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Abstract: The Passive House standard has become the standard for many countries in the construction
of the Zero Energy Building (ZEB). Korea also adopted the standard and has achieved great success in
building energy savings. However, some issues remain with ZEBs in Korea. Among them, this study
aims to discuss overheating issues. Field measurements were carried out to analyze the overheating
risk for a library built as a ZEB. A data-driven overheating risk prediction model was developed
to analyze the overheating risk, requiring only a small amount of data and extending the analysis
throughout the year. The main factors causing overheating during both the cooling season and the
intermediate seasons are also analyzed in detail. The overheating frequency exceeded 60% of days in
July and August, the midsummer season in Korea. Overheating also occurred during the intermediate
seasons when air conditioners were off, such as in May and October in Korea. Overheating during
the cooling season was caused mainly by unexpected increases in occupancy rate, while overheating
in the mid-term was mainly due to an increase in solar irradiation. This is because domestic ZEB
standards define the reinforcement of insulation and airtight performance, but there are no standards
for solar insolation through windows or for internal heat generation. The results of this study suggest
that a fixed performance standard for ZEBs that does not reflect the climate or cultural characteristics
of the region in which a ZEB is built may not result in energy savings at the operational stage and
may not guarantee the thermal comfort of occupants.

Keywords: overheating; zero energy building; prediction model; long short-term memory neural
network (LSTM); field measurement

1. Introduction

The building construction sector is responsible for more than one-third of global final energy
consumption and nearly 40% of total direct and indirect CO2 emissions [1,2]. The Zero-Energy
Building (ZEB) has been proposed in several countries as a realistic solution to reduce energy
demand and mitigate CO2 emissions in the building sector [3,4]. A ZEB is a building with zero
net energy consumption, i.e., its total annual energy consumption equals the amount of renewable
energy created [5,6]. ZEBs involve two design implementation strategies—minimizing the need
for energy use in buildings (especially for heating and cooling) through energy efficient measures
and adopting renewable energy and other technologies to meet the remaining energy needs [7].
Energy efficient strategies for ZEBs can be categorized as passive or active. Passive strategies, as the
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first step to realizing a ZEB, introduce energy-saving design alternatives related to the building
envelope, geometrical parameters and orientation, other passive solutions, and hybrid solutions [5].
Passive strategies contribute to energy savings in buildings by means of improving the thermal
performance [8]. Active strategies involve refining heating, ventilation and air-conditioning systems,
lighting, and any other building services applications [9]. In addition, the realization of “net zero energy
consumption” mainly relies on the use of renewable power technologies, such as photovoltaic [10] and
geothermal heat pump systems [11].

As a specific guide for the implementation of the passive design strategy for ultra-low-energy
houses [12], the German Passive House (PH) standard has been applied worldwide and is considered
as the most internationally influential standard, with at least 25,000 certified projects [13]. ZEBs under
German PH exhibit remarkable energy saving performances and the energy consumption has even
decreased 75% in some countries [14].

In Korea, the planning and construction of ZEBs has been incorporated into mandatory policies
for the design of public buildings and will be extended to residential buildings in the near future [15].
In order to improve the insulation performance of the building envelope, the German PH Standard
also has been adapted in the ZEB project in Korea, with high-performance external thermal insulation
systems. The wall heat transfer rate of Korean PH standard requires high insulation performance of
0.15 W/m2K. The Korean PH standard requires a primary energy requirement of 120 kWh/m2yr or
less. It is the same level as the 1++ level in the building energy efficiency rating, which is one of the
requirements in Korea’s ZEB certification. Compared with conventional buildings, ZEBs built to PH
standards in Korea embody an enormous energy saving potential [16]; some demonstration buildings
can reduce energy demand by 56% to 85% [17]. However, severe discomfort issues are found in these
buildings; the internal heat gain cannot be dissipated properly, resulting in overheating issues that
need to be solved [18].

Other issues have been reported with ZEBs in other countries, such as unexpected building
expenses [19] and uncomfortable indoor environments [20]. Among all the mentioned issues,
overheating is vitally important because it can greatly influence the indoor thermal comfort and
affect the productivity of the occupants. Overheating in ZEBs resulted from many factors, including
geographic location, climate, and humidity. Sameni et al. reported a serious overheating problem of
ZEBs in England that were built according to the PH standard [21]; the analyzed buildings experienced
overheating problems over half of the time in 2013. Rojas et al. [22] also found that in Austria, a social
housing development built under the PH standard exhibited quite a different thermal comfort level
from a building in Germany, despite similar climates in both countries. Severe overheating was caused
by uncontrolled solar radiation and poor management of the indoor heat supply in the Mediterranean
climate [23]. Wang et al. reported overheating problems in ZEBs located in northern China [24].
Fletcher et al. [25] suggested that PH building in northern UK were at risk of overheating during
the summer month because of high levels of thermal insulation and airtightness. Lomas et al. [19]
reviewed that thermally efficient housing with the concept of PH building is increasing, and policies
and regulations are being established in many countries, but there is a problem of temporal overheating.
Beizaee et al. [26] investigated 207 dwellings in UK, and found that the bedrooms of houses built after
1990 had a greater chance of exceeding the standards of 5%/24 ◦C and 1%/26 ◦C. Mulville et al. [27]
indicated that a building built in 2006 overheated 5.9% of the time, while the percentage increased
to 31.3% for a PH building in the analyzed region [24]. Accordingly, the adaptability of the PH
standard should also consider factors such as climate characteristics, building structure, and occupancy
behaviors [27,28] to avoid overheating. Due to the high thermal insulation performance, the internal heat
gain cannot be dissipated properly, resulting in frequent overheating [29]. The causes of overheating are
occupancy level [30–32] and external factors such as solar radiation [33], outdoor temperature [34,35],
and outdoor relative humidity [36,37]. In particular, solar radiation passing through special glass
material [32] or double or triple glazed windows used in ZEBs [38] greatly increases the overheating
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risk in summer. In addition, the actual occupancy rate may be higher than the predefined ZEB
guidelines [31], which may cause high internal heat gain.

Therefore, overheating issues should be analyzed and countermeasures are prepared in the
building design stage in order to improve the indoor thermal comfort and avoid unnecessary energy
consumption. In the occupied condition, the overheating risk can also be decreased by predicting and
optimal air-conditioning control strategies [39].

Some papers dealing with overheating issues adopt the criteria of the Passivhaus Planning Package
(PHPP) and Chartered Institution of Building Services Engineers (CIBSE) [25,40,41]. The representation
of overheating as a percentage of the year in PHPP is shown to distort the effect of overheating, while the
volume-weighted mean indoor temperature value overlooks variations in zonal temperature [42].

Although some studies on overheating issues in ZEBs have analyzed the overheating risk using a
simulation approach during the building design stage [43,44], the application scope of the model is
narrow, and the accuracy of the models’ predictions remain to be verified. The most precise method is
to conduct field measurements [26,34], but this method requires a huge amount of time and cost.

The aim of this study is to identify overheating that can be a problem in ZEB buildings through
measured and predicted data. The method to predict overheating using the measured data provided
in this study is as follows. Several short-term variables that affect the indoor temperature of a building
are ranked through correlation analysis of the values of measured data. The ranked variables are
subjected to clustering analysis to detect fault data and maximize similarity between data samples.
Clustered data is predicted through a prediction model. The determination of prediction model
compares accuracy by analyzing several prediction models. Based on the highly accurate prediction
model, long-term overheating frequency prediction and influencing factors are evaluated.

This paper is structured as follows. In Section 2, the field measurement methods of the reference
building are described. Additionally, the pre-processing of the measured data is described. Furthermore,
principles of clustering analysis, three data mining algorithms, as well as the idea of developing simple
model are presented. In Section 3, the overheating frequency is analyzed for the cooling season and
intermediate season. Factors influencing overheating are also discussed. Conclusions are presented in
Section 4.

2. Methods

The methodology is divided into two main categories. The first shows the measurement data
and overheating issues through the experiment of the target building. The second is an overheating
prediction method using clustered measurement data by evaluating the correlation.

First, data is collected through the actual measurement of the target building and building
energy management system (BEMS) data. The data from the experiment are indoor temperature,
indoor humidity, and indoor carbon dioxide. Among them, indoor temperature and indoor humidity
are used to analyze overheating, and carbon dioxide is used in the overheating prediction model
to evaluate the prediction accuracy with the indoor temperature and evaluate the association with
overheating. BEMS data includes weather data (temperature, humidity, solar radiation, and wind
speed) and the return water temperature, water flow rate, and pump power measured at the building
operation stage. The overheating was assumed to be an indoor condition that exceeds the operating
temperature of 25 ◦C and is out of the comfort range, considering both temperature and humidity.

The second step is the overheating prediction model. In this study, the data clustering method is
used to increase the overheating prediction model’s accuracy. The evaluation of the influence between
the predicted variable, which is the indoor temperature, and the measured data is performed with the
distance-weighted Pearson correlation coefficient. Clustering is performed using the self-organizing
mapping (SOM) method by using variables of large influences that affect the predicted value, such as
outside temperature, solar radiation, indoor humidity, and outdoor humidity. The most accurate
prediction of indoor temperature and carbon dioxide is selected by comparing machine learning
models using clustered data. In this study, the long short-term memory with SOM (SOM-LSTM)
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method was found to be the most accurate. The following sections describe the methodology of this
study in more detail.

2.1. Field Measurements

2.1.1. Analyzed Building

In this study, a Korean ZEB, Asan Library, which received a Level 5 ZEB certification as a
public building, is analyzed. ZEB certification requires three criteria. The first is the building energy
efficiency rating of 1++ or higher, which is the case when the primary energy consumption is less
than 90 kWh/m2yr for residential buildings and less than 140 kWh/m2yr for commercial buildings.
The second is the energy self-sufficiency rate, that is, the ratio of renewable energy production
among the total energy consumed by buildings. Finally, BEMS or remote meter reading must be
installed, which is a system that measures and manages energy consumption in real time. Level 5 ZEB
certification must satisfy energy self-sufficiency rate of 20% or more and less than 40%. The levels of
ZEB certification are shown in Table 1.

Table 1. Zero Energy Building (ZEB) certification criteria.

ZEB Level Level 1 Level 2 Level 3 Level 4 Level 5

Energy
self-sufficiency rate 100% or more 80% to 100% 60% to 80% 40% to 60% 20% to 40%

The analyzed building has four floors above ground and one basement floor. Specifications of the
analyzed building are shown in Table 2. The exterior walls have a high insulation performance with
triple-glazed windows. The heat transfer coefficient (U-value) of the building envelope was planned
to be lower than the Korean Building Design Criteria for Energy Savings (BDCES), a mandatory
regulation for new construction buildings in Korea [45]. The analyzed building was equipped with a
Building Energy Management System (BEMS) to monitor and control the building heating, ventilation,
and air conditioning (HVAC) system and energy consumption efficiently. The analyzed space was the
reading room located on the second floor in the target building. This space is exposed to the outside
on the south wall. The east and north walls face the corridor. The west wall is shared with other
adjacent study rooms. Except for the south-facing wall, all of the interior walls are in contact with the
air-conditioned space. The analyzed space has a high occupancy density, has 50 desks, and is generally
used for study purposes. During the measurement period, measurements were made under normal
conditions without any other change in use. The windows were all closed and the sun-shade device
was not working. The indoor set temperature was operated on a schedule of 9:00–22:00 at 25 degrees,
and the energy recovery ventilator (ERV) was also operated on the same schedule. The measurement
locations of room temperature, humidity, and CO2 are shown as a total of six positions in Figure 1.
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Table 2. Analyzed building specifications.

Item Information

Building information

Location Asan, Korea
Building type Public library building

Number of floors 5 floors above ground and 1 floor
underground

Total building area 9037.21 m2

Systems

Heat source: geothermal heat pump,
auxiliary boiler, thermal storage system

Heating, ventilation, and air
conditioning (HVAC): fan coil unit with

energy recovery ventilator (ERV)
systems

Cooling load 645 kW

Building envelope information Heat transfer coefficient (U-value)

Wall-Construction 1: 0.15 W/m2
·K,

Construction 2:0.242 W/m2
·K,

Construction 3:0.243 W/m2
·K

Roof: 0.130 W/m2
·K

Floor: 0.243 W/m2
·K

Windows: 0.889 W/m2
·K

Doors: 1.279 W/m2
·K

Analyzed space

Location 2nd floor
Function Individual study room

Dimension
Floor area: 170 m2, height: 2.7 m,

window area: 22 m2, gross wall area: 55
m2 (WWR: 0.4)

Window orientation South

HVAC schedule
Cooling: 9:00–22:00, set-point

temperature: 25 ◦C
Ventilation: 9:00–22:00

Measurement periods 10 July 2019~24 July 2019 (2 weeks)

2.1.2. Measurement Descriptions

In order to analyze the overheating issues in a ZEB in Korea, the indoor and outdoor
thermal environment were monitored during a two-week period in the summer. Significantly,
three kinds of data were collected: local meteorological data, indoor thermal environmental data,
and operational data. The local meteorological data consisted of outdoor temperature, relative humidity,
solar irradiation, and wind speed. The indoor thermal environmental data consisted of indoor
temperature, relative humidity, and CO2 density. Operating data from the air-conditioning system
included flow rate, return water temperature, and pump power of the fan coil unit (FCU).

Meteorological data were obtained from a weather station, the operating data of the
air-conditioning system data were collected by the BEMS, and the indoor thermal environmental data
were monitored using various sensors and measuring instruments. The details of the measurement
system are shown in Table 3.
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Table 3. Measurements and instrument specifications.

Measurement Instrument Specifications Unit

Outdoor ambient
parameters

Temperature

Weather station

Range: −40–65◦ C,
Accuracy: ±0.5 ◦C,
Resolution: 0.1 ◦C

◦C

Relative humidity
Range: 0–100% RH,
Accuracy: ±5% RH,
Resolution: 1% RH

%

Solar irradiation

Range: 0–1800
W/m2, Accuracy:
±5% of full scale,

Resolution: 1 W/m2

kW/m2

Wind velocity

Range: 1–54 m/s,
Accuracy: ±5% of

reading,
Resolution: 0.1 m/s.

m/s

Indoor
environmental

parameters

CO2 density

TR-76Ui

Range: 0–9999
ppm, Accuracy:
+5% of reading

ppm

Temperature
Range: 0–55 ◦C,

Accuracy: ±0.5 ◦C,
Resolution: 0.1 ◦C

◦C

Relative humidity

Range: 10–95% RH,
Accuracy: +5% of

reading,
Resolution: 1% RH

%

Operating
parameters

Return water
temperature

Building Energy
Management

System (BEMS)

◦C

Flow rate m3/hr
Pump power kWh

To ensure the accuracy and availability of the experimental data, the indoor measuring point
for indoor temperature and relative humidity were set according to ISO 7726 [46], a standard for the
measurement of indoor thermal environments. A total of 243 sets of sample data were obtained after
smoothing the system operation data and data aggregation in consideration of the difference in the
sampling interval between the meteorological data and indoor thermal environmental data.

The measurements were conducted during the cooling season in Korea. Therefore, the air-conditioning
system was operated from 9:00 to 22:00. The data sampling period and sampling interval were whole-day
sampling (0:00–24:00) and 1 h, respectively, in order to analyze the passive heat dissipation performance
and ventilation as well as infiltration of the building at night.

The distribution of the raw data after normalization is shown in Figure 2. This normalization
method turns all variables into z-values with a mean value of 0 and standard deviation of 1. The values
shown in Figure 2 are the 1st and 3rd quartiles of the measured parameters.

Data preparation is important in model-based methods due to the unreliability of
measurements [47]. To improve the reliability of the clustering and prediction, low-quality data
should be removed. In this study, outliers are the main concern in data preparation; therefore,
the quartile method is used to clean the outlier data in the raw dataset, which means a point is removed
if it is greater than the 3rd Quartile, or less than the 1st Quartile, by more than 1.5 times the distance
between the 1st Quartile and the 3rd Quartile. In addition, the range of the raw data determines
the available range of the prediction model. The outliers shown in the raw data had values that
occurred due to communication errors among BEMS data, and especially in the case of solar radiation,
the outliers were seen in the excessive solar radiation measurement.
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2.1.3. Overheating Issues in the Analyzed ZEB

Existing overheating criteria are categorized in the CIBSE Guide A [48], ASHRAE 55 [49],
and EN15251 [50]. Operative temperature, a thermal comfort indicator, is used in existing overheating
criteria to evaluate the overheating risk and calculate the number of overheating hours exceeding
the comfort range. In this study, the ASHRAE 55 method is used to evaluate the overheating risk
of the analyzed ZEB because these criteria can reflect the relationship among various factors more
comprehensively [51]. The ASHRAE 55 standard presents the comfort range of Graphic comfort zone
method for typical indoor environments. This range is a method that determines the range of operating
temperature and humidity that 80% of the occupants are satisfied within a specific environment,
the metabolic equivalent of task (MET) is between 1.0 and 1.3 met and the amount of clothing is
between 0.5 and 1.0 clo. In this study, overheating was set as an area outside the comfort range.
Since the cooling period was considered, temperature conditions lower than the comfort range were
excluded from overheating.

Based on the comfort zone from ASHRAE standard 55, the overheating frequency during the
experimental duration was calculated, as shown in Figure 3. The analysis indicated that the ZEB was
overheated for 33% of the analyzed period (10 July 2019–24 July 2019).
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The results shown in Figure 3 are limited to a two-week period; however, it is necessary to review
overheating issues throughout the year. The data-driven prediction model method enables yearly
analysis with a limited amount of measurement data. Therefore, a simple data-driven model was
developed in this study to extend the overheating risk analysis throughout the summer and intermediate
seasons, producing a greater volume of data while avoiding difficult, expensive, and time-consuming
large-scale field studies.

2.2. Prediction Model to Analyze the Overheating Risk throughout the Year

2.2.1. Simple Model Challenges and Suggested Approach

(1) Concept used in the simple model
With the penetration and integration of artificial intelligence (AI), the use of AI, machine learning,

and data-driven methods for building environment analysis and optimization have become increasingly
important [52,53]. Deep learning algorithms are based on representational learning of data in machine
learning, which aims at finding better representations and creating better models to learn these
representations from large amounts of unmarked data. In simple terms, a deep learning neural network
is a neural system mimicking the human brain and constructing a non-linear relationship between
input and output.

The fundamental purpose of this paper is to propose a generalized simple model based on a
deep learning algorithm that can accurately predict the overheating risk of a ZEB with a small number
of input variables. This study further investigates the potential of the combination of unsupervised
algorithms and supervised deep learning in predicting indoor thermal comfort.

Initially, the output variables are defined as indoor temperature and CO2 density.
Indoor temperature is the critical index used to evaluate the overheating risk of the building. In addition,
indoor CO2 density, which represents occupancy, has a high impact on indoor temperature and
overheating risk and is selected as the output. But it is difficult to measure CO2 density directly,
and it generally varies with human activity, so it is essential to predict CO2 density with the proposed
model. The intensity of CO2 shows the density of occupants, which means the amount of internal heat
generated in the room. The amount of internal heat generation directly affects the indoor temperature
and is one of the factors that cause overheating in ZEB. Furthermore, the forecast duration covers the
period from 1 May to 31 October due to the climate characteristics of Korea. Usually, building design
standards and indoor thermal environmental standards only specify the hygrothermal parameters of
buildings in summer and winter but neglect the intermediate season (spring and autumn). However,
there is a great temperature difference between day and night in the intermediate season, for example
in May and October in Korea.

Figure 4 presents the basic process used to establish the prediction model. Before establishing the
prediction model, the raw data should be preprocessed. The box plot can be used to detect and process
outlier data from experimental raw data, thus avoiding interference caused by physical errors in the
modeling. The pre-processed data are then randomly divided into a training dataset and a testing
dataset, and only the training dataset is used in the modeling process. After that, the feature variables
are selected through Pearson correlation analysis, and the set of feature variables for modeling is
determined. The first step of modeling is to use unsupervised deep learning to add operational pattern
identification tags as model inputs. The second step is that supervised deep learning is applied for
developing prediction models. Finally, the output result should be validated with the testing dataset.
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(2) Steps of model estimation
(a) Input variables selection
The purpose of input selection is as follows: (1) to find out the most effective and correlated

variables among the entire dataset; (2) to discover the low repetitive and highly correlated variables to
save computational time; (3) to select easily obtained variables so as to improve the applicability and
robustness of the model.

In statistics, there are three commonly used correlation coefficients: Pearson correlation coefficient,
Spearman correlation coefficient, and Kendall correlation coefficient. Among the three correlation
coefficients, the Pearson correlation coefficient is used to measure the degree of linear correlation in
this study. Spearman and Kendall are rank correlation coefficients [54] used to reflect the degree of
rank correlation.

The Pearson correlation indexes [55] are shown in Table 4. Apparently, the FCU return water
temperature and indoor relative humidity show the highest correlation with indoor temperature,
followed by solar irradiation, outdoor temperature, pump power (operation variable), and outdoor
relative humidity. Since the operation variables of cooling equipment can only be obtained via
installing specific sensors, using these variables as input data will limit the broad applicability of
the prediction model. Hence, the indoor relative humidity, solar irradiation, outdoor temperature,
and outdoor relative humidity are ultimately chosen as input variables of the prediction model for
indoor temperature prediction.
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Table 4. Correlation with indoor temperature.

Rank 1 2 3 4 5 6 7

Factor Return
Temp Indoor RH Solar

radiation Flowrate Outdoor
temp.

Pump
power

Outdoor
RH

Unit ◦C % kW/m2 m3/h ◦C kWh %

Correlation 0.82 0.79 0.49 −0.34 −0.29 −0.28 −0.26

Similarly, as shown in Table 5, the correlation values with CO2 density ranked as follows: indoor
temperature, return water temperature, indoor relative humidity, solar irradiation, outdoor temperature,
pump power, and outdoor relative humidity. Therefore, it is necessary to add indoor temperature as a
new variable to participate in predicting CO2 density for higher accuracy.

Table 5. Correlation with CO2 density.

Rank 1 2 3 4 5 6 7 8

Factor Indoor
temperature

Return
Temp

Indoor
RH

Solar
irradiation Flowrate Outdoor

temp.
Pump
power

Outdoor
RH

Unit ◦C ◦C % kW/m2 m3/h ◦C kWh %

Correlation 0.56 0.49 0.47 0.41 −0.37 0.35 −0.27 −0.24

(b) Clustering algorithm selection
A clustering analysis is used in this study to detect fault data and identify the indoor environment

mode initially. Cluster analysis maximizes the similarity between data samples in the same cluster
and minimizes the similarity between data objects in different clusters in the final partition results.
The massive data are categorized to differentiate their patterns and explore stronger rules for the
prediction model. A self-organizing mapping (SOM) neural network, also known as a Kohonen
network, is an unsupervised competitive learning network proposed by Kohonen et al. in 1981.
As a nonlinear unsupervised clustering algorithm, it has been applied widely in artificial neural
networks [56]. The algorithm gathers similar samples into the same category according to the distance
to achieve data clustering. In the learning process of this network, the competition among neurons is
unsupervised. In the training process of the network, the network will automatically find possible laws
from the distribution characteristics to topology of the input vectors and adjust the weights among
nodes of the network adaptively, and finally complete the clustering of the input data. Therefore,
this method has been used widely in clustering analysis, signal processing, data dimension reduction,
and other fields [57].

(c) Prediction algorithm selection
Three machine learning methods are selected in this study to participate in building the simple

model: Back propagation (BP) neural network, radial basis function (RBF), and long short-term memory
(LSTM). BP is a classical feed-forward neural network, RBF is a special neural network based on radial
basis function, and LSTM represents a feedback neural network.

The long short-term memory neural network (LSTM) [58] is a special type of Recurrent Neural
Network (RNN) that can learn to rely on information for a time series, which aligned with our
research because LSTM can not only process single data points, but also entire sequences of data or
historical states. It is suitable for numerical sequences of indoor temperature arranged chronologically,
for multivariable, strongly coupled, and severely nonlinear relationships, and also for situations where
it is difficult to describe their statistical significance in terms of functions. The LSTM neuron structure
is shown in Figure 5. There are three door structures in the neuron structure: the input gate, the output
gate, and the forget gate. The first step is to decide which information will be discarded from the cell
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status through the forget door. The second step is to determine which information will be placed in
cells in the input gate, and the third step is to set the output value in the output door.Sustainability 2020, 12, x FOR PEER REVIEW 11 of 20 
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Figure 5. Long short-term memory (LSTM) schematic diagram.

The BP [59] has very good nonlinear fitting ability, which can be used to identify complex and
nonlinear systems. In particular, BPNN can build a relatively good functional relationship between
input signals and output signals using original samples to train the network, so it is more suitable for
short-term prediction.

The RBF plays an important role in the field of neural networks. For example, RBF neural networks
have the unique best approximation property. As a kernel function, a radial basis function can map
input samples to high-dimensional feature space and solve some problems that are originally linear
and inseparable.

The prediction model proposed in this study is shown in Figure 6. The whole prediction process
is divided into two layers. Outdoor temperature, solar irradiation, relative humidity, and indoor
humidity are input variables for the first prediction model, and indoor temperature is added as a new
input to estimate CO2 density in the second loop. The accuracy of the second layer is determined by
the first layer. That is, the prediction accuracy of CO2 density is guaranteed by the accurate prediction
of indoor temperature.
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(d) Evaluation index illustration
Three evaluation metrics, root mean square error (RMSE), mean square error (MSE), and r-squared

(R2), are used to evaluate the performances of those prediction models. RMSE [60], known as
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the standard error reflects the average deviation between the predicted values and the real value.
MSE [61] refers to the average value of the relative error, which is used to compare the reliability of the
prediction model.

R-squared (R2) [62] is a statistical measure that represents the proportion of the variance for
a dependent variable that is explained by an independent variable or variables in a regression
model. Whereas correlation explains the strength of the relationship between an independent and
dependent variable, R2 explains to what extent the variance of one variable explains the variance of the
second variable.

2.2.2. Prediction Model Evaluation

Each of the predictive models mentioned above has its own advantages. For comparative
analysis of the prediction accuracy of each model, the performance of the LSTM model without data
clustering and the SOM-BP, SOM-RBF, and SOM-LSTM models with data clustering were evaluated.
The performances of the four models, SOM-BP, SOM-RBF, SOM-LSTM, LSTM, are summarized in
Table 6 and Figures 7 and 8. SOM-LSTM produces the most accurate results among the prediction
models in this study; SOM-BP also performs well. In the case of the SOM-RBF model, the predictability
decreased over time. In the case of LSTM without data clustering, it was shown that there is a deviation
according to the prediction interval.

Table 6. Evaluation results of the time series prediction models.

MSE RMSE R2

Indoor temperature

LSTM 0.85 0.72 0.60
SOM-RBF 0.17 0.03 0.99

SOM-BPNN 1.89 3.59 0.61
SOM-LSTM 0.13 0.02 0.99

CO2 density

LSTM 155.23 12.46 0.55
SOM-RBF 54.00 7.35 0.98

SOM-BPNN 215.16 14.67 0.56
SOM-LSTM 24.34 4.93 0.99
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Figure 7a,b show the predicted results and actual value (measured value) comparison of the four
models for indoor temperature and CO2 density, respectively. SOM-LSTM was the most similar to the
actual data with the highest prediction accuracy. Since the SOM-LSTM model determines and uses the
influence of past predicted values over time, it shows that accurate prediction is possible even after the
elapse of time.

For predictive models, stability under large fluctuations of the dataset is as important as accuracy.
Therefore, the boxplots of the accuracy results are shown in Figure 8 to analyze the stability of each
prediction model.

Apparently, the SOM-LSTM model shows the best prediction performance, with an accuracy of
over 95%, for the prediction of indoor temperature, and an acceptable accuracy of around 90% for the
prediction of CO2 density. The results also demonstrated the feasibility of forecasting the CO2 density
by introducing indoor temperature as a second time input variable.

Table 6 shows the results of the four models with three evaluation indexes: MSE, the RMSE,
and the R2. In terms of predicting the indoor temperature and CO2 density, the SOM-LSTM method
has superior performance to the LSTM, SOM-BP, and SOM-RBF methods. Thus, the proposed model
using the LSTM algorithm with the SOM clustering method (SOM-LSTM) can reliably predict the
indoor temperature and CO2 density from 1 May to 31 October. Further thermal comfort assessment
and association analysis can be performed based on this predicted dataset.

3. Overheating Risk Prediction

3.1. Overheating Frequency

Based on data obtained from measurements and the simple model, overheating risk to the
analyzed ZEB occurs during summer and intermediate seasons (Table 7 and Figure 9). The SOM-LSTM
model with the highest accuracy of the previously evaluated prediction was used. Among the input
values, metrological observation data around the target building was used for external weather data,
and BEMS data was used for indoor humidity.

Table 7. Overheating assessment during the period from May to October in the Korean ZEB according
to prediction model.

May June July August September October

Overheating
frequency 33% 36% 64% 62% 33% 10%
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The overheating frequency exceeded 60% in July and August, the midsummer in Korea. This result
shows that during the nighttime when the air conditioner is not operating, the indoor temperature and
humidity did not decrease due to the characteristics of high insulation level and airtightness in the ZEB.
Overheating also occurred during periods when air conditioners were off, such as May and October in
Korea. In particular, overheating frequency decreased during the non-cooling season, and there was
no significant difference between May and June. July showed the highest frequency of overheating,
and the lowest occurred in October.

3.2. Contribution Rate of the Influencing Factors to Overheating Risk

The contribution rates of influencing factors to overheating risk are shown in Tables 8 and 9.
Table 8 presents the results of the cooling season (June to September) and Table 9 presents the results of
the intermediate season (May, October).
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Table 8. Contribution rate of the influencing factor to overheating in cooling season (June to September).

Rank 1st 2nd 3rd 4th 5th

Influencing factor CO2 density
(occupancy rate) Solar insolation Tout RHout Vwind

Contribution rate 60.00% 43.97% 38.65% 34.67% 25.61%

Table 9. Contribution rate of the influencing factor to overheating in intermediate season (May
and October).

Rank 1st 2nd 3rd 4th 5th

Influencing factor Solar insolation CO2 density
(occupancy rate) Tout RHout Vwind

Contribution rate 26.25% 22.17% 21.80% 19.72% 14.58%

In the case of the cooling season, the occupancy rate (CO2 concentration) showed the highest
impact on overheating as 60% contribution rate for the analyzed ZEB. The solar insolation followed
with 44% contribution rate. Outdoor temperature, outdoor humidity, and wind speed had contribution
rates of 38.65%, 34.67%, and 25.61%, respectively. These results indicate that the indoor temperatures
exceeded the thermal comfort zone when the number of occupants or the amount of solar insolation
increased. In this situation, the cooling system may not be able to maintain a comfortable indoor
thermal environment in the analyzed ZEB.

Even though the overheating frequency was relatively low in the intermediate season compared
to the cooling season, overheating occurred at a frequency of about 10 to 30%. The solar insolation
significantly affects the overheating in intermediate season. The influence of occupancy rate was also
high. This is because the amount of solar insolation in spring and autumn is higher than in summer
due to the solar altitude angle to the space facing the south side. More sunlight enters the room in
spring and autumn than in summer in Korea. The window performance regulated by building code
is just the heat transfer rate (U-value), but there is no regulation on the amount of solar irradiation
(solar heat gain coefficient, SHGC). ZEBs are focused on strengthening the insulation and airtightness
of the building envelope. Therefore, heat gain caused by solar insolation is the main reason of the
overheating risk in ZEB in Korea.

3.3. Overheating Risk under Different Conditions

Overheating is caused by the interaction of several factors rather than by a single factor
(Tables 8 and 9). Therefore, it is important to analyze the degree of overheating in a situation in
which two factors are combined. According to the results of this study, excessive solar insolation
and occupancy density increase the indoor air temperature and cause overheating. The outdoor
temperature also has a great influence on indoor overheating. However, anyone can predict that a
room may overheat in this situation. Therefore, in this study, the effect of two factors on overheating
was analyzed in a situation where one factor has a high value, but another factor does not (Table 10).
Three sets of conditions are discussed in this study: (1) high occupancy rate with low solar insolation
(condition 1), (2) low occupancy rates with high solar insolation (condition 2), (3) high solar insolation
with high outdoor relative humidity (condition 3). Condition 3 occurs in the morning or evening,
where the outside air temperature is low and the relative humidity is high but strong solar radiation is
introduced to the east or west.
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Table 10. Overheating frequency according to conditions.

Condition. Solar Insolation Occupancy Level Outdoor RH Overheating
Frequency

Condition 1 low high - 24%
Condition 2 high low - 26%
Condition 3 high - high 8%

-: No specific range of values are selected.

The analyzed results are shown in Table 10 and Figure 10. When the occupancy is high but the
solar insolation is low, the overheating frequency is about 24%. When the occupancy is low and solar
insolation is high, the probability of overheating is about 26%. This indicates that solar insolation
and occupancy level can be a key factor affecting overheating in ZEBs. Because ZEB has a high level
of insulation and is airtight, it causes an increase in indoor temperature due to the solar insolation
through the window and the heat generated by the occupants during the day. Compared to general
buildings, ZEB has shown that the indoor temperature is kept relatively high because of less heat loss
through the building envelopes during the night. In particular, the analyzed ZEB building found that
about 40% of the wall-to-window ratio considered to reduce the heating load resulted from an increase
in overheating frequency in a cooling period. However, the overheating possibility is only 8% when
the solar insolation and outdoor relative humidity are high. This suggests that overheating rarely
occurs in the morning or evening hours.
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The factors that most affects indoor overheating are solar insolation and occupancy level in the
analyzed ZEB. However, this may be due to the lack of a standard for solar radiation through the
windows in the Korean ZEB standard, and the fact that the design standard for occupancy density
is lower than that of an actual building. In addition, since the ZEB standard is set to minimize the
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heating load and strengthen the insulation or airtightness performance, it is difficult for indoor heat to
be discharged to the outside. This is the cause of overheating in ZEB in Korea.

4. Conclusions

The aims of this study are to discuss overheating issues in a high-performance ZEB in Korea.
Field measurements were carried out to analyze the overheating risk for a zero-energy library building.
A data-driven model for prediction of overheating risk was developed, requiring only a small amount
of measurement data and extending the analysis throughout the year. The main factors causing
overheating during both cooling season and intermediate seasons were also analyzed in detail.
The results of this study are as follows:

A simple model based on a data-driven approach can accurately forecast overheating conditions
throughout the year with easily obtained data from local weather stations and a few easily accessed
indoor parameters, such as indoor temperature and CO2 density.

The SOM-LSTM model shows the best prediction performance, with a high accuracy (over 95%)
for the prediction of indoor temperature and an acceptable accuracy (around 90%) for the prediction of
CO2 density.

The overheating frequency exceeded 60% in July and August, the midsummer in Korea.
Overheating also occurred during the intermediate seasons when air conditioners were off, such as in
May and October in Korea.

In the case of the cooling season, the occupancy rate (CO2 concentration) showed the highest
impact on overheating, with a 60% contribution rate for the analyzed ZEB. In contrast, the solar
insolation significantly affects overheating in the intermediate season. This is because the amount of
solar insolation in spring and autumn is greater than in the summer due to the solar altitude angle to
the space facing the south side. More sunlight enters the room in spring and autumn than in summer
in Korea.

The factors that most affect indoor overheating are solar insolation and occupancy level in the
analyzed ZEB. This is due to the lack of a standard for solar radiation through the windows in the
Korean ZEB standard, and due to the fact that the design standard for occupancy density is lower than
that of an actual building. In addition, since the ZEB standard is generally set to minimize the heating
load, it is difficult for indoor heat to be discharged to the outside, causing overheating in ZEBs.

This study evaluated the problems of the ZEB performance standard in Korea through a predictive
model. Korean ZEB performance standard based on passive houses’ performance level imply that
the local climate or building usage characteristics may not be reflected. As with the overheating
problem shown in this study, the ZEB may not lead to energy saving at the operating stage and may
not guarantee the occupant’s thermal comfort. It implies that the ZEB performance standard with
energy saving and the thermal comfort consideration of building users in all seasons is required.
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