [83]
solution method outperformed

YS [29] SIGALNS approach.

√ √

2015 Montoya et al.
[114] 20 -/2–3/10 /Formulation www.vrp-rep.org

Randomly generated instances
Comparison of various methods

of charging.

√

http://mamca.be/plebeau/FSMVRPTW-EV
http://mamca.be/plebeau/FSMVRPTW-EV
www.vrp-rep.org
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Table 7. Cont.

Year Reference

Characteristics of Solution Method and Problem Instances Solution Methods

Number of
Generated
and Solved
Instances

Size (Min-Max Number of
Vehicles/Customers/Recharging

(Swapping) Station)

Instances/Algorithm
Name or Acronym Link Model or Solution Method

Evaluation Exact Heuristic Metaheuristic Commercial
Software

Case
Study

2015 GS [92]

180 (New)
+ 56

(VRP-TW)+ 56
(E-VRP-TW)

ICEV number correspond to the
PRP which is gradually

substituted with EVs until
/10–200/

E-VRPTWMF/ALNS
(GS)

http:
//www.logistikplanung.tu-

darmstadt.de/
logistikplanung_und_
informationssysteme/

forschung_16/
publikationen_14/index.de.

jsp

New sets of instances generated
based on the Demir et al. [160]

PRP instances.
ALNS performance analysis on

SSG [23] and VRPTW benchmark
instances.

SQ: GS [92] differs from BKS in
VRPTW. NV: GS [92] was able to
reach similar value. CT: GS [92]

outperformed VRPTW
benchmark instances. SQ & NC &
CT: GS [92] outperformed HPH
[100], and SSG [23] approaches

on SSG [23] instances.
CT&NV: The best approach on

SSG [23]’s benchmark instances.

√

2015 Moghaddam [76] 180 1–2/5/1 /Formulation -
Random instances based on

Solomon [157] to evaluate the
model.

√

2015 Aggoune-Mtalaa
et al. [133] 36 10–49/100–400/- /Genetic Algorithm -

Model evaluation based on
Solomon [157] benchmark

instances.

√

2015 Murakami and
Morita [93] 18 0–5/20–40/

/Column Generation
Model -

Randomly instances generated
based on Christofides and Eilon’s

[161] benchmark instances.

√

2016 KÇ [77] * 92 (New) +92
(E-VRP-TW) 1–18/5–100/2–21

E-VRP-TW-PR/ALNS
(KÇ) NOI

ALNS performance analysis on
SSG [23]’s benchmark instances.
ALNS performance analysis on
SSG’s [23] benchmark instances

with relaxed full recharging
assumption

SQ: KÇ’s [77] method differs from
SSG’s [23] method.

NV: KÇ’s [77] method differs
from the SSG [23], HPH [100] &

GS [92] methods.
Evaluation charging strategies by
SSG’s [23] benchmark instances.

√

2016 Schiffer et al. [105] 12 30–45/144–302/4–44 /ALNS - Model application in urban area
in a German Retail Company.

√ √

2016 Desaulniers et al.
[78] * 168 /25–100/21 E-VRPTW-(SF, SP, MF,

MP)/Branch-Price-and-Cut
https:

//w1.cirrelt.ca/~errico/,

Different Exact algorithms
performance analysis on different

variants of E-VRPTW-PR by
SSG’s [23] benchmark instances.

√

http://www.logistikplanung.tu-darmstadt.de/logistikplanung_und_informationssysteme/forschung_16/publikationen_14/index.de.jsp
http://www.logistikplanung.tu-darmstadt.de/logistikplanung_und_informationssysteme/forschung_16/publikationen_14/index.de.jsp
http://www.logistikplanung.tu-darmstadt.de/logistikplanung_und_informationssysteme/forschung_16/publikationen_14/index.de.jsp
http://www.logistikplanung.tu-darmstadt.de/logistikplanung_und_informationssysteme/forschung_16/publikationen_14/index.de.jsp
http://www.logistikplanung.tu-darmstadt.de/logistikplanung_und_informationssysteme/forschung_16/publikationen_14/index.de.jsp
http://www.logistikplanung.tu-darmstadt.de/logistikplanung_und_informationssysteme/forschung_16/publikationen_14/index.de.jsp
http://www.logistikplanung.tu-darmstadt.de/logistikplanung_und_informationssysteme/forschung_16/publikationen_14/index.de.jsp
http://www.logistikplanung.tu-darmstadt.de/logistikplanung_und_informationssysteme/forschung_16/publikationen_14/index.de.jsp
https://w1.cirrelt.ca/~errico/
https://w1.cirrelt.ca/~errico/
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Table 7. Cont.

Year Reference

Characteristics of Solution Method and Problem Instances Solution Methods

Number of
Generated
and Solved
Instances

Size (Min-Max Number of
Vehicles/Customers/Recharging

(Swapping) Station)

Instances/Algorithm
Name or Acronym Link Model or Solution Method

Evaluation Exact Heuristic Metaheuristic Commercial
Software

Case
Study

2016 Sundar et al. [94] 35 3–5/10–40/4 /Branch & Cut -

Randomly generated instances
for four formulations analysis.

SQ & CT: Two arc-based
outperformed two

node-based.SQ & CT: Second
arc-based formulation

outperformed first one.

√

2016 HPRH [101] * 724 /5–100/2–21

E-FSMFTW/ALNS,
Branch & Price (BnP)

to obtain optimal
solutions for smaller
instances, and lower

bounds for larger
instances
(HPRH)

http://dx.doi.org/10.1016/j.
ejor.2016.01.038

New benchmark instances based
on SSG [23] and description of the

vehicle type classes of Liu and
Shen [162].

√ √

2016 MSH 1 2 3 [115]

144 (New)+ 52
(Green-VRP)

+ 92
(E-FSMFTW)

/5–100/2–21

E-VRP-NL,
E-VRP-NL-PR,
TRP-CEV/ILS,

heuristic
concentration (HC),

GRASP, parallel
matheuristic (PMa).

(MSH 1 2 3)

NOI

Solution method performance
analysis on EMH [21] and HPRH

[101] benchmark instances.
SQ & CT: MSH 1 2 3 [115]

outperformed EMH [21], SSG [23]
and FORT [24] solution methods.
SQ & CT: MSH 1 2 3 [115] differ

from HPRH [101] solution
method

√ √

2016 Chen et al. [84] 36 (E-VRP-TW) 1–5/5–15/2–8 /Formulation -

E-VRP-TW-BSS model evaluation
on SSG’s [23] instances.

NV: E-VRP-TW-BSS model
outperformed SSG’s [23] model.
SQ: E-VRP-TW-BSS differs from

SSG’s [23] model.

√

2016 Lin et al. [35] 1 4/13/2 /Formulation Model application in Austin
Texas.

√

2016 Basso et al. [65] 17 -/15/- /Formulation - Randomly generated small
instances.

√

2013 Barco et al. [31] - 6–10/20/2–10 /Differential Evolution.
(DE) -

Simulation analysis in Airport
Shuttle Service in Bogotá,

Colombia.

√ √

http://dx.doi.org/10.1016/j.ejor.2016.01.038
http://dx.doi.org/10.1016/j.ejor.2016.01.038
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Table 7. Cont.

Year Reference

Characteristics of Solution Method and Problem Instances Solution Methods

Number of
Generated
and Solved
Instances

Size (Min-Max Number of
Vehicles/Customers/Recharging

(Swapping) Station)

Instances/Algorithm
Name or Acronym Link Model or Solution Method

Evaluation Exact Heuristic Metaheuristic Commercial
Software

Case
Study

2017 Schiffer and
Walther [106] * 36 1–5/5–15/1–8 E-LRP-TW-PR/Formulation NOI

New E-LRP-TW-PR benchmark
small instances based on SSG [23]
small instances with considering
all vertices as potential charging
station vertices and relaxed full

recharging assumption.
E-LRP-TW-PR model analysis

based on SSG’s [23] small
instances with considering all
vertices as potential charging

station vertices and relaxed full
recharging assumption.

√

2017 MGMV17 [116] * 120 -/10–320/5–38

E-VRP-NL/Iterated
local search and a

heuristic
concentration

(ILS+HS)
(MGMV17)

www.vrp-rep.org

New problem instances
generation for E-VRP-NL.

ILS+HS performance analysis on
generated instances.

√ √

2017 Shao et al. [122] 10 /50/20 /Genetic Algorithm
(GA) - Performance analysis in Beijing

urban area.
√ √

2017 Bruglieri et al. [80] 36 1–5/5–15/2–8

/VNS local Branching
(VNSB) and
Three-Phase

Matheuristic (TPM)

-

VNSB & TPM performance
analysis on SSG’s [23] instances.
SC: TPM outperformed VNSB.
CT: VNSB outperformed TPM.

√

2017 HSG [85] * 34 (New)68
(BSS–EV–LRP) 5–39/50–483/1–10

BSS–EV–
LRP/Adaptive VNS

(AVNS)
(HSG)

http://dx.doi.org/10.1016/j.
trb.2016.11.009

AVNS performance analysis on
YS’s [29] CVRP benchmark

instances.
SQ&CT&NV&NS: HSG [85]

outperformed YS’s [29] SIGALNS
approach.

New instances generated based
on SSG’s [23] benchmark

instances.
CT&NS: The best approach for
YS’s [29] benchmark instances

√

www.vrp-rep.org
http://dx.doi.org/10.1016/j.trb.2016.11.009
http://dx.doi.org/10.1016/j.trb.2016.11.009
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Table 7. Cont.

Year Reference

Characteristics of Solution Method and Problem Instances Solution Methods

Number of
Generated
and Solved
Instances

Size (Min-Max Number of
Vehicles/Customers/Recharging

(Swapping) Station)

Instances/Algorithm
Name or Acronym Link Model or Solution Method

Evaluation Exact Heuristic Metaheuristic Commercial
Software

Case
Study

2018 SW [107] *

56 (New)+ 24
(New)+ 36

(E-LRP-TW-PR)+
24

(BSS-EV-LRP)
+ 56

(E-VRP-TW)
+ 56

(E-VRP-TW-PR)

1–18/5–160/
E-LRP-TW-PR/Adaptive
Large Neighborhood
Search (ALNS)(SW)

http://www.om.rwthbreak/
\T1\textgreater{}-aachen.de/
data/uploads/lrpifinst.zip

New E-LRP-TW-PR benchmark
large instances based on SSG’s

[23] 100 customer instances with
considering all vertices as

potential charging station vertices
and relaxed full

recharging assumption.
New instances generated based

on real-world instances for
E-LRP-TW-PR.

Algorithm analysis on Schiffer
and Walther [106], SSG [23], and
YS’s [29] benchmark instances.
SQ&CT: SW [107] differs from
BKSs of SSG [23] on average.

SQ: SW [107] outperformed GHS
[83] on YS [29]’s instances.

SQ&CT&NV: SW [107]
outperformed KÇ’s [77] BKSs.
SQ: SW [107] outperformed

HSG [85].

√

2018 Schiffer and
Walther [108] 120 2–4/16–200/2–14

/Adaptive Large
Neighborhood Search

(ALNS)
10.1016/j.omega.2017.09.003

New instances generated based
on Solomon’s [157]

benchmark instances.

√

2018 Paz et al. [109] 36 1–5/5–10/0–15

MDEVLRPTW-BS,
MDEVLRPTW-BSPR,

MDEVLRPTW-PR
/Formulation

http://academia.utp.edu.co/
planeamiento/?p=3561

New instances generated based
on Schiffer and Walther [106]’s

E-LRP-TW-PR benchmark small
instances.

√

2018 Kancharla and
Ramadurai [66] 56 4–35/100–200/21

/Adaptive Large
Neighborhood Search

(ALNS)
-

ALNS performance analysis on
SSG [23]’s benchmark instances

SQ & NV: ALNS differs from SSG
[23]’s VNS-TS approach.

√

2018 Zhang et al. [136] 55 /2–150/2–8

E-VRP with
minimizing

energy
consumption/Ant

Colony (AC) & ALNS

NOI

New randomly generated
instances.

ALNS & AC algorithms
performance analysis.

SQ&CT: AC outperformed ALNS.

√

2018 Verma [86] 92 1–18/5–100/2–21
/local search combined

with Genetic
Algorithm

-

Heuristic Algorithm analysis on
SSG [23]’s instances.

SQ: The Heuristic algorithm
outperformed SSG’s [23] VNS-TS

approach.
CT: The Heuristic algorithm

outperformed SSG’s [23] model.

√

http://www.om.rwthbreak/\T1\textgreater {}-aachen.de/data/uploads/lrpifinst.zip
http://www.om.rwthbreak/\T1\textgreater {}-aachen.de/data/uploads/lrpifinst.zip
http://www.om.rwthbreak/\T1\textgreater {}-aachen.de/data/uploads/lrpifinst.zip
http://academia.utp.edu.co/planeamiento/?p=3561
http://academia.utp.edu.co/planeamiento/?p=3561
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Table 7. Cont.

Year Reference

Characteristics of Solution Method and Problem Instances Solution Methods

Number of
Generated
and Solved
Instances

Size (Min-Max Number of
Vehicles/Customers/Recharging

(Swapping) Station)

Instances/Algorithm
Name or Acronym Link Model or Solution Method

Evaluation Exact Heuristic Metaheuristic Commercial
Software

Case
Study

2018 Zhou and Tan
[110] 13 /5–60/

EV–HR–BSSL/Improved
Discrete Cuckoo

Search (IDCS)Real
Genetic Algorithm

(RGA)Modified
Discrete Artificial Bee

colony (MDABC)

NOI

New randomly generated
instances based on Emde et al.

[163].
SQ: IDCS outperformed RGA &

MDABC.
CT: RGA outperformed IDCS &

MDABC.
SQ: IDCS outperformed the Wang

et al. [164] method.

√

2018 Zuo et al. [67] 25 5/3–5/5 /Formulation -
Model analysis by generated

instances based on Solomon [157]
instances.

√

2018 Gatica et al. [112] 30 /75–150/7–151

/four solution
strategies: Random

Generation, Customer
Location, GreatRoute,

and K-Means

-
Algorithm analysis based on
Taillard’s [165] benchmark

instances.

√

2018 Villegas et al. [97] 24 (New)204
(E-FSMFTW) /5–167/1–21 TRSP-CEV/parallel

matheuristic (PMa) www.data.gouv.fr

New TRSP-CEV instances.
PMa performance analysis based

on HPRH’s [101] benchmark
instances.

SQ: Pma outperformed HPRH’s
[101] ALNS approach on small

instances.
SQ: Pma differs from HPRH’s
[101] ALNS and HGA [151]

approaches on large instances.
CT: Pma outperformed the HPRH

[101] ALNS and HGA [151]
approaches.

Model application in French
electricity giant ENEDIS.

√ √

2018 Kullman et al.
[142] 90 /10–40/2–4 /Decomposition -

New randomly generated
instances based on the Villegas et

al. [97] case study.

√

2018 Keskin and Çatay
[79]

92
(E-VRP-TW)60
(GVRP-MTPR)

/5–400/5–21
/combined ALNS and

an exact method
(Matheuristic)

-

Solution method analysis on
SSG’s [23] benchmark instances.

Solution method analysis on
FORT’s [24] benchmark instances.

SQ&CT: The matheuristic
outperformed FORT [24] method.
SQ&CT: The best approach for

FORT [24] instances.

√ √

www.data.gouv.fr
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Year Reference

Characteristics of Solution Method and Problem Instances Solution Methods

Number of
Generated
and Solved
Instances

Size (Min-Max Number of
Vehicles/Customers/Recharging

(Swapping) Station)

Instances/Algorithm
Name or Acronym Link Model or Solution Method

Evaluation Exact Heuristic Metaheuristic Commercial
Software

Case
Study

2018 SSL [111]

56 (New)24
(BSS–EV–
LRP)56

(E-LRP-TW
PR)

-/16–480/2–21
LRPIF-MR/hybrid of

ALNS and Local
Search (LS)(SSL)

http:
//www.om.rwth-aachen.de/
data/uploads/lrpifinst.zip.

New LRPIF-MR benchmark
instances by modifying Solomon

[157] instances of Schiffer and
Walther [106].

Algorithm performance analysis
on YS’s [29] instances.

Algorithm performance analysis
on SSG’s [23] instances with

relaxed full recharging
assumption and considering all
vertices as potential charging

station vertices.
SQ: SSL [111] outperformed

SW [107].
SQ: SSL [111] outperformed

HSG [85].
CT: SSL [111] differs from

SW [107].
SQ: The best approach for YS [29]

benchmark instances
SQ&CT: The best approach for

LRPIF-MR benchmark instances

√

2018 Zhang et al. [69] 1 2/15/4 /Formulation -
An instance problem from

Solomon’s [157] benchmark
instances

√

2018 Kouider et al.
[128] 50 2–7/100–200/

P-E-VRP/Clustering
Heuristic (CLH) &

Best Insertion
Heuristic (BIH)

NOI

New P-E-VRP instances inspired
by the FORT [24] data instances.

SQ: BIH outperformed
CLHCT:CIH outperformed BIH

SQ,CT: The best approaches

on P-E-VRP benchmark instances.

√

2019 Kopfer and
Vornhusen [95] 10 1–6/10/ /Formulation - New randomly generated

instances.
√

2019 Froger et al. [30] 120 /10–20/0–4
/arc-based MILP Path
Label and Heuristic

algorithm
-

Algorithms analysis on MGMV17
[116]’s benchmark instances.

Arc-based formulation
outperformed node-based
formulations of literature.

SQ: Proposed method
outperformed MGMV17 [116]’s

BKS of E-VRP-NL.
CT: The best approaches

on MGMV17 [116]’s
benchmark instances.

√ √ √

http://www.om.rwth-aachen.de/data/uploads/lrpifinst.zip
http://www.om.rwth-aachen.de/data/uploads/lrpifinst.zip
http://www.om.rwth-aachen.de/data/uploads/lrpifinst.zip
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Table 7. Cont.

Year Reference

Characteristics of Solution Method and Problem Instances Solution Methods

Number of
Generated
and Solved
Instances

Size (Min-Max Number of
Vehicles/Customers/Recharging

(Swapping) Station)

Instances/Algorithm
Name or Acronym Link Model or Solution Method

Evaluation Exact Heuristic Metaheuristic Commercial
Software

Case
Study

2019 Macrina et al. [96] 260 /5–25/
GMFVRP-PRTW/Iterated

Local Search (ILS) - Algorithm analysis on modified
SSG [23] benchmark instances.

√

2019 Jie et al. [132] 253 (New)234
(2E-VRP) 2-/7–200/5

2E-EVRP-BSS/a
Column Generation

and an Adaptive
Large

NeighborhoodSearch
(CG-ALNS)

NOI

New 2E-EVRP-BSS benchmark
instances based on available

2E-VRP benchmark instances.
CG-ALNS compared to

Hemmelmayr et al. [166] and
Breunig et al. [167] on 2E-VRP

benchmark instances.
SQ: CG-ALNS slightly differs

from BKSs.
SQ,CT&NV: The best approach

on 2E-EVRP-BSS
benchmark instances.

√ √

2019 Zuo et al. [117] 1 -0.125 EVRPTW-CNCF
/Formulation

http://w.ba.neu.edu/
~msolomon/problems.htm

New generated instances based
on Solomon’s (1987) instances

√

2019 Koç et al. [118] 120 (New)120
(E-VRP-NL) /10–320/5–38

E-VRP-SCS/Heuristic
algorithm based on
ALNS framework

NOI

Algorithm analysis on the
modified MGMV17 [116]

benchmark instances
SQ: Heuristic differs from the

MGMV17 [116] approach.
SQ & CT: The best approach on

E-VRP-SCS benchmark instances.

√

2019 Breunig et al. [131] 54 4–35/21–200/2–50

E2EVRP/large
neighborhood search
(LNS) metaheuristic

and an exact
mathematical
programming

Algorithm (LNS-E2E)

https:
//www.univie.ac.at/prolog/
research/electric2EVRP and
https://w1.cirrelt.ca/~vidalt/

en/VRP-resources.html.

New E2EVRP benchmark
instances based on available

2E-VRP benchmark instances and
SSG [23] and Desaulniers et al.

[78] benchmark instances.
SQ, CT&NV: The best approach on

E2EVRP benchmark instances.

√ √

2019 Keskin et al. [40] 48 1–18/5–100/2–21

E-VRP-TW with
Time-Dependent
Waiting Times at

Recharging Stations/a
matheuristic that

combines ALNS with
exact method

NOI

Algorithm performance analysis
based on SSG [23]’s instances

with considering
Time-Dependent Waiting Times

at Recharging Stations.
SQ, CT&NV: The best approach

on SSG [23]’s benchmark
instances with considering

Time-Dependent Waiting

Times at Recharging Stations.

√ √

2019 Zhao and Lu [103] 40 -/100–111/3–14 Real World
E-VRP/ALNS NOI

Real world instances based on a
logistics company in Wuhan,

China.

√ √

http://w.ba.neu.edu/~msolomon/problems.htm
http://w.ba.neu.edu/~msolomon/problems.htm
https://www.univie.ac.at/prolog/research/electric2EVRP
https://www.univie.ac.at/prolog/research/electric2EVRP
https://www.univie.ac.at/prolog/research/electric2EVRP
https://w1.cirrelt.ca/~vidalt/en/VRP-resources.html
https://w1.cirrelt.ca/~vidalt/en/VRP-resources.html
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Table 7. Cont.

Year Reference

Characteristics of Solution Method and Problem Instances Solution Methods

Number of
Generated
and Solved
Instances

Size (Min-Max Number of
Vehicles/Customers/Recharging

(Swapping) Station)

Instances/Algorithm
Name or Acronym Link Model or Solution Method

Evaluation Exact Heuristic Metaheuristic Commercial
Software

Case
Study

2019 Erdem and Koç
[68] 60 2–520/10–445/1–16 HHCRP/Hybrid

metaheuristic NOI
Randomly generated instances

based on the Hiermann et al.
[168] benchmark instance.

√

2019 Rastani et al. [34] 65 (New)1
(Case study) 1–19/5–100/3–21

E-VRP-TW-PR with
considering different

temperature
conditions/ALNS

NOI

Model and algorithm
performance analysis based on

SSG [23]’s instances with
considering different

temperature conditions.
SQ, CT&NV: The best approach

on SSG’s [23] benchmark
instances with

considering different

temperature conditions.

√ √

2019 Pelletier et al.
[138]

30 (New)124
(CVRP) 3–65/10–320/-

E-VRP-ECU /two
phase Set Partitioning
Large Neighborhood

Search (LNS+SP)

NOI

Model, Robust optimization and
algorithm performance analysis

on new generated instances based
on MGMV17′s [116] instances.

Two-phase algorithm (LNS+SP)
performance analysis on CVRP

and Robust CVRP (RCVRP)
existing benchmark instances

√

2019 Keskin et al. [41] 36 2–4/10/5 /M/M/1 queueing
system equations - Model analysis on SSG [23]

10-customer instances
√

2019 Cortés-Murcia et
al. [81]

92 (New)56
(E-VRP-TW-PR) 1–18/5–100/2–21

E-VRPTWsc /Hybrid
Iterated Local Search

(Hybrid ILS)

https://doi.org/10.1016/j.tre.
2019.08.015

Hybrid-ILS performance analysis
on SSG’s [23] benchmark

instances with relaxed full
recharging assumption.

Hybrid-ILS performance analysis
on SSG’s [23] benchmark

instances with satellite customers
assumption (E-VRPTWsc).

SQ & CT & NV: Hybrid-ILS [81]
outperformed KÇ [77], SW [107],
and HGA [151], approaches on
SSG’s [23] benchmark instances

with relaxed full recharging
assumption (E-VRP-TW-PR).

SQ, CT&NV: The best approach
on SSG’s [23] benchmark

instances with relaxed full
recharging assumption.

SQ, CT&NV: The best approach
on SSG’s [23] benchmark

instances with satellite customers
assumption.

√

https://doi.org/10.1016/j.tre.2019.08.015
https://doi.org/10.1016/j.tre.2019.08.015
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Instances/Algorithm
Name or Acronym Link Model or Solution Method

Evaluation Exact Heuristic Metaheuristic Commercial
Software

Case
Study

2019 Rezgui et al. [134] 86 2–33/5–400/ /VNS -
Algorithm performance analysis

of Solomon [157] benchmark
instances.

√

2019 Basso et al. [137] 58 (New) /5–20/

Comparison between
numerical simulations
and the actual energy

consumption data
measured on the

public transport route

https://www.
electricitygoteborg.se

Randomly generated instances.
Real data from Gothenburg,

Sweden

√

2019 Goeke [70] 92 (New)176
(PDP-TW) 1–22/3–50/2–21 PDPTW-EV/Granular

Tabu Search (GTS)

http://www.vrp-rep.org/
datasets/item/2019-0001.

html.

GTS performance analysis on
SSG’s [23] benchmark instances

with pickup and delivery
assumption.

GTS performance analysis on
PDPTW benchmark instances

SQ, CT&NV: The best approach
on SSG’s [23] benchmark

instances with
pickup and

delivery assumption .

√

2019 Lu and Wang [139] 60 /15–150/2–8
/Bi-Strategy Based

OptimizationAlgorithm
(BSOA)

-
Algorithm performance analysis
on Zhang et al. [54] benchmark

instances.

√

2019 Xiao et al. [71] 56 /25–100/
/Dynamic Heuristic

Solution -
Test instances derived from
Solomon [157] benchmark

instances.

√

2019 Lu et al. [139] 180 (New)180
(TD-PRP) -/20–100/- TD-E-VRP/Iterated

VNS (IVNS) NOI

TD-E-VRP new benchmark
instances generated based on
GS’s [92] E-VRP-TW instances

modification.
Proposed IVNS performance

analysis on TD-Pollution Routing
Problem (TD-PRP) instances

compared with the Francesschetti
et al. [169] ALNS algorithm.

SQ: IVNS outperformed ALNS

√

2019 Reyes-Rubiano et
al. [141] 54 5–20/50–1200/

/Monte Carlo
simulation with a

multi-start
Metaheuristic
(simheuristic)

-

Method analysis on Uchoa et al.
[170] benchmark instances

Method analysis on modified on
Uchoa et al. [170] benchmark
instances under uncertainty

conditions.

√

https://www.electricitygoteborg.se
https://www.electricitygoteborg.se
http://www.vrp-rep.org/datasets/item/2019-0001.html
http://www.vrp-rep.org/datasets/item/2019-0001.html
http://www.vrp-rep.org/datasets/item/2019-0001.html
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Name or Acronym Link Model or Solution Method

Evaluation Exact Heuristic Metaheuristic Commercial
Software

Case
Study

2020 Meng and Ma [72] 1 2–4/25/5 /Ant Colony
Algorithm -

Model analysis on modified
instance number R101 from

Solomon [157] data set

√

2020 Taş [73] 18 1–4/5–15/2–7 /Column generation -

Evaluating benefits of flexible
time windows on SSG [23] small

instances
Performance analysis on SSG [23]

small instances

√

2020 Granada-Echeverri
et al. [140]

95 (New)95
(VRPB) /20–150/

/Iterated Local Search
(ILS) used as initial

methodology

http://academia.utp.edu.co/
planeamiento/sistemas-de-

prueba/

Proposed analysis on VRP with
Backhauls (VRPB) literature

instances and newly generated
Electric VRPB (E-VRPB) instances

by modifying VRPB instances.

√

2020 Kullman et al.
[143] 30,000 /10–40/18 /Decomposition -

New randomly generated
instances based on the Froger et

al. [30] testbed.

√

2020 Kullman et al.
[144] 102 /8–26/6–79

/Labeling algorithm
open-source

Python-based
implementation

-
New randomly generated

instances based on the Villegas et
al. [97] case study.

√

2020 Lee [119] 131 1/15–36/4–5 EVRP/Branch-and-Price -
New randomly generated

instances based on Solomon [157]
and Augerat et al. [171] instances

√

2020 Mao et al. [87] 56 /100/21

/hybridization of an
improved ACO

algorithm, insertion
heuristic and

enhanced local search
(ACO-LS)

- Problem and Algorithm analysis
on SSG [23] benchmark instances

√

2020 Almouhanna et al.
[113]

16 (New)58
(New)58 (LRP) /12–200/

LRPCD/Multi-Start
Biased-Randomized
Heuristic (MSBRH)

and
Biased-Randomized

VNS (BR-VNS)

http://neos-server.org

New LRPCD instances by
modifying existing LRP instances.
Algorithm performance analysis

on LRP benchmark instances
SQ: BR-VNS outperformed

MSBRH.
CT: MSBRH outperformed

BR-VNS.
SQ, CT: The best approaches

on the Almouhanna et al. [113]
benchmark instances.

√ √ √

http://academia.utp.edu.co/planeamiento/sistemas-de-prueba/
http://academia.utp.edu.co/planeamiento/sistemas-de-prueba/
http://academia.utp.edu.co/planeamiento/sistemas-de-prueba/
http://neos-server.org
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Name or Acronym Link Model or Solution Method

Evaluation Exact Heuristic Metaheuristic Commercial
Software

Case
Study

2020 Zhang et al. [82] 30 (New)4
(E-VRP-TW) /30–200/2–8

F-EVRPTW/ALNS and
VNS with the fuzzy
simulation method

https://doi.org/10.6084/m9.
figshare.10288326

New randomly benchmark
instances generated.

Model evaluation by four SSG
[23] instances.

√

2020 Zhang et al. [124] 123 (New) 1–18/5–100/2–21
TD-E-VRP-CT/Adaptive
Large Neighborhood

Search (ALNS)
NOI

New model and ALNS
performance analysis on SSG’s
[23] benchmark instances with

time-dependent property.
SQ, CT&NV: The best approach

on SSG’s [23] benchmark
instances with

time-dependent
property.

√

2020 Zhu et al. [126]
1 (New)36

(E-VRP-TW)
180 (2L-CVRP)

-/5–36/2–7

2L-MDEVR/Saving
Heuristic Algorithm
with VNS algorithm

(SSH-VNS)

NOI

Algorithm performance analysis
on 2L-CVRP benchmark

instances.
Algorithm performance analysis
on SSG’s [23] small benchmark

instances.
A new instance generated to

analyze the 2L-MDEVRP model
and SSH-VNS

√ √

2020 Kancharla and
Ramadurai [120]

120 (New)
120 (New)

120
(E-VRP-NL)

/10–320/5–38

E-VRP-NL-LD,
E-VRP-NL-LD-CCS/Adaptive
Large Neighborhood

Search (ALNS)

NOI

Model and ALNS performance
analysis on MGMV17′s [116]

benchmark instances.
SQ: ALNS outperformed the

MGMV17 [116] and Froger et al.
[30] methods on E-VRP-NL

instances.
New problem instances

generation for E-VRP-NL-LD.
New problem instances

generation for
E-VRP-NL-LD-CCS.

SQ: The best approach on

MGMV17 [116]
benchmark instances.

SQ: The best approach on

Kancharla and Ramadurai [120]
benchmark instances

√

https://doi.org/10.6084/m9.figshare.10288326
https://doi.org/10.6084/m9.figshare.10288326
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Evaluation Exact Heuristic Metaheuristic Commercial
Software

Case
Study

2020 Löffler et al. [74]
168

(E-VRPTW-(SF,
SP, MF, MP))

/25–100/21

/Large Neighborhood
Search (LNS) and

Granular Tabu Search
(GTS), called LNS ×

GTS

-

Different LNS × GTS algorithm
performance analysis on different

variants of the Desaulniers
et al. [78] benchmark instances.

SQ & CT: LNS × GTS
outperformed the

Desaulniers et al. [78] method.
SQ & CT: The best approach on

the Desaulniers et al. [78]
benchmark instances.

√

2020 Raeesi et al. [88] 148 /5–100/21

EVRPTW-SMBS/
two-stage

hybridization of a
dynamic

programming and an
integer programming

algorithm

https://data.kent.ac.uk/105/
New instances generated by

modifying SSG [23] benchmark
instances.

√

2020 Keskin et al. [38] 29 /25–100/21 /ALNS -
ALNS performance analysis on

modified E-VRP-TW-SP instances
of Desaulniers et al. [78].

√

The best solution methods for solving each benchmark in the literature are highlighted in bold. The studies marked by “ *” present new benchmark instances and are used as standard
benchmarks in other studies. In the absence of an instance link, the NOI abbreviation is used, which means “Not on the Internet”.

https://data.kent.ac.uk/105/
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Table 8. Summary of the solution methods and instances provided in H-VRP.

Year Reference

Characteristics of Solution Method and Problem Instances Solution Methods

Number of
Generated
and Solved
Instances

Size (Min-Max Number of
Vehicles/Customers/Recharging

(Swapping) Station)

Instances/Algorithm
Name or Acronym Link Model or Solution Method Evaluation Exact Heuristic Metaheuristic Commercial

Software
Case

Study

% of papers # # # # # 8% 50% 58% 0% 16%

2013 Abdallah [22] 150 3–33/16–100/-
PHEVRPTW/Lagrangian

relaxation and Tabu
Search

NOI New model and Algorithms analysis based on
Solomon [157] benchmark instances.

√

2014 MRH [150] 20 3–15/21–134/-
VRPMDR/Multi-Round

Heuristic algorithm
(MRH)

NOI

Algorithm analysis on modified CVRP benchmark
instances by considering three classifications of

vehicles: 1. ICE and PHEV vehicles, 2.
medium-range EVs, and 3. short-range EVs.

√

2016 Doppstadt et al.
[37] * 36 -/8–50/-

HEV-TSP/Iterated
Tabu Search & Local

Search

https://data.mendeley.com/
datasets/9j3tt84hyx/2

New benchmark instances based on real-world
delivery.

SQ: The best approach on

HEV-TSP’s benchmark instances.

√ √ √

2017 MH [145]
9 (New)

52
(Green-VRP)

4–78/20–500/2–28
H-VRP/Matheuristic,

Method
(MH)

NOI

Algorithm analysis on EMH’s [21] benchmark
instances.

SQ: MH [145] outperformed the EMH [21] and
FORT [24] approaches, and similar SSG [23]

approach in small size instances.
CT: MH [145] outperformed SSG [23], differs from

Felipe et al. [24] in small size instances.
SQ: MH [145] outperformed the EMH [21] and

FORT [24] approaches, and differs from the SSG [23]
approach in large instances.

CT: MH [145] differs from the SSG [23] and FORT
[24] approaches in large size instances.

New randomly generated benchmark instances.

√

2017 Vincent et al. [13] 16 (New)
16 (CVRP) 3–10/29–134/

H-VRP/Simulated
Annealing with a

Restart Strategy (SA
RS)

NOI

Algorithm performance analysis on CVRP
benchmark instances

Algorithm performance analysis on newly H-VRP
instances

√

https://data.mendeley.com/datasets/9j3tt84hyx/2
https://data.mendeley.com/datasets/9j3tt84hyx/2
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Table 8. Cont.

Year Reference

Characteristics of Solution Method and Problem Instances Solution Methods

Number of
Generated
and Solved
Instances

Size (Min-Max Number of
Vehicles/Customers/Recharging

(Swapping) Station)

Instances/Algorithm
Name or Acronym Link Model or Solution Method Evaluation Exact Heuristic Metaheuristic Commercial

Software
Case

Study

2019 HGA [151]

56 (New)
+ 56

(E-VRPTW)
+ 56

(E-VRPTWPR)
+ 56

(E-FSMFTW)

1–18/5–100/2–21

H2E-FTW/Combination
of Genetic Algorithm

and Large
Neighborhood Search

(LNS)
(HGA)

http://www.vrp-rep.org/
datasets/item/2017-0029.

html.

New H2E-FTW benchmark instances by adding
three vehicle classes including ICEV, PHEV and EV.

Algorithm performance analysis on SSG’s [23]
benchmark instances.

Algorithm performance analysis on SSG’s [23]
benchmark instances with relaxed full recharging

assumption.
Algorithm performance analysis on SSG’s [23]

benchmark instances with the fleet composition
extension.

SQ & CT: HGA [151] outperformed SSG [23], HPH
[100], GS [92], and KÇ’s [77] approaches on SSG’s

[23] benchmark instances for E-VRPTW.
SQ & CT: HGA [151] outperformed KÇ’s [77]

approach on SSG [23]’s benchmark instances with
relaxed full recharging assumption (E-VRPTWPR).
SQ & CT: HGA [151] outperformed HPRH [101] and
Montoya Montoya’s [115] approaches on approach

on SSG’s [23] benchmark instances with the fleet
composition extension (E-FSMFTW).

SQ: The best approach on SSG’s [23] benchmark
instances.

SQ&CT: The best approach on SSG’s [23] benchmark
instances with the fleet composition extension

√

2019 Eskandarpour et
al. [152] 25 3–38/22–420/

/an enhanced variant
of Multi-Directional

Local Search (EMDLS)
-

Algorithm analysis on CVRP benchmark instances
EMDLS compared to MDLS, Improved MDLS

(IMDLS), non-dominated sorting genetic algorithm
II (NSGAII), non-dominated sorting genetic

algorithm III (NS- GAIII), and the weighting and
epsilon-constraint methods.

√

2020 Zhen et al. [154] 45 2–11/5–100/2–11

HEVRP with mode
selection/Improved

Particle
Swarm Optimization

Algorithm (IPSO)

NOI New generated instances based on Solomon’s [157]
instances.

√

2020 Doppstadt et al.
[149]

180 (New)
+ 36 (HEV-TSP) /8–50/

HEV-TSP-TW/Parallel-VNS
(P-VNS)

https://data.mendeley.com/
datasets/9j3tt84hyx/2

New benchmark instances by adding Time
Windows to the Doppstadt et al. [37]

benchmark instances
SQ & CT: The best approach on

HEV-TSP-TW’s benchmark instances.
CT: The best approach on HEV-TSP’s

benchmark instances.

√

http://www.vrp-rep.org/datasets/item/2017-0029.html
http://www.vrp-rep.org/datasets/item/2017-0029.html
http://www.vrp-rep.org/datasets/item/2017-0029.html
https://data.mendeley.com/datasets/9j3tt84hyx/2
https://data.mendeley.com/datasets/9j3tt84hyx/2
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Table 8. Cont.

Year Reference

Characteristics of Solution Method and Problem Instances Solution Methods

Number of
Generated
and Solved
Instances

Size (Min-Max Number of
Vehicles/Customers/Recharging

(Swapping) Station)

Instances/Algorithm
Name or Acronym Link Model or Solution Method Evaluation Exact Heuristic Metaheuristic Commercial

Software
Case

Study

2020 Li et al. [155] 14 4–10/32–100/0–8

/A memetic algorithm
a using a Sequential

Variable
Neighborhood

Descent (SVND)

- New generated instances on modified CVRP
benchmark instances.

√

2020 Bahrami et al.
[156] 17 2–10/13–50/

/Branch-and-Price and
a Heuristic Algorithm -

Randomly generated instances based on
VRP instances

Case study on Toronto.

√ √ √

2020 Hatami et al. [153] 33 3–15/21–134/
/Multi-Round Iterated

Greedy
(MRIG)

-
Algorithm analysis on CVRP benchmark instances
Comparison of the proposed solution method MRH

[150] method on VRP-MD.

√

The best solution methods for solving each benchmark in the literature are highlighted in bold. The studies marked by “ *” present new benchmark instances and are used as standard
benchmarks in other studies. In the absence of an instance link, the NOI abbreviation is used, which means “Not on the Internet”.
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6.1. Most Usable EF-VRP Benchmark Instances

Recent studies on the EF-VRP have largely focused on the creation and use of standard benchmarks
instances. In this section, the most usable and effective benchmark instances to solve each variant of
EF-VRP instances are described.

6.1.1. AF-VRP

Green-VRP. Erdoğan and Miller-Hooks (EMH) [21] generated four sets which contain ten instances,
each comprising 20 customers (which are either uniformly distributed or clustered) and between two
and ten refueling facilities. The fifth set presents a case study conducted by the authors and consists of
twelve instances involving between 111 and 500 customers and 21 to 28 facilities. The geographical
coordinates given in the instances have to be converted to distances between vertices using the
Haversine formula using an average earth radius of 4182.45 miles.

MGVRP. Yavuz and Çapar (YÇ) [47] applied 19 different data sets with different characteristics
such as how the customers are distributed over space (uniformly or clustered), and the service area
attributes by using adapted instances from Erdoğan and Miller-Hooks [21].

AB1 & AB2. Andelmin and Bartolini (AB) [48] introduced new instances by extracting customers
from larger instances of Erdoğan and Miller-Hooks [21]. AB contains two subsets: AB1 and AB2.
The AB1 instances have the same parameter values as the original ones in Erdoğan and Miller-Hooks [21]
and guarantee that each customer can be served with at most a single refueling stop. The AB2 instances
have the same refueling stations and customers as those initially considered in the AB1 before applying
the removal. Indeed, the AB2 instances also contain customers that cannot be served with a single
refueling stop.

6.1.2. E-VRP

The most commonly used benchmark problem instances presented in the E-VRP and its variants
are presented by Schneider et al. [23]. These benchmark instances have been addressed in studies
by SSG and first used to evaluate the proposed hybrid VNS-TS algorithm in solving the E-VRPTW.
Proposed E-VRP-TW formulations aim to first optimize the number of vehicles used and then decrease
the total distance of the routes.

E-VRP-TW. Schneider et al. (SSG) [23] constructed 36 small and 56 large instances based on the
well-known VRPTW instances of Solomon [157] The large instances include three main problem classes
where 100 customers and 21 recharging stations are clustered (C), randomly distributed (R), and both
clustered and randomly distributed (RC) over a 100 × 100 grid. Each set also has two subsets, type 1
and type 2, which differ by the length of time windows and the vehicle load and battery capacities.
The small instances include three subsets of 12 problems, each involving 5, 10, and 15 customers
randomly drawn from the large instances.

E-VRP-TW-PR. Keskin and Çatay (KÇ) [77] relaxed the assumption of EVs full recharging on
Schneider et al. [23] instances, resulting in the E-VRP-TW with partial recharging (E-VRPTW-PR) and
provided new solutions for a different set derived from the ones by Schneider et al. [23].

GVRP-MTPR. Felipe et al. (FORT) [24] addressed the E-VRP with multiple charger types,
and partial recharges and proposed the data set which is referred to as FORT instances and consists of
two different configurations involving five and nine stations. Each configuration includes three sets of
ten instances with 100, 200, and 400 customers distributed randomly. In total, the data set includes
60 instances.

E-VRPTW-(SF, SP, MF, MP). To analyze the new assumptions in E-VRP-TW such as single
or multiple recharge(s) per route within the fully or partial recharges, Desaulniers et al. [78]
modified the Schneider et al. [23] E-VRPTW instances and presented a set of new instances, namely,
E-VRPTW-(SF, SP, MF, MP).
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BSS-EV-LRP. Yang and Sun (YS) [29] modified several CVRP benchmark instances from the
literature to generate BSS-EV-LRP instances. Besides, Hof et al. (HSG) [85] provided new BSS-EV-LRP
meaningful instances concerning the necessity of using BSSs by modifying the Schneider et al. [23]
benchmark instances.

E-LRP-TW-PR. Schiffer and Walther (SW) [106] analyzed the influence of partial recharging
and simultaneous sitting in planning models for electric logistics fleets on the Schneider et al. [23]
small instances. They consider all vertices as potential charging station locations. They limited the
experiments to the instances with 5, 10, and 15 customers, deriving a set of 36 instances in total.
Schiffer and Walther (SW) [107] did the same thing for large 56 instances with 100 customers provided
by Schneider et al. [23] for the E-VRP-TW, considering all vertices as potential charging station vertices.
Furthermore, Schiffer and Walther (SW) [107] created 24 new instances based on a real-world case of
the ELRP-TWPR based on data that have been collected within an extensive field test with the German
retail company.

E-FSMFTW. Hiermann et al. (HPRH) [101] proposed new sets of benchmark instances based
on Schneider et al. [23] combined with the vehicle type definition for the Fleet Size and Mix fleet
of Liu and Shen [162]. They considered three (increasing) battery capacities and customer location
patterns: randomly distributed (r), clustered (c), or a mix of both (rc).

E-VRP-NL. Montoya et al. (MGMV17) [116] generated a new set of instances using real data for
the EV configuration and battery charging functions. They generated 30 sets of customer locations
and located the customers in a geographic space of 120 × 120 km using either a random uniform
distribution, a random clustered distribution, or a mixture of both. For each of the 30 sets of locations,
the customer location strategy using a uniform probability distribution was chosen.

6.1.3. H-VRP

HEV-TSP. Doppstadt et al. [37] generated a new benchmark instances problem to investigate the
performance of the proposed algorithm. The instances generated were divided into three different
classifications at different intervals between the depot and delivery area. In the first set, the depot was
proximate to the delivery area. In the second and third sets, the distance was considered 28 and 57 km,
respectively. Furthermore, for each set of instance problems, different driving speeds were considered
for vehicles. In the generated instance studies, the number of customers was considered among 8, 10,
20, and 50 variables.

To the best of our knowledge, all new instances in the EF-VRP literature and their so-far best-known
methods in terms of SQ, CT, NV, and NS are presented in Table 10. All of these new instances can be
analyzed for more comparison by authors in future studies.
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Table 9. Summarized results for the EF-VRP generated instances.

Problem Type EF-VRP Instances Name Presented by: Solved by: So-Far Best-Known Methods

AF-VRP

Green-VRP EMH [21]

EMH [21]; SSG [23]; Felipe et al. [24] Taha et al. [43]; Schneider et al.
[135]; KK [44]; MSH [45]; MSH 1 2 3 [115]; Bruglieri et al. [46]; AB

[48]; Leggieri and Haouari [49]; Yavuz [50]; Affi et al. [51]; Poonthalir
and Nadarajan [53]; Koyuncu and Yavuz [56]; MH [145]; Bruglieri et
al. [57]; Normasari et al. [58]; Poonthalir and Nadarajan [39]; Nosrati

and Arshadi Khamesh [56]; MH [145]; Yavuz [50]

SQ: Bruglieri et al. [46]
CT: MSH [45]

MGVRP YÇ [47] YÇ [47]; Yavuz [50] SQ: YÇ [47]
CT: Yavuz [50]

G-VRP AB [48] AB [48]; Bruglieri et al. [57] SQ: AB [48]
CT: Bruglieri et al. [57]

G-VRPPD-SSC Madankumar and Rajendran [52] Madankumar and Rajendran [52] Madankumar and Rajendran [52]
CGVRP Zhang et al. [54] Zhang et al. [54] Zhang et al. [54]
GVRP-Q Poonthalir and Nadarajan [39] Poonthalir and Nadarajan [39] Poonthalir and Nadarajan [39]

VRPAFVFFT Shao and Dessouky [60] Shao and Dessouky [60] Shao and Dessouky [60]
MDGVRP Zhang et al. [61] Zhang et al. [61] Zhang et al. [61]

E-VRP

E-VRPTW SSG [23]
SSG [23]; FORT [24]; Schneider et al. [135]; GS [92]; KÇ [77]; Chen et
al. [84]; SW [107]; Kancharla and Ramadurai [66]; Verma [86]; Keskin

and Çatay [79]; HGA [151]; Zhang et al. [82]; Zhu et al. [126]

SQ: HGA [151]
CT: GS [92]

NV: SSG [23] and GS [92]
EVRPRF Schneider et al. [135] Schneider et al. [135] Schneider et al. [135]

E-VRPTWPR KÇ [77] KÇ [77]; SW [107]; HGA [151]; Cortés-Murcia et al. [81] SQ&CT&NV: Cortés-Murcia et al. [81]
GVRP-MTPR FORT [24] FORT [24]; Keskin and Çatay [79] SQ&CT: Keskin and Çatay [79]

E-VRPTW-(SF, SP, MF, MP) Desaulniers et al. [78] Desaulniers et al. [78], Löffler et al. [74] SQ&CT: Löffler et al. [74]

BSS-EV-LRP
YS [29] YS [29]; GHS [83]; SW [107]; Hof et al. [85]; SSL [111]

SQ: SSL [111]
CT: Hof et al. [85]
NS: Hof et al. [85]

HSG [85] HSG [85] HSG [85]

E-LRPTWPR

Schiffer and Walther [106] for small
instances

SW [107] for large instances
Schiffer and Walther [106]; SW [107]; Schiffer et al. [111] SQ&CT: Schiffer and Walther [106]; SW [107]

SW [107] SW [107]; SSL [111] SSL [111]

E-FSMFTW HPRH [101] HPRH [101]; MSH 1 2 3 [115]; Villegas et al. [97]; HGA [151] SQ: HGA [151]
CT: Villegas et al. [97]

E-VRPNL
MSH 1 2 3 [115]
MGMV17 [116]

MSH 1 2 3 [115]; MGMV17 [116]; Froger et al. [30]; Koç et al. [118];
Kancharla and Ramadurai [120]

SQ; Kancharla and Ramadurai [120]
CT: Froger et al. [30]

Lee [119] Lee [119] Lee [119]
E-VRPNLPR MSH 1 2 3 [115] MSH 1 2 3 [115] MSH 1 2 3 [115]

E-VRP-NL-LD &
E-VRP-NL-LD-CCS Kancharla and Ramadurai [120] Kancharla and Ramadurai [120] Kancharla and Ramadurai [120]

E-VRPTWMF GS [92] GS [92] GS [92]
MDEVLRPTW-BSPR Paz et al. [109] Paz et al. [109] Paz et al. [109]

E-VRP with minimizing
energy consumption Zhang et al. [136] Zhang et al. [136] Zhang et al. [136]

EV–HR–BSSL Zhou and Tan [110] Zhou and Tan [110] Zhou and Tan [110]
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Table 10. Summarized results for the EF-VRP generated instances.

Problem Type EF-VRP Instances Name Presented by: Solved by: So-Far Best-Known Methods

TRSP-CEV MSH 1 2 3 [115] MSH 1 2 3 [115]; Villegas et al. [97] SQ: Villegas et al. [97]
CT: Villegas et al. [97]

LRPIF-MR SSL [111] SSL [111] SSL [111]
GMFVRP-PRTW Macrina et al. [96] Macrina et al. [96] Macrina et al. [96]

2E-EVRP-BSS Jie et al. [132] Jie et al. [132] Jie et al. [132]
EVRPTW-CNCF Zuo et al. [117] Zuo et al. [117] Zuo et al. [117]

E-VRP-SCS Koç et al. [118] Koç et al. [118] Koç et al. [118]
E2EVRP Breunig et al. [131] Breunig et al. [131] Breunig et al. [131]

E-VRP-TW with
Time-Dependent Waiting Times

at Recharging Stations
Keskin et al. [40] Keskin et al. [40] Keskin et al. [40]

P-E-VRP Kouider et al. [128] Kouider et al. [128] Kouider et al. [128]
E-VRPTWsc Cortés-Murcia et al. [81] Cortés-Murcia et al. [81] Cortés-Murcia et al. [81]
PDPTW-EV Goeke [70] Goeke [70] Goeke [70]

Real World E-VRP Zhao and Lu [103] Zhao and Lu [103] Zhao and Lu [103]
HHCRP Erdem and Koç [68] Erdem and Koç [68] Erdem and Koç [68]

E-VRP-ECU Pelletier et al. [138] Pelletier et al. [138] Pelletier et al. [138]
TD-E-VRP Lu et al. [139] Lu et al. [139] Lu et al. [139]

LRPCD Almouhanna et al. [113] Almouhanna et al. [113] Almouhanna et al. [113]
F-EVRPTW Zhang et al. [82] Zhang et al. [82] Zhang et al. [82]

TD-E-VRP-CT Zhang et al. [124] Zhang et al. [124] Zhang et al. [124]
EVRPTW-CNCF Zuo et al. [117] Zuo et al. [117] Zuo et al. [117]
E-VRP-NL-LD,

E-VRP-NL-LD-CCS Kancharla and Ramadurai [120] Kancharla and Ramadurai [120] Kancharla and Ramadurai [120]

EVRPTW-SMBS Raeesi et al. [88] Raeesi et al. [88] Raeesi et al. [88]

H-VRP

PHEVRPTW Abdallah [22] Abdallah [22] Abdallah [22]
VRPMDR MRH [150] MRH [150] MRH [150]

HEV-TSP Doppstadt et al. [37] Doppstadt et al. [37]; Doppstadt et al. [149] SQ: Doppstadt et al. [37]
CT: Doppstadt et al. [149]

H-VRP MH [145] MH [145] MH [145]
H-VRP Vincent et al. [13] Vincent et al. [13] Vincent et al. [13]

H2E-FTW HGA [151] HGA [151] HGA [151]
HEVRP with mode selection Zhen et al. [154] Zhen et al. [154] Zhen et al. [154]

HEV-TSP-TW Doppstadt et al. [149] Doppstadt et al. [149] Doppstadt et al. [149]
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7. Conclusions

This study presented a comprehensive review of the literature concerning on the Environmentally
Friendly Routing Problem (EF-VRP). In this research, the EFVs were categorized into three classifications
of Alternative-Fuel Vehicle (AFV), Electric Vehicle (EV), and Hybrid Vehicle (HV), and were separately
investigated. Reviewing the studies on the routing of each of these vehicles was conducted based on
three fundamental approaches: I. The classical constraints and assumptions existing in the field of the
VRP that led to the formation of different variants of these problems; II. General characteristics and
operational constraints existing concerning the EFVs; III. Solution methods to solve different variants
of VRP problems. This research indicated that there are numerous research problems and gaps in the
field of EF-VRPs which were provided for each classification of EF-VRP studies. Investigating each of
these problems can answer many questions about the benefits of using EFVs and increase using these
vehicles in distribution systems throughout the world, thereby reducing the environmental side effects
of transportation.

In the reviewed papers, researchers focus just on the operational part, disregarding the underlying
business model. There is a need for such an integration, because it can bring new insights on
both aspects. Crainic et al. [17] highlighted that there is a more general lack. Only in the past
decade some papers have shown the benefits of a mix of qualitative and quantitative approaches for
sustainable and green logistics (Rosano et al. [6], Perboli and Rosano [5], Perboli and Rosano [172],
De Marco et al. [173], Tadei et al. [174], Brotcorne et al. [8], Perboli et al. [175], Perboli et al. [176],
Fadda et al. [177], and Perboli et al. [178]). This is a big gap between the literature and practice. In fact,
the lack of a link between the methods and the business solutions prevent the usage of the results
coming from the academia in the industry, as witnessed by the analysis of the results of Smart City
projects [179].
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Abbreviations

SQ Solution Quality
CT Computational or CPU Time
NV Number of EFVs
NS Number of Stations
EMH [21] Erdoğan and Miller-Hooks [21]
SSG [23] Schneider et al. [23]
MRH [150] Juan et al. [150]
MSH [45] Montoya et al. [45]
KK [44] Koç and Karaoglan [44]
YÇ [47] Yavuz and Çapar [47]
AB [48] Andelmin and Bartolini [48]
HPH [100] Hiermann et al. [100]
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FORT [24] Felipe et al. [24]
YS [29] Yang and Sun [29]
GHS [83] Goeke et al. [83]
GS [92] Goeke and Schneider [92]
KÇ [77] Keskin and Çatay [77]
HPRH [101] Hiermann et al. [101]
MSH 1 2 3 [115] Montoya [115]
MGMV17 [116] Montoya et al. [116]
Mancini [145] MH [145]
HSG [85] Hof et al. [85]
SW [107] Schiffer and Walther [107]
HGA [151] Hiermann et al. [151]
SSL [111] Schiffer et al. [111]
Hybrid-ILS [81] Cortés-Murcia et al. [81]
MCWS Modified Clarke and Wright Savings
DBCA Density-Based Clustering Algorithm
SA Simulated Annealing
GA Genetic Algorithm
B&C Branch and Cut
MSH Multi-space Sampling Heuristic
RLT Reformulation-Linearization Technique
VNS Variable Neighborhood Search

TVa-PSOGMO
Particle Swarm Optimization with Greedy Mutation Operator and Time
varying acceleration coefficient

PBA Path-Based exact Approach
e-CRO enhanced Chemical Reaction Optimization
ALNS Adaptive Large Neighborhood Search
TS Tabu Search
VNS-TS Variable Neighborhood Search (VNS) heuristic with a Tabu Search (TS)
48A 48 combinations of improving algorithms
CRH Charging Routing Heuristic
ITS-LNS Iterated Tabu Search-Large Neighborhood Search
ILS Iterated Local Search
AVNS Adaptive Variable Neighborhood Search
VNSB Variable Neighborhood Search Branching
SIGALNS Sweep heuristic, Iterated Greedy, Adaptive Large Neighborhood Search
TS-MCWS Tabu Search-modified Clarke and Wright Savings
AVNS-TS Adaptive Variable Neighborhood Search with Tabu Search
BnP Branch & Price
DE Differential Evolution
ILS+HS Iterated Local Search (ILS) and a Heuristic Concentration (HC)
TPM Three-Phase Matheuristic
LNS-E2E Large Neighborhood Search- Electric Two Echelon
AC Ant Colony
IDCS Improved Discrete Cuckoo Search
IPSO Improved Particle Swarm Algorithm
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73. Taş, D. Electric vehicle routing with flexible time windows: A column generation solution approach.
Transp. Lett. 2020, 1–7. [CrossRef]

74. Löffler, M.; Desaulniers, G.; Irnich, S.; Schneider, M. Routing electric vehicles with a single recharge per route.
Networks 2020, 76, 187–205. [CrossRef]

http://dx.doi.org/10.1002/net.21737
http://dx.doi.org/10.5267/j.ijiec.2017.6.004
http://dx.doi.org/10.1016/j.cor.2016.03.013
http://dx.doi.org/10.1016/j.eswa.2018.01.052
http://dx.doi.org/10.1007/s10479-017-2567-3
http://dx.doi.org/10.1007/s12667-018-0283-y
http://dx.doi.org/10.1016/j.tre.2018.11.003
http://dx.doi.org/10.1016/j.cor.2018.10.019
http://dx.doi.org/10.1155/2019/2358258
http://dx.doi.org/10.1016/j.jclepro.2019.01.343
http://dx.doi.org/10.1016/j.cie.2020.106364
http://dx.doi.org/10.3390/su12083500
http://dx.doi.org/10.5267/j.dsl.2020.1.002
http://dx.doi.org/10.1016/j.endm.2014.11.029
http://dx.doi.org/10.1007/s40890-018-0063-3
http://dx.doi.org/10.1016/j.jclepro.2019.06.236
http://dx.doi.org/10.1007/978-3-319-93351-1_15
http://dx.doi.org/10.1016/j.ejor.2019.05.010
http://dx.doi.org/10.1016/j.jclepro.2019.03.323
http://dx.doi.org/10.1155/2020/5612872
http://dx.doi.org/10.1080/19427867.2020.1711581
http://dx.doi.org/10.1002/net.21964


Sustainability 2020, 12, 9079 67 of 71

75. Nan, D.; Batta, R.; Kwon, C. Conflict-Free Electric Vehicle Routing Problem with Capacitated Charging
Stations and Partial Recharge; Technical Report; Department of Industrial and Systems Engineering,
University at Buffalo: Buffalo, NY, USA; Department of Industrial and Management Systems Engineering,
University of South Florida: Tampa, FL, USA, 2015.

76. Moghaddam, N.M. The Partially Rechargeable Electric Vehicle Routing Problem with Time Windows and
Capacitated Charging Stations. Master’s Thesis, Clemson University, Clemson, SC, USA, 2015.

77. Keskin, M.; Çatay, B. Partial recharge strategies for the electric vehicle routing problem with time windows.
Transp. Res. Part C Emerg. Technol. 2016, 65, 111–127. [CrossRef]

78. Desaulniers, G.; Errico, F.; Irnich, S.; Schneider, M. Exact algorithms for electric vehicle-routing problems
with time windows. Oper. Res. 2016, 64, 1388–1405. [CrossRef]

79. Keskin, M.; Çatay, B. A matheuristic method for the electric vehicle routing problem with time windows and
fast chargers. Comput. Oper. Res. 2018, 100, 172–188. [CrossRef]

80. Bruglieri, M.; Mancini, S.; Pezzella, F.; Pisacane, O.; Suraci, S. A three-phase matheuristic for the time-effective
electric vehicle routing problem with partial recharges. Electron. Notes Discret. Math. 2017, 58, 95–102.

81. Cortés-Murcia, D.L.; Prodhon, C.; Afsar, H.M. The electric vehicle routing problem with time windows,
partial recharges and satellite customers. Transp. Res. Part E Logist. Transp. Rev. 2019, 130, 184–206.

82. Zhang, S.; Chen, M.; Zhang, W.; Zhuang, X. Fuzzy optimization model for electric vehicle routing problem
with time windows and recharging stations. Expert Syst. Appl. 2020, 145, 113123. [CrossRef]

83. Goeke, D.; Hof, J.; Schneider, M. Adaptive Variable Neighborhood Search for the Battery Swap Station
Location-Routing Problem with Capacitated Electric Vehicles; Working Paper; Department of Business
Administration, Economics and Law, Institute for Business Studies (BWL), Darmstadt Technical University:
Darmstadt, Germany, 2015.

84. Chen, J.; Qi, M.; Miao, L. The electric vehicle routing problem with time windows and battery swapping
stations. In Proceedings of the IEEE International Conference on Industrial Engineering and Engineering
Management, Bali, Indonesia, 4–7 December 2016; pp. 712–716.

85. Hof, J.; Schneider, M.; Goeke, D. Solving the battery swap station location-routing problem with capacitated
electric vehicles using an AVNS algorithm for vehicle-routing problems with intermediate stops. Transp. Res.
Part B Methodol. 2017, 97, 102–112. [CrossRef]

86. Verma, A. Electric vehicle routing problem with time windows, recharging stations and battery swapping
stations. Euro J. Transp. Logist. 2018, 7, 415–451. [CrossRef]

87. Mao, H.; Shi, J.; Zhou, Y.; Zhang, G. The Electric Vehicle Routing Problem with Time Windows and Multiple
Recharging Options. IEEE Access 2020, 8, 114864–114875.

88. Raeesi, R.; Zografos, K.G. The electric vehicle routing problem with time windows and synchronised mobile
battery swapping. Transp. Res. Part B Methodol. 2020, 140, 101–129.

89. Gonçalves, F.; Cardoso, S.R.; Relvas, S.; Barbosa-Póvoa, A. Optimization of a distribution network using
electric vehicles: A VRP problem. In Proceedings of the IO2011-15 Congresso da Associação Portuguesa de
Investigação Operacional, Coimbra, Portugal, 18–20 April 2011; pp. 18–20.

90. Sassi, O.; Cherif-Khettaf, W.R.; Oulamara, A. Iterated tabu search for the mix fleet vehicle routing problem
with heterogenous electric vehicles. In Modelling, Computation and Optimization in Information Systems and
Management Sciences; Springer: Berlin/Heidelberg, Germany, 2015; pp. 57–68.

91. Sassi, O.; Cherif-Khettaf, W.R.; Oulamara, A. Multi-start iterated local search for the mixed fleet vehicle
routing problem with heterogenous electric vehicles. In Proceedings of the European Conference on
Evolutionary Computation in Combinatorial Optimization, Coimbra, Portugal, 5–7 April 2004; pp. 138–149.

92. Goeke, D.; Schneider, M. Routing a mixed fleet of electric and conventional vehicles. Eur. J. Oper. Res. 2015,
245, 81–99. [CrossRef]

93. Murakami, K.; Morita, H. A Column Generation Model for the Electric and Fuel-Engined Vehicle Routing
Problem. In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics,
Kowloon Tong, Hong Kong, 9–12 October 2015; pp. 1986–1991.

94. Sundar, K.; Venkatachalam, S.; Rathinam, S. An exact algorithm for a fuel-constrained autonomous vehicle
path planning problem. arXiv 2016, arXiv:1604.08464.

95. Kopfer, H.; Vornhusen, B. Energy vehicle routing problem for differently sized and powered vehicles.
J. Bus. Econ. 2019, 89, 793–821. [CrossRef]

http://dx.doi.org/10.1016/j.trc.2016.01.013
http://dx.doi.org/10.1287/opre.2016.1535
http://dx.doi.org/10.1016/j.cor.2018.06.019
http://dx.doi.org/10.1016/j.eswa.2019.113123
http://dx.doi.org/10.1016/j.trb.2016.11.009
http://dx.doi.org/10.1007/s13676-018-0136-9
http://dx.doi.org/10.1016/j.ejor.2015.01.049
http://dx.doi.org/10.1007/s11573-018-0910-z


Sustainability 2020, 12, 9079 68 of 71

96. Macrina, G.; Pugliese, L.D.P.; Guerriero, F.; Laporte, G. The green mixed fleet vehicle routing problem with
partial battery recharging and time windows. Comput. Oper. Res. 2019, 101, 183–199. [CrossRef]

97. Villegas, J.G.; Guéret, C.; Mendoza, J.E.; Montoya, A. The Technician Routing and Scheduling Problem with
Conventional and Electric Vehicle. Technical Report. 2018. Available online: https://hal.archivesouvertes.fr/
hal-01813887 (accessed on 19 May 2016).

98. Pelletier, S.; Jabali, O.; Laporte, G. Battery Electric Vehicles for Goods Distribution: A Survey of Vehicle
Technology, Market Penetration, Incentives and Practices. 2014. Available online: https://www.cirrelt.ca/

DocumentsTravail/CIRRELT-2014-43.pdf (accessed on 19 May 2016).
99. Van Duin, J.; Tavasszy, L.A.; Quak, H. Towards E (lectric)-Urban Freight: First Promising Steps in the Electric

Vehicle Revolution. 2013. Available online: https://pure.buas.nl/en/publications/towards-electric-urban-
freight-first-promising-steps-in-the-elect (accessed on 19 May 2016).

100. Hiermann, G.; Puchinger, J.; Hartl, R.F. The Electric Fleet Size and Mix Vehicle Routing Problem with
Time Windows. Working Paper. 2015. Available online: https://hal.archives-ouvertes.fr/hal-01360637/

(accessed on 19 May 2016).
101. Hiermann, G.; Puchinger, J.; Ropke, S.; Hartl, R.F. The electric fleet size and mix vehicle routing problem

with time windows and recharging stations. Eur. J. Oper. Res. 2016, 252, 995–1018. [CrossRef]
102. Lebeau, P.; De Cauwer, C.; Van Mierlo, J.; Macharis, C.; Verbeke, W.; Coosemans, T. Conventional, hybrid,

or electric vehicles: Which technology for an urban distribution centre? Sci. World J. 2015. [CrossRef]
103. Zhao, M.; Lu, Y. A heuristic approach for a real-world electric vehicle routing problem. Algorithms 2019,

12, 45. [CrossRef]
104. Worley, O.; Klabjan, D.; Sweda, T.M. Simultaneous vehicle routing and charging station siting for

commercial electric vehicles. In Proceedings of the 2012 IEEE International Electric Vehicle Conference,
Greenville, SC, USA, 4–8 March 2012; pp. 1–3.

105. Maximilian, S.; Stütz, S.; Walther, G. Are ECVs Breaking Even? 2016. Available online: https://www.om.
rwth-aachen.de/data/uploads/om-022016.pdf (accessed on 19 May 2016).

106. Schiffer, M.; Walther, G. The electric location routing problem with time windows and partial recharging.
Eur. J. Oper. Res. 2017, 260, 995–1013. [CrossRef]

107. Schiffer, M.; Walther, G. An adaptive large neighborhood search for the location-routing problem with
intra-route facilities. Transp. Sci. 2018, 52, 331–352. [CrossRef]

108. Schiffer, M.; Walther, G. Strategic planning of electric logistics fleet networks: A robust location-routing
approach. Omega 2018, 80, 31–42. [CrossRef]

109. Paz, J.; Granada-Echeverri, M.; Escobar, J. The multi-depot electric vehicle location routing problem with
time windows. Int. J. Ind. Eng. Comput. 2018, 9, 123–136. [CrossRef]

110. Zhou, B.-h.; Tan, F. Electric vehicle handling routing and battery swap station location optimisation for
automotive assembly lines. Int. J. Comput. Integr. Manuf. 2018, 31, 978–991. [CrossRef]

111. Schiffer, M.; Schneider, M.; Laporte, G. Designing sustainable mid-haul logistics networks with intra-route
multi-resource facilities. Eur. J. Oper. Res. 2018, 265, 517–532. [CrossRef]

112. Gatica, G.; Ahumada, G.; Escobar, J.W.; Linfati, R. Efficient heuristic algorithms for location of charging
stations in electric vehicle routing problems. Stud. Inf. Control 2018, 27, 73–82. [CrossRef]

113. Almouhanna, A.; Quintero-Araujo, C.L.; Panadero, J.; Juan, A.A.; Khosravi, B.; Ouelhadj, D. The location
routing problem using electric vehicles with constrained distance. Comput. Oper. Res. 2020, 115, 104864.
[CrossRef]

114. Montoya, A.; Guéret, C.; Mendoza, J.E.; Villegas, J. The Electric Vehicle Routing Problem with Partial
Charging and Nonlinear Charging Function. 2015. Available online: https://hal.archives-ouvertes.fr/hal-
01245232v2/document (accessed on 19 May 2016).

115. Montoya, J.-A. Electric Vehicle Routing Problems: Models and solution approaches. Ph.D. Thesis,
Universit’e d’Angers, Angers, France, 2016.

116. Montoya, A.; Guéret, C.; Mendoza, J.E.; Villegas, J.G. The electric vehicle routing problem with nonlinear
charging function. Transp. Res. Part B Methodol. 2017, 103, 87–110. [CrossRef]

117. Zuo, X.; Xiao, Y.; You, M.; Kaku, I.; Xu, Y. A new formulation of the electric vehicle routing problem with
time windows considering concave nonlinear charging function. J. Clean. Prod. 2019, 236, 117687. [CrossRef]

118. Koç, Ç.; Jabali, O.; Mendoza, J.E.; Laporte, G. The electric vehicle routing problem with shared
charging stations. Int. Trans. Oper. Res. 2019, 26, 1211–1243. [CrossRef]

http://dx.doi.org/10.1016/j.cor.2018.07.012
https://hal.archivesouvertes.fr/hal-01813887
https://hal.archivesouvertes.fr/hal-01813887
https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2014-43.pdf
https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2014-43.pdf
https://pure.buas.nl/en/publications/towards-electric-urban-freight-first-promising-steps-in-the-elect
https://pure.buas.nl/en/publications/towards-electric-urban-freight-first-promising-steps-in-the-elect
https://hal.archives-ouvertes.fr/hal-01360637/
http://dx.doi.org/10.1016/j.ejor.2016.01.038
http://dx.doi.org/10.1155/2015/302867
http://dx.doi.org/10.3390/a12020045
https://www.om.rwth-aachen.de/data/uploads/om-022016.pdf
https://www.om.rwth-aachen.de/data/uploads/om-022016.pdf
http://dx.doi.org/10.1016/j.ejor.2017.01.011
http://dx.doi.org/10.1287/trsc.2017.0746
http://dx.doi.org/10.1016/j.omega.2017.09.003
http://dx.doi.org/10.5267/j.ijiec.2017.4.001
http://dx.doi.org/10.1080/0951192X.2018.1493229
http://dx.doi.org/10.1016/j.ejor.2017.07.067
http://dx.doi.org/10.24846/v27i1y201808
http://dx.doi.org/10.1016/j.cor.2019.104864
https://hal.archives-ouvertes.fr/hal-01245232v2/document
https://hal.archives-ouvertes.fr/hal-01245232v2/document
http://dx.doi.org/10.1016/j.trb.2017.02.004
http://dx.doi.org/10.1016/j.jclepro.2019.117687
http://dx.doi.org/10.1111/itor.12620


Sustainability 2020, 12, 9079 69 of 71

119. Lee, C. An exact algorithm for the electric-vehicle routing problem with nonlinear charging time. J. Oper.
Res. Soc. 2020, 1–24. [CrossRef]

120. Kancharla, S.R.; Ramadurai, G. Electric Vehicle Routing Problem with Non-Linear Charging and
Load-Dependent Discharging. Expert Syst. Appl. 2020, 113714.

121. Figliozzi, M.A. The impacts of congestion on time-definitive urban freight distribution networks CO2
emission levels: Results from a case study in Portland, Oregon. Transp. Res. Part C Emerg. Technol. 2011, 19,
766–778. [CrossRef]

122. Shao, S.; Guan, W.; Ran, B.; He, Z.; Bi, J. Electric vehicle routing problem with charging time and variable
travel time. Math. Probl. Eng. 2017, 2017, 5098183. [CrossRef]

123. Lu, J.; Chen, Y.; Hao, J.-K.; He, R. The Time-Dependent Electric Vehicle Routing Problem: Model and Solution.
Expert Syst. Appl. 2020, 113593. [CrossRef]

124. Zhang, R.; Guo, J.; Wang, J. A Time-Dependent Electric Vehicle Routing Problem With Congestion Tolls.
IEEE Trans. Eng. Manag. 2020. [CrossRef]

125. Alinaghian, M.; Zamanlou, K.; Sabbagh, M.S. A bi-objective mathematical model for two-dimensional
loading time-dependent vehicle routing problem. J. Oper. Res. Soc. 2017, 68, 1422–1441. [CrossRef]

126. Zhu, X.; Yan, R.; Huang, Z.; Wei, W.; Yang, J.; Kudratova, S. Logistic Optimization for Multi Depots
Loading Capacitated Electric Vehicle Routing Problem From Low Carbon Perspective. IEEE Access 2020, 8,
31934–31947. [CrossRef]

127. Cacchiani, V.; Hemmelmayr, V.C.; Tricoire, F. A set-covering based heuristic algorithm for the periodic vehicle
routing problem. Discret. Appl. Math. 2014, 163, 53–64. [CrossRef]

128. Kouider, T.O.; Cherif-Khettaf, W.R.; Oulamara, A. Constructive Heuristics for Periodic Electric Vehicle
Routing Problem. pp. 264–271. Available online: https://www.scitepress.org/Papers/2018/66305/66305.pdf
(accessed on 19 May 2016).

129. Crainic, T.G.; Ricciardi, N.; Storchi, G. Advanced freight transportation systems for congested urban areas.
Transp. Res. Part C: Emerg. Technol. 2004, 12, 119–137. [CrossRef]

130. Crainic, T.G.; Perboli, G.; Mancini, S.; Tadei, R. Two-echelon vehicle routing problem: A satellite location
analysis. Procedia-Soc. Behav. Sci. 2010, 2, 5944–5955. [CrossRef]

131. Breunig, U.; Baldacci, R.; Hartl, R.F.; Vidal, T. The electric two-echelon vehicle routing problem.
Comput. Oper. Res. 2019, 103, 198–210. [CrossRef]

132. Jie, W.; Yang, J.; Zhang, M.; Huang, Y. The two-echelon capacitated electric vehicle routing problem with
battery swapping stations: Formulation and efficient methodology. Eur. J. Oper. Res. 2019, 272, 879–904.
[CrossRef]

133. Aggoune-Mtalaa, W.; Habbas, Z.; Ouahmed, A.A.; Khadraoui, D. Solving new urban freight distribution
problems involving modular electric vehicles. IET Intell. Transp. Syst. 2015, 9, 654–661. [CrossRef]

134. Rezgui, D.; Siala, J.C.; Aggoune-Mtalaa, W.; Bouziri, H. Application of a variable neighborhood search
algorithm to a fleet size and mix vehicle routing problem with electric modular vehicles. Comput. Ind. Eng.
2019, 130, 537–550. [CrossRef]

135. Schneider, M.; Stenger, A.; Hof, J. An adaptive VNS algorithm for vehicle routing problems with
intermediate stops. OR Spectr. 2015, 37, 353–387. [CrossRef]

136. Zhang, S.; Gajpal, Y.; Appadoo, S.; Abdulkader, M. Electric vehicle routing problem with recharging stations
for minimizing energy consumption. Int. J. Prod. Econ. 2018, 203, 404–413. [CrossRef]

137. Basso, R.; Kulcsár, B.; Egardt, B.; Lindroth, P.; Sanchez-Diaz, I. Energy consumption estimation integrated
into the electric vehicle routing problem. Transp. Res. Part D Transp. Environ. 2019, 69, 141–167. [CrossRef]

138. Pelletier, S.; Jabali, O.; Laporte, G. The electric vehicle routing problem with energy consumption uncertainty.
Transp. Res. Part B Methodol. 2019, 126, 225–255. [CrossRef]

139. Lu, J.; Wang, L. A Bi-Strategy Based Optimization Algorithm for the Dynamic Capacitated Electric
Vehicle Routing Problem. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC),
Wellington, New Zealand, 10–13 June 2019; pp. 646–653.

140. Granada-Echeverri, M.; Cubides, L.; Bustamante, J. The electric vehicle routing problem with backhauls.
Int. J. Ind. Eng. Comput. 2020, 11, 131–152. [CrossRef]

141. Reyes-Rubiano, L.; Ferone, D.; Juan, A.A.; Faulin, J. A simheuristic for routing electric vehicles with limited
driving ranges and stochastic travel times. Sort-Stat. Oper. Res. Trans. 2019, 22, 3–24.

http://dx.doi.org/10.1080/01605682.2020.1730250
http://dx.doi.org/10.1016/j.trc.2010.11.002
http://dx.doi.org/10.1155/2017/5098183
http://dx.doi.org/10.1016/j.eswa.2020.113593
http://dx.doi.org/10.1109/TEM.2019.2959701
http://dx.doi.org/10.1057/s41274-016-0151-x
http://dx.doi.org/10.1109/ACCESS.2020.2971220
http://dx.doi.org/10.1016/j.dam.2012.08.032
https://www.scitepress.org/Papers/2018/66305/66305.pdf
http://dx.doi.org/10.1016/j.trc.2004.07.002
http://dx.doi.org/10.1016/j.sbspro.2010.04.009
http://dx.doi.org/10.1016/j.cor.2018.11.005
http://dx.doi.org/10.1016/j.ejor.2018.07.002
http://dx.doi.org/10.1049/iet-its.2014.0212
http://dx.doi.org/10.1016/j.cie.2019.03.001
http://dx.doi.org/10.1007/s00291-014-0376-5
http://dx.doi.org/10.1016/j.ijpe.2018.07.016
http://dx.doi.org/10.1016/j.trd.2019.01.006
http://dx.doi.org/10.1016/j.trb.2019.06.006
http://dx.doi.org/10.5267/j.ijiec.2019.6.001


Sustainability 2020, 12, 9079 70 of 71

142. Kullman, N.; Goodson, J.; Mendoza, J.E. Dynamic Electric Vehicle Routing: Heuristics and Dual
Bounds. Working Paper. 2018. Available online: https://hal.archives-ouvertes.fr/hal-01928730 (accessed on
19 May 2016).

143. Kullman, N.; Froger, A.; Mendoza, J.; Goodson, J. Frvcpy: An Open-Source Solver for the Fixed Route Vehicle
Charging Problem. Working Paper. 2020. Available online: https://hal.archives-ouvertes.fr/hal-02496381/

document (accessed on 19 May 2016).
144. Kullman, N.; Goodson, J.; Mendoza, J.E. Electric Vehicle Routing with Public Charging Stations. 2020.

Available online: https://goodson.slu.edu/papers/KullmanGoodsonMendoza2018.pdf (accessed on
19 May 2016).

145. Mancini, S. The hybrid vehicle routing problem. Transp. Res. Part C Emerg. Technol. 2017, 78, 1–12. [CrossRef]
146. Lukic, S.M.; Cao, J.; Bansal, R.C.; Rodriguez, F.; Emadi, A. Energy storage systems for automotive applications.

IEEE Trans. Ind. Electron. 2008, 55, 2258–2267. [CrossRef]
147. Curtin, R.; Shrago, Y.; Mikkelsen, J. Plug-in hybrid electric vehicles. Reuters/Univ. Mich. Surv. Consum. 2009,

103, 1–103.
148. Chan, C.C. The state of the art of electric, hybrid, and fuel cell vehicles. Proc. IEEE 2007, 95, 704–718.

[CrossRef]
149. Doppstadt, C.; Koberstein, A.; Vigo, D. The hybrid electric vehicle—Traveling salesman problem with

time windows. Eur. J. Oper. Res. 2020, 284, 675–692. [CrossRef]
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