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Abstract: We explored the effects of heterogeneity of sward height on the functioning of grazing
systems through a spatially implicit mechanistic model of grazing and sward growth. The model uses
a population dynamic approach where a sward is spatially structured by height, which changes as a
function of defoliation, trampling, and growth. The grazing component incorporates mechanisms of
bite formation, intake, and digestion rates, but excludes sward quality effects. Sward height selection
is determined by maximization of the instantaneous intake rate of forage dry mass. For any given
average sward height, intake rate increased with increasing spatial heterogeneity. Spatio-temporal
distribution of animal density over paddocks did not markedly affect animal performance but it
modified the balance of vegetation heterogeneity within and between paddocks. Herbage allowance
was a weak predictor of animal performance because the same value can result from multiples
combinations of herbage mass per unit area, number of animals, animal liveweight, and paddock
area, which are the proximate determinants of intake rate. Our results differ from models that assume
homogeneity and provide strong evidence of how heterogeneity influences the dynamic of grazing
systems. Thus, we argue that grazing management and research need to incorporate the concept of
heterogeneity into the design of future grazing systems.

Keywords: grazing management; sward height distribution; spatial heterogeneity; ecological modeling;
grazing behavior; resource heterogeneity; integral projection matrix

1. Introduction

Traditional grazing management has been based on variables such as stocking rate and
herbage allowance, aimed at controlling intensity and frequency of defoliation, and consequently,
herbage production and animal performance. However, these approaches assume equilibrium
conditions and disregard spatial heterogeneity and scaling effects present in grazing systems [1].
Herbage allowance and stocking rate may only describe an instant of a grazing system, but not its
dynamics, which result from multiple processes influenced by biotic and abiotic factors. The actual
management variables over which we can exert control are shape and area of paddocks, number and
characteristics of animals, and timing and duration of grazing and rest periods. Additional management
variables such as fertilization and irrigation timing and rate can also be used to modify the quality and
dynamics of vegetation state variables. Likewise, livestock distribution and behavior can be altered
through rewards like salt or supplements. These management and uncontrollable biotic and abiotic
factors change over space and time and drive grazing systems into a permanent state of flux.

Defoliation intensity in one biting event is usually the proportion of the plant mass that is in the
top half of the sward height at the bite location. Sheep and cattle have a remarkable constant bite depth
that is about 50% of sward height, across a large variety of conditions [2,3]. Thus, the mechanism of
unitary defoliation intensity is not yet directly susceptible to management. Management variables can
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only affect the probability that any given plant will be defoliated at any moment. Actual defoliation
frequency depends not only on exposure to grazing but also on the spatial patterns of bites that animals
choose [4,5]. For example, large-scale patterns of what appears to be defoliation intensity, such as the
exponential increase in height with increasing distance from water [6], are most likely patterns created
by the balance between plant growth and defoliation frequency. Because animals have to walk to water
frequently, the actual density of livestock occupancy decreases with increasing distance from water.

Although traditional grazing management considers the temporal heterogeneity of forage demand
and supply, the concept of spatial heterogeneity has not been fully incorporated, perhaps because
is harder to perceive and to control. Livestock distribution has fractal properties and is in part
determined by the heterogeneity of resources such as forage, water, and shade [7,8]. In addition
to the inherent heterogeneity, grazing disturbance (as well trampling and excreta deposition) is an
important source of variability in the vegetation [9,10] because herbivores’ selectivity generates a
mosaic of tall and short patches that in turn affect future grazing. Sward growth rate is nonlinear,
and therefore pasture production is not fully determined by average sward height at paddock scale
but also depends on the spatial distribution of sward height [11,12] (Figure A1). From an animal
perspective, resource heterogeneity allows the selection of a diet that is better than the average available
in the environment. Therefore, predictions of pasture production and animal intake and performance
on models that assume homogeneity tend to differ from reality [13].

Grazing systems are complex and vary in time and space, requiring a broader approach
than has been applied to grazing management due to their multidimensional nature. However,
traditional grazing management variables such as average sward height, stocking rate, and herbage
allowance disregard the effects of heterogeneity and scaling on the functioning of grazing systems.
We aimed to develop a spatially implicit model of grazing and sward growth to explore the effects
of spatial heterogeneity on responses to traditional grazing management variables. We simulated
three grazing conditions using traditional management variables to determine the interaction between
inherent spatio-temporal scales of grazing with those imposed by management in heterogeneous
swards. We tested the hypotheses that (1) the functional response (instantaneous intake rate) is
related not only to resource abundance but also to resource heterogeneity; (2) system performance
(yield per animal and per unit area) responds to spatio-temporal distribution of animal density; and that
(3) herbage allowance is not sufficient as a measure to manage animal performance because any value
of herbage allowance can be obtained for any given level of forage abundance simply by changing
the number of animals or the area of the paddock. This work contributes to the understanding of
how heterogeneity and scaling influence the functioning of grazing systems and provides a promising
platform for future research.

2. Materials and Methods

2.1. Model Description

We developed a dynamic mechanistic model of grazing where the sward is structured by height.
The grazing component of the model incorporates detailed mechanisms of bite dimensions and intake
rate as controlled by ingestion and digestion. Model inputs are management variables such as species
and number of animals, paddock area, timing and duration of grazing and rest periods, and initial
state variables: sward height distribution (amount of area in 2000 bins of sward height), rumen fill,
and body mass.

The approach was to include all major grazing mechanisms known and to determine their logical
consequences by integration into the model. The model is spatially implicit because it simulates the
heights of a population of plants, but their positions are not specified. Diet quality is assumed to be
constant and unrelated to the heights selected for grazing. This assumption is meant to eliminate
quality as a factor driving selectivity in this version of the model, and it has no impact on the growth
of the model swards, as we use an empirical equation based on real swards to model growth in
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height. The model tracks defoliation, trampling, and growth of plants in 2000 height classes, as well as
selectivity and individual bite dimensions, time, and mass in a 10 min time step.

A key feature of grazing systems is the large difference in temporal scale of growth and defoliation
at the individual plant level, a feature that is not contemplated in typical difference or differential
equation models (e.g., [14,15]). In the present model we implement the difference in the temporal scales
of grazing and growth by representing grazing as a death–birth process by which every bite “kills”
an area of pre-grazing height and “gives birth” to an equal area with the corresponding post-grazing
height. The integration of both spatial heterogeneity in height and pasture growth with animal behavior
and productivity at a high temporal resolution, as well as the use of the integral projection matrix
technique, are the main novel features that distinguish this model from similar grazing models that
include resource heterogeneity (e.g., [4,16–21]).

Sward structure is represented in the model by the horizontal and vertical distribution of plant
mass. The horizontal structure is represented by the frequency distribution of heights, and the vertical
structure is described by an exponential decline in bulk density from the bottom to the top of the
canopy [22,23]. Sward height distribution is updated every 10 min using an integral projection
matrix model (a modeling approach that uses transition matrices to calculate the change in state of a
population structured by a continuous variable) adapted from Ellner et al. [24]. Sward areas increase
in height according to a temperature-dependent logistic growth process [25] and decrease in height by
grazing and trampling with rates that depend on sward height and animal density. Using the original
population dynamics view of the integral projection method, the process can be viewed as discrete
areas growing into adjacent bins of taller height, or “dying” due to being grazed and trampled and
being instantly “reborn” in a bin with a shorter height equal to the remaining stubble. Grazed areas
are reborn at half (or another selected proportion) of the original height, whereas trampling effects are
simulated by reducing 7.5% of the searched area to a height of 25 mm. Area trampled is commensurate
with hoof area and number of steps per unit area searched [26], whereas trampled height is based on
measurements of ryegrass plants lodged after grazing (Carvalho, unpublished data). The effect of
excreta deposition on area available for grazing is partly accounted for by the trampled area, but the
model does not currently focus on the effects of excreta on animal selectivity, and it does not include
excreta effects on plant growth. Relative growth rate, height of trampled sward, and nutritive value
were parameterized for annual ryegrass (Lolium multiflorum L.), whereas vertical distribution was
parameterized with both annual and perennial ryegrass (Lolium perenne L.) data. The actual hourly
temperature used for simulations was obtained from the experimental station in Federal University of
Rio Grande do Sul, Brazil, for the growing period.

The beginning and end of grazing bouts are determined by rumen fill and an empirical circadian
rhythm of grazing motivation. The circadian rhythm is an empirical function that defines the
proportion of time that the animals are actually grazing within feeding bouts [27]. Rumen fill is a state
variable whose rate of change is the difference between intake rate and digestion and passage rates.
Digestion rate is constant, whereas passage rate is a linear function of instantaneous intake rate [28,29].
Grazing ceases when the rumen becomes full and it resumes when rumen fill falls below 90% of rumen
capacity and circadian motivation is on. Rumen capacity is an isometric function of body mass [30]
and it increases by 30% between 16 and 24 h as a mechanism to avoid nocturnal grazing [31]. Only one
canonical animal is simulated, and the results are simply multiplied by the number of animals.

Instantaneous intake rate is the product of the amount of herbage mass consumed divided
by the sum of searching and handling time, assuming that searching and handling are mutually
exclusive behaviors. Herbage mass consumed is calculated from elementary processes that define bite
dimensions as functions of sward height and vertical mass distribution. Bite volume is the product of
bite depth and bite area, where bite depth is a constant proportion of 50% of sward height [2,3] and
bite area is a function of sward height, herbage bulk density, and incisor arcade width [20]. The incisor
arcade is determined by an allometric relationship with body mass [32]. Handling time, the sum of
bite prehension time and chewing time, is a linear function of bite mass where the intercept is the time
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associated with prehension and chewing time is proportional to bite mass [3,33]. Searching time is
determined by search path width and linear speed while walking during grazing [34].

The pattern of attack (i.e., the proportion of area of each height encountered that is selected
for biting) is determined by maximization of the instantaneous intake rate [35]. At each time step,
potential bites available are ranked according to profitability and incorporated into the selected diet in
decreasing rank until the maximum intake rate is achieved. A sigmoidal curve centered at the shortest
height selected serves to introduce “errors” or variability in the discrimination of bites, whereby some
proportion of suboptimal bites is selected and some proportion of optimal bites is rejected.

Animal body mass is a state variable whose rate of change is determined by energy balance.
Energy consumed is partitioned into maintenance and growth. The maintenance requirement is
allometrically related to body mass, and energy expenditure increases by 30% during grazing [36,37].
Depending on its sign, remaining net energy is either met by weight loss or used for weight gain [38,39].

2.2. Simulations

In order to test whether the model gives reasonable results, we compared predicted instantaneous
intake rate values with observed values according to the procedure proposed by Piñeiro et al. [40].
We set up the simulation with the management variables used by Orr et al. [41]: 12 yearling cattle
weighing 248 kg, and average sward height ranging between 77 and 376 mm. Sward height was
assumed to have a coefficient of variation of 10%. Simulations lasted 1 h such as in the experiment.
The paddock area was set at 0.5 ha.

Three additional sets of simulations were performed. First, we examined the role of the
heterogeneity of sward height on the functional response in 450 kg cattle by simulating 1 h of grazing in
300 m2 paddocks, with average sward height ranging between 25 and 300 mm and different coefficients
of variation representing levels of heterogeneity. The simulations took place between 16:00 and 17:00,
when circadian motivation is high, and the initial state of rumen fill was 70% of the maximum capacity
to ensure grazing activity. Paddock size was dimensioned to avoid sward depletion greater than 5% of
the average initial height. The response variable was the average intake rate over the grazing session.

Second, we tested the hypothesis that different spatio-temporal distributions of animal density
result in different productivity by simulating a gradient of an increasing number of pasture strips (1, 2,
3, 6, and 30 strips) and an increasing number of sheep (180, 270, and 360) in a 6 ha pasture. Each strip
had a fixed period of occupation equal to the total grazing period of 30 days divided by the number of
strips. The length of the resting period for each treatment was 30 days minus the period of occupation.
All simulations started with a sward height distribution of 100 ± 15 mm and sheep weighing 50 kg.
The response variables calculated were average daily gain and gain per unit area.

Third, we studied the impact of the “put-and-take” technique [42] to control herbage allowance
when herbage mass per unit area changes when a single paddock is grazed continuously.
Herbage allowance is defined as herbage mass per unit animal mass at an instant [43].
The “put-and-take” technique consists of varying the number of animals in the paddock to meet
pre-established herbage allowance targets [42]. This simulation focuses on the consequences of adjusting
herbage allowance by changing stocking density through changes in paddock size. We simulated
a factorial arrangement of three herbage allowances (0.7, 1, and 1.5 kg DM (kg BW)−1) with three
paddock sizes (1, 2.5, and 5 ha) grazed for 120 days. Herbage allowance treatments were chosen based
on the range usually recommended for cool-season grasses [44]. All treatments started with 12 cattle
weighing 250 kg. Herbage allowance targets were maintained by adjusting the number of animals
every 30 days. The response variables were body mass over time and cumulative relative gain per unit
area, calculated by multiplying body mass by number of animals and dividing by paddock area.
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3. Results

The model simulated instantaneous intake rate reasonably well, agreeing with experimental
results by Orr et al. [42]. Observed and predicted intake rate values (Figure 1) were similar for
intermediate values. Predictions underestimated high intake rates.
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Figure 1. Relationship between observed intake rate and predicted values. Observed values are from
Orr et al. [41].

This test is not a validation, but simply demonstrates the ability of the model to generate realistic
results. We chose intake rate as the response variable because it plays a central role in the rate of
herbage consumption and disappearance, and in animal performance. These results and multiple
comparisons between observed and predicted values for several other experiments indicate that the
model is suitable for our goals.

3.1. Functional Response and Sward Heterogeneity

In the first simulation set, the intake rate increased faster with increasing average sward height
in swards with a greater coefficient of variation of height (Figure 2). The effect of heterogeneity was
greatest for intermediate sward heights. For example, when the average height was 100 mm, the intake
rate in a homogeneous sward was about 21 g DM min−1, whereas a sward with a coefficient of variation
of 100% resulted in an intake rate of 35 g DM min−1. The size of the effect of sward heterogeneity first
increased and then declined with increasing sward height because at low average height, all heights
available severely constrain bite mass, whereas in the tallest swards, intake rate is constrained by the
rate of chewing and it becomes saturated.
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Figure 2. Functional response in cattle grazing swards with an increasing coefficient of variation of
sward height distribution. The slopes were calculated between 25 and 75 mm for simulations with
coefficients of variation of 0 and 100.

The differences are explained by the pattern of attack or selectivity over height (Figure 3). As a
result of the maximization of the intake rate, grazing swards with low heterogeneity, animals exhibited
little selectivity and took bites from most of the heights available. In swards with greater heterogeneity,
they selected the taller end of the distribution. For example, when average sward height was 125 mm
with a coefficient of variation of 10%, the shortest selected height was 108 mm and the intake rate was
26 g DM min−1, whereas with a coefficient of variation of 50% the shortest selected height was 120 mm
and the intake rate was 29 g DM min−1.
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Figure 3. Sward height distribution and pattern of attack with average sward height of 125 mm and
coefficients of variation of 10 and 50%. Both distributions (top and bottom) have the same average
height but different coefficients of variation. The pattern of attack (sigmoidal orange curve) indicates
the probability that an encountered area of a given height will be selected and bitten. On the top plateau
of the line 100% of heights are selected, whereas at the bottom plateau 100% are rejected. The center of
the almost vertical part of the curve indicates the shortest height that should be selected based on the
maximization of the intake rate.
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3.2. Spatio-Temporal Distribution of Grazing

In the second simulation set, intake and body mass responses over time were influenced by the
interaction of the number of strips and stocking density. The two highest numbers of animals clearly
exceeded the pasture capacity and animals started losing weight shortly after the initial standing crop
was depleted, regardless of the resting period allowed for each strip (Figure 4).
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the 90-day grazing season with 180, 270, and 360 sheep in 6 ha pastures. Different lines represent
the different number of strips into which each grazing area was subdivided. Curves represent three
grazing cycles wherein each strip was grazed a total of three times.

Although animals in continuous stocking (one strip) exhibited slightly higher body mass during
certain periods, average daily gain and total gain per ha were fairly similar for all treatments within
each stocking rate (Figure 5). For instance, at the lowest number of animals the relative average daily
gain was only 7% less with six strips than with one. Average sward height (calculated for each 12 h
period) for each strip was similar for each number of animals, but a greater number of strips promoted
more heterogeneity among strips and homogeneity within strips (Figure 6).Sustainability 2020, 12, x FOR PEER REVIEW 8 of 18 

 

Figure 5. Effect of spatio-temporal distribution of animal density on relative gain per unit area under 
different numbers of sheep. Relative gain per unit area was calculated as average daily gain 
multiplied by number of animals per unit area, divided by the highest absolute gain per unit area of 
all treatments. 

 

Figure 6. State of average sward height at the grazed strip every 12 h over the entire simulation period 
for three levels of numbers of strips for the lowest number of sheep (180). Each point on the line is the 
spatial average of heights within the strip. 

Figure 5. Effect of spatio-temporal distribution of animal density on relative gain per unit area under
different numbers of sheep. Relative gain per unit area was calculated as average daily gain multiplied
by number of animals per unit area, divided by the highest absolute gain per unit area of all treatments.
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3.3. Herbage Allowance and Paddock Size

In the third simulation set, average daily gain and relative gain per unit area increased with
decreasing paddock size as herbage allowance was compensated by increasing herbage mass per
unit area for all herbage allowances (Figure 7a,b). Even systems with lower herbage allowance had
greater performance when compared to systems with greater herbage allowance but larger paddocks.
For example, when herbage allowance was 0.7 kg DM kg BM−1 and paddock area was 1 ha, relative gain
per unit area was 0.77 (unitless, because it is the ratio of the observed value and the highest absolute
gain per unit area of all treatments), whereas an herbage allowance of 1.5 kg DM kg BM−1 and paddock
size of 5 ha yielded a relative gain per unit area of 0.65. Increasing paddock area had a negative effect
on relative gain per unit area and average daily gain within each herbage allowance.
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Figure 7. Effect of paddock size and herbage allowance (HA) on (a) body mass over time and
(b) cumulative relative gain per unit area over time for cattle. Cumulative relative gain per unit area
was calculated as the cumulative sum of average daily gain multiplied by the number of animals
per unit area and divided by that of the treatment that had the highest value. All paddocks started
with the same number of animals. Paddock areas were fixed over time and initial herbage allowance
was achieved for each area by changing the average sward height and the corresponding distribution.
As herbage mass per unit area was modified by growth and grazing, the number of animals was
adjusted every 30 days (dashed line) to attain the nominal herbage allowance.
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4. Discussion

4.1. Functional Response and Sward Heterogeneity

The functional response exhibited a typical type II shape (i.e., instantaneous intake rate as function
of sward height exhibits asymptotic shape) [45]. However, the model could produce a type IV
functional response (i.e., instantaneous intake rate as function of sward height exhibits a dome shape)
with plausible values of the parameters that describe the distribution of sward mass over height.
This underlines the importance of the vertical distribution of sward mass, a characteristic that is rarely
measured with enough detail.

Most studies of the functional response of herbivores use plant mass per unit area as an explanatory
variable or the axis of resource abundance ([46–48], but some studies have used sward height as the x
axis [49,50]). However, given that bite depth is a fairly constant function of sward height, that bite
area increases with sward height in a wide range of typical sward heights [51–53], and that herbage
bulk density declines with increasing height in a species-specific pattern, the relationship between
bite mass, intake rate, and herbage mass depends on sward structure. Furthermore, detailed models
of functional responses of herbivores have been related only to average resource abundance [46,47].
Such models assume that grazers forage in a spatially homogenous resource. The present results show
that greater heterogeneity, given by the horizontal distribution of height and the vertical distribution of
mass, resulted in higher functional response because animals are able to select taller parts of the sward.
Thus, these variables should be used as the determinant of functional response and incorporated into
models with a grazing component.

Heterogeneity affords animals the opportunity to select, and thus modulates the relationship
between average abundance and intake rate. Maximization of the instantaneous intake rate was
done by ranking heights in decreasing order of instantaneous intake rate and adding them to the diet
until the intake rate was maximized. The shortest height in the optimal diet and deviations from
optimality (for example, due to imperfect discrimination of heights) was represented as a sigmoidal
probability centered at the shortest height that would be selected according to the optimization of the
intake rate with perfect discrimination of heights (Figure 3). Using a similar approach, Ungar and
Noy-Meir [16] also reported that increases in horizontal variance at a given forage mass resulted in a
higher instantaneous intake rate. Thus, functional response is not only related to average resource
abundance, but also to its spatial distribution in high resolution.

The pattern of attack was set for maximization of the instantaneous intake rate based on the
“zero-one rule” approach, where potential bites are fully rejected or accepted depending on their
profitability [35]. However, herbivores can exhibit more pronounced partial preference [35] than
what we used for the present simulations. Moreover, we ranked bite profitability using dry matter as
currency. Variation in herbage quality can play a significant role in the profitability of bites and it will
be included in forthcoming versions of the model.

Because the equilibrium and stability of grazing systems depend on the functional response [12,18]
and sward heterogeneity can change the relationship between pasture growth and disappearance,
the dynamics of heterogeneous plant–animal systems are different than homogeneous ones. The results
shown for each functional response in Figure 2 apply only when sward structure and heterogeneity are
constant, which would be rare in nature. In fact, longer runs of the model for any of the initial sward
conditions simulated implicitly move smoothly across functional response curves, as heterogeneity
changes over time. Spatial heterogeneity potentially invalidates the analysis of the stability and
dynamics of grazing systems using functional responses and plant growth curves that are simple
functions of average plant mass or height [12,13]. The existence of equilibrium states depends on the
existence of stable height distributions where the functional response remains constant.

Our results demonstrate that spatial heterogeneity of sward height positively affects the
instantaneous intake rate of herbivores because they are able to select the most profitable bites.
Resource heterogeneity is an inherent characteristic of grazing systems; however, some grazing
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management guidelines still recommend sward homogenization through cutting and promote
“non-selective” grazing. Conversely, we suggest that grazing research and management should
incorporate resource heterogeneity into the design of grazing systems. Moreover, grazing experiments
should include a description of the spatial heterogeneity, or at least a histogram of sward height for
each treatment.

4.2. Spatio-Temporal Distribution of Grazing

Model results indicate that weight gain per animal and per unit area were not affected by the
spatio-temporal distribution of animal density in a biologically significant manner within the range of
conditions simulated, although there were small numerical differences. Although the sheep model in different
treatments created and experienced different sward height distributions over time, sward differences did not
translate to differences in animal performance across systems. Although herbivores responded positively to
resource heterogeneity in the short term (Figure 2), heterogeneity effects were compensated for or diluted
when the temporal scale of comparison was taken into account and increased to encompass several days.
At the longer time scale of several days, mechanisms such as increased grazing time and digestive limitation
interact, decreasing the effect of changes in instantaneous intake rate. Because foraging is a scale-dependent
process in time and space [54], herbivores respond non-linearly to resource heterogeneity according to the
temporal scale of observation. This finding is in agreement with Carvalho et al. [55], who found a weak
relationship between short-term ingestive behavior variables and monthly animal performance.

Several studies argue that rotational stocking is superior to continuous stocking because it
promotes resource homogeneity within paddocks after grazing, which increases animal performance
by preventing the formation of areas that are over- or under grazed. Indeed, as previously reported
by Barnes et al. [56], homogeneity within and heterogeneity between paddocks increased with an
increasing number of strips in our simulations. Studies of the interaction between patch burn
and grazing align with our results, also demonstrating the importance of animal density to create
heterogeneity in space and time [57], as well as the buffer effect of heterogeneity to stabilize livestock
production under extreme climatic conditions [58]. However, in our simulations, the number of
strips had very little impact on animal and system performance. On the other hand, from a resource
management perspective, sward heterogeneity between strips created by differences in animal density
can be a tool to promote the reseeding of desirable grasses, control weeds [59], or provide habitat for
wildlife. More simply, it should be obvious that the desirable level of homogeneity or heterogeneity
depends on what one is trying to achieve with the stocking method.

As sward growth rate is a function of the sward state, one of the rationales to favor rotational
stocking is that it allows control of sward state, growth rate, and animal production [60]. However,
this explanation disregards the fact that the intensity of defoliation at the plant level is not susceptible
to management by rotation of stocking. Bites are discrete events whose intensity is closely controlled
by local sward height and density, and thus any system of grazing management, even continuous
stocking, is “rotational” at plant level [9]. The frequency with which a plant is defoliated depends
mainly on animal density [61] and can only be partially controlled by determining the number of
animals, paddock area, and timing and duration of grazing periods. Moreover, it is likely that the
impact of defoliation on average plant growth per unit area depends on the specific spatial pattern
of defoliation. Growth and use of resources by taller plants located near defoliated plants is boosted
by competitive release, thus ameliorating the total effect of uneven defoliation on community-level
productivity [62,63].

In a detailed review, Briske et al. [64] compared stocking methods and did not find consistent
difference in herbage production, yield per animal, and unit of area between methods. However,
most of the research reviewed was conducted at scales smaller (<1 ha) than commercial paddocks
(20–500 ha). In a large experiment aiming to compare responses of vegetation and cattle to stocking
methods in ranch-scale paddocks (130 ha), Augustine et al. [65] reported that neither animal
performance nor desirable grass production resulted in rotational stocking surpassing continuous
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stocking. These works compared stocking methods by changing animal density and paddock size
simultaneously, although these factors are in fact independent. To our knowledge, the hypothesis that
stocking methods cause differences in performance when paddock size is kept constant has not yet
been tested experimentally.

While our results indicate that spatial distribution of animal density over paddocks does not
affect animal performance, some models that assume defoliation and growth as spatially homogenous
processes found differences between stocking methods. Using a differential equation model with two
functions (growth and consumption rates), Noy-Meir [66] compared continuous stocking to rotational
stocking with different combinations of timing and duration of grazing and resting periods, as well as
under different animal densities. Daily intake was largely determined by the timing and duration of
grazing periods, and rotational was better than continuous stocking with high animal density. In an
extended version of Noy-Meir’s model, Wang et al. [67] found that a multiple-paddock system yielded
higher forage intake per animal than continuous stocking in a single paddock. The question that
emerges is: Why do our results differ from predictions of non-spatial models? The fundamental
difference is caused by a scaling error, because growth and consumption rates are not strictly related to
the average state of the vegetation at paddock scale as is assumed in spatially homogenous models [19].

In our model each biting event removes 20–30% of the herbage mass at the bite location almost
instantly, rapidly and drastically modifying height and growth rate in the grazed area. Although bite
depth is 50% of sward height, herbage bulk density decreases exponentially as a function of height,
and therefore the mass of herbage removed per unit bite area is less than 50% of the total mass per unit
area available. Conversely, non-spatial models imply that the amount of mass removed by each bite is
instantly spread across the entire paddock, with little impact on growth rate. The second source of
differences is that the functional response varies with heterogeneity and for any given average sward
height, animals can select areas more profitable than the average (Figure 2).

The model used in this paper assumes that herbage nutritive value is constant and spatially
homogeneous, whereas in reality, sward chemical composition is heterogeneous in time and space. There is
strong evidence that chemical composition varies with the time of day [68,69], phenological stages [70],
and the vertical position in the canopy [22]. Therefore, the results of the present model are applicable
to nutritionally homogeneous swards with limited phenological change. The effects of incorporating
mechanisms for change in herbage quality are the subject of forthcoming work.

One of the most discussed dilemmas in grazing science are the pros and cons of managing animal
density over time and space. In agreement with empirical results [64] and contrary to non-spatial
model results [66,67], our simulations using a spatial model do not provide evidence of superiority in
yield in favor of any method. Thus, from the point of view of the practical application of increasing
production, our results do not suggest that any specific design of spatio-temporal distribution of animal
density should be promoted. On the other hand, modifications to the spatio-temporal distribution of
animals can be used to control vegetation heterogeneity at paddock-to-landscape scales.

4.3. Herbage Allowance and Paddock Size

As expected, when herbage mass per unit area (which in the model translates into height) is traded
off with paddock size to maintain herbage allowance, animal performance is changed, particularly
in swards with short average height. Herbage allowance is a result of herbage mass per unit area,
number of animals, animal liveweight, and paddock area. Part of its usefulness is that it is a metric
that integrates all of its components. Unfortunately, its limitations as a predictor and cause of animal
performance are also caused by the integration, which hides the specific combination of its factors.
Animal performance relative to individual potential is determined mostly by daily intake rate and diet
quality. Intake rate is largely controlled by herbage mass per unit area over a wide range of values of
this component of herbage allowance. Gregorini et al. [71] reported a similar pattern, with herbage
allowance having minor effect on daily dry matter intake when compared to sward height. Thus,
when herbage mass per unit area is in the range where it dominates the control of daily intake,
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changes in herbage allowance achieved by changing the other factors do not have much effect on
animal performance unless paddock area is small relative to the expected total intake by the group of
animals during the period of occupation. This is what our simulations represented clearly.

Most of the difference between systems with the same herbage allowance occurred before the first
adjustment of animal density to maintain the nominal herbage allowance (Figure 7a,b), when sward
height was markedly contrasting and while the systems were not in equilibrium and differed markedly
in sward heights. At the beginning, the sward height distribution was unstable and moved smoothly
towards equilibrium state, and after adjustment with “put-and-take” animals, the systems reached
equilibria with different stable height distributions (Figure 8). The frequency distribution was fairly
similar to a Gamma distribution, with increasing frequency of short swards as the animal density
increases, in agreement with observations by Shiyomi et al. [72]. Each animal density had a stable
state with a particular sward height distribution, whereby heterogeneity increased as animal density
decreased. Previous studies with a non-spatial model suggested a “dual stability” [12]. In another
spatial model, Schwinning & Parsons [18] found that dual stability occurs only for intermediate
stocking density, whereas low and high stocking present one stable state.Sustainability 2020, 12, x FOR PEER REVIEW 13 of 18 
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allowances of 0.7, 1, and 1.5 kg DM kg BW and paddock sizes of 1, 2.5, and 5 ha stocked with cattle.
Each panel refers to one combination of herbage allowance and paddock size. The number of animals
and kg of body mass per unit area at the end of simulations are written. Each line represents the
frequency distribution of heights for one day, where day 1 is blue and day 120 is yellow. Most of the
lines that appear are blue because after the systems reach equilibria, the yellow lines overlap.

Thus, herbage allowance is not sufficient as a predictor of animal performance because any value
of herbage allowance can be achieved for any given vegetation state simply by changing the paddock
area and number of animals. Over time, sward height will tend towards a stable height distribution
determined by herbage allowance. Therefore, herbage allowance and sward height (or mass) cannot
be controlled independently. This finding suggests that grazing experiments should start in conditions
close to equilibrium (i.e., sward state and animal density) to avoid most differences due to factors other
than herbage allowance. Moreover, these results also underline the importance of a detailed evaluation
and description of sward height distribution in grazing experiments. Whereas some meta-analyses that
focused on grazing behavior [73] or production [74] used herbage allowance as a predictor, we argue
that herbage allowance is an insufficient metric to determine the grazing mechanisms that link pasture
growth and animal performance. Finally, more than using a single variable to describe and manage
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systems, new approaches for grazing management should explore all management variables that can
be controlled, such as number, mass and species of animals, timing and duration of grazing and rest
periods, and paddock area and shape.

5. Conclusions

We created a model that integrates known mechanisms of bite formation and intake with very high
temporal and spatial resolution and used it to determine how those mechanisms mediate responses to
some typical factors of grazing management in realistic swards with spatial heterogeneity in height.
Sward height heterogeneity resulted in higher short-term intake rate and determined the height of the
resulting type II functional response. Studies of effects of sward height in grazing systems should,
at the very least, include a description of the statistical distribution of sward height. Spatial distribution
of animal density as controlled by fencing did not affect animal performance, but it can be used to
manage resource heterogeneity. Under equilibrium conditions, sward height or mass and herbage
allowance cannot be controlled independently.

The model yielded realistic results for swards that are homogeneous in quality, and future
improvements will represent a broader set of swards and conditions. A more detailed vegetation
growth and quality model will be developed to account for differences in unit leaf rate due to age and
nitrogen content. Plant mass will be structured by both height and quality, which will influence diet
selection and animal performance. Finally, resource patchiness and search mechanisms will open the
potential to see the effects of heterogeneity across multiple scales.

Author Contributions: Conceptualization, E.A.L. and A.P.-P.; methodology, E.A.L.; software, E.A.L. and A.P.-P.;
validation, A.P.-P.; formal analysis, A.P.-P. and E.A.L.; investigation, A.P.-P. and E.A.L.; resources, E.A.L.;
data curation, A.P.-P. and P.C.d.F.C.; writing—original draft preparation, A.P.-P.; writing—review and editing,
E.A.L. and P.C.d.F.C.; visualization, A.P.-P.; supervision, E.A.L. and P.C.d.F.C.; project administration, P.C.d.F.C.
and E.A.L.; funding acquisition, P.C.d.F.C. and E.A.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was partially funded by USDA-NIFA grant 2010-38415-21906 to E.A.L. A.P.-P. was funded
by a scholarship from CAPES, Brazil and by multiple grants for E.A.L. from UC Davis. P.C.d.F.C. was funded by a
fellowship from CNPq, Brazil.

Acknowledgments: Pablo Chilibroste provided advice on some of the model parameters.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Sustainability 2020, 12, x FOR PEER REVIEW 14 of 18 

The model yielded realistic results for swards that are homogeneous in quality, and future 
improvements will represent a broader set of swards and conditions. A more detailed vegetation 
growth and quality model will be developed to account for differences in unit leaf rate due to age 
and nitrogen content. Plant mass will be structured by both height and quality, which will influence 
diet selection and animal performance. Finally, resource patchiness and search mechanisms will open 
the potential to see the effects of heterogeneity across multiple scales. 

Author Contributions: Conceptualization, E.A.L. and A.P.-P.; methodology, E.A.L.; software, E.A.L. and A.P.-
P.; validation, A.P.-P.; formal analysis, A.P.-P. and E.A.L.; investigation, A.P.-P. and E.A.L.; resources, E.A.L.; 
data curation, A.P.-P. and P.C.d.F.C.; writing—original draft preparation, A.P.-P.; writing—review and editing, 
E.A.L. and P.C.d.F.C.; visualization, A.P.-P.; supervision, E.A.L. and P.C.d.F.C.; project administration, 
P.C.d.F.C. and E.A.L.; funding acquisition, P.C.d.F.C. and E.A.L. All authors have read and agreed to the 
published version of the manuscript. 

Funding: This research was partially funded by USDA-NIFA grant 2010-38415-21906 to E.A.L. A.P.-P was 
funded by a scholarship from CAPES, Brazil and by multiple grants for E.A.L from UC Davis. P.C.d.F.C. was 
funded by a fellowship from CNPq, Brazil. 

Acknowledgments: Pablo Chilibroste provided advice on some of the model parameters. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 

Figure A1. Effect of sward heterogeneity on growth rate. Both sward height distributions have the 
same average (189 mm), but different shapes. In this case, the growth rate of the more heterogeneous 
swards (yellow line) is lower because most paddock areas have heights that are very limiting to 
growth rate. 

References 

1. Laca, E.A. New approaches and tools for grazing management. Rangel. Ecol. Manag. 2009, 62, 407–417. 
2. Benvenutti, M.A.; Cangiano, C.A. Características de las Pasturas y su Relación con el Comportamiento 

Ingestivo y Consumo en Pastoreo. In Producción Animal en Pastoreo; Cangiano, C.A., Brizuela, M.A., Eds.; 
Ediciones INTA: Buenos Aires, Argentina, 2011; pp. 259–290. 

Figure A1. Effect of sward heterogeneity on growth rate. Both sward height distributions have the same
average (189 mm), but different shapes. In this case, the growth rate of the more heterogeneous swards
(yellow line) is lower because most paddock areas have heights that are very limiting to growth rate.



Sustainability 2020, 12, 8676 14 of 17

References

1. Laca, E.A. New approaches and tools for grazing management. Rangel. Ecol. Manag. 2009, 62, 407–417.
[CrossRef]

2. Benvenutti, M.A.; Cangiano, C.A. Características de las Pasturas y su Relación con el Comportamiento
Ingestivo y Consumo en Pastoreo. In Producción Animal en Pastoreo; Cangiano, C.A., Brizuela, M.A., Eds.;
Ediciones INTA: Buenos Aires, Argentina, 2011; pp. 259–290.

3. Carvalho, P.C.F. Harry Stobbs Memorial Lecture: Can grazing behavior support innovations in grassland
management? Trop. Grassl. 2013, 1, 137–155. [CrossRef]

4. Hutchings, N.J.; Gordon, I.J. A dynamic model of herbivore-plant interactions on grasslands. Ecol. Model.
2001, 136, 209–222. [CrossRef]

5. Gordon, I.J.; Benvenutti, M. Food in 3D: How Ruminant Livestock Interact with Sown Sward Architecture at
the Bite Scale. In Feeding in Domestic Vertebrates: From Structure to Behaviour; Bell, V., Ed.; CABI Publishing:
Wallingford, CT, USA, 2006; pp. 263–277.

6. Oñatibia, G.R.; Aguiar, M.R. Paddock size mediates the heterogeneity of grazing impacts on vegetation.
Rangel. Ecol. Manag. 2018, 71, 470–480. [CrossRef]

7. Larson-Praplan, S.; George, M.R.; Buckhouse, J.C.; Laca, E.A. Spatial and temporal domains of scale of
grazing cattle. Anim. Prod. Sci. 2015, 55, 284–297. [CrossRef]

8. Garcia, F.; Carrère, P.; Soussana, J.F.; Baumont, R. Characterisation by fractal analysis of foraging paths of
ewes grazing heterogeneous swards. Appl. Anim. Behav. Sci. 2005, 93, 19–37. [CrossRef]

9. Cid, M.S.; Brizuela, M.A. Heterogeneity in tall fescue pastures created and sustained by cattle grazing.
Rangel. Ecol. Manag. 1998, 51, 644–649. [CrossRef]

10. Nunes, P.A.D.A.; Bredemeier, C.; Bremm, C.; Caetano, L.A.M.; de Almeida, G.M.; de Souza Filho, W.;
Anghinoni, I.; Carvalho, P.C.D.F. Grazing intensity determines pasture spatial heterogeneity and productivity
in an integrated crop-livestock system. Grassl. Sci. 2019, 65, 49–59. [CrossRef]

11. Parsons, A.J.; Carrère, P.; Schwinning, S. Dynamics of Heterogeneity in A Grazed Sward. In Grassland
Ecophysiology and Grazing Ecology; Lemaire, G., Hodgson, J., Moraes, A., Nabinger, C., Carvalho, P.C.F., Eds.;
CABI Publishing: Wallingford, CT, USA, 2000; pp. 289–316.

12. Semmartin, M.; Oesterheld, M. Effects of grazing pattern and nitrogen availability on primary productivity.
Oecologia 2001, 126, 225–230. [CrossRef]

13. Parsons, A.J.; Dumont, B. Spatial heterogeneity and grazing processes. Anim. Res. 2003, 52, 161–179.
[CrossRef]

14. Noy-Meir, I. Stability of grazing systems: An application of predator-prey graphs. J. Ecol. 1975, 63, 459–481.
[CrossRef]

15. Ungar, E.D. Perspectives on the concept of rangeland carrying capacity, and their exploration by means of
Noy-Meir’s two-function model. Agric. Syst. 2019, 173, 403–413. [CrossRef]

16. Ungar, E.D.; Noy-Meir, I. Herbage intake in relation to availability and sward structure: Grazing processes
and optimal foraging. J. Appl. Ecol. 1988, 25, 1045–1062. [CrossRef]

17. Parsons, A.J.; Thornley, J.H.; Newman, J.; Penning, P.D. A mechanistic model of some physical determinants
of intake rate and diet selection in a two-species temperate grassland sward. Funct. Ecol. 1994, 8, 187–204.
[CrossRef]

18. Schwinning, S.; Parsons, A.J. The stability of grazing systems revisited: Spatial models and the role of
heterogeneity. Funct. Ecol. 1999, 13, 737–747. [CrossRef]

19. Parsons, A.J.; Schwinning, S.; Carrère, P. Plant growth functions and possible spatial and temporal scaling
errors in models of herbivory. Grass Forage Sci. 2001, 56, 21–34. [CrossRef]

20. Baumont, R.; Cohen-Salmon, D.; Prache, S.; Sauvant, D. A mechanistic model of intake and grazing behaviour
in sheep integrating sward architecture and animal decisions. Anim. Feed Sci. Technol. 2004, 112, 5–28.
[CrossRef]

21. Gregorini, P.; Beukes, P.C.; Romera, A.J.; Levy, G.; Hanigan, M.D. A model of diurnal grazing patterns and
herbage intake of a dairy cow, MINDY: Model description. Ecol. Model. 2013, 270, 11–29. [CrossRef]

22. Delagarde, R.; Peyraud, J.L.; Delaby, L.; Faverdin, P. Vertical distribution of biomass, chemical composition and
pepsin—Cellulase digestibility in a perennial ryegrass sward: Interaction with month of year, regrowth age
and time of day. Anim. Feed Sci. Technol. 2000, 84, 49–68. [CrossRef]

http://dx.doi.org/10.2111/08-104.1
http://dx.doi.org/10.17138/TGFT(1)137-155
http://dx.doi.org/10.1016/S0304-3800(00)00426-9
http://dx.doi.org/10.1016/j.rama.2018.03.002
http://dx.doi.org/10.1071/AN14641
http://dx.doi.org/10.1016/j.applanim.2005.01.001
http://dx.doi.org/10.2307/4003606
http://dx.doi.org/10.1111/grs.12209
http://dx.doi.org/10.1007/s004420000508
http://dx.doi.org/10.1051/animres:2003013
http://dx.doi.org/10.2307/2258730
http://dx.doi.org/10.1016/j.agsy.2019.03.023
http://dx.doi.org/10.2307/2403765
http://dx.doi.org/10.2307/2389902
http://dx.doi.org/10.1046/j.1365-2435.1999.00382.x
http://dx.doi.org/10.1046/j.1365-2494.2001.00243.x
http://dx.doi.org/10.1016/j.anifeedsci.2003.10.005
http://dx.doi.org/10.1016/j.ecolmodel.2013.09.001
http://dx.doi.org/10.1016/S0377-8401(00)00114-0


Sustainability 2020, 12, 8676 15 of 17

23. Silva, D.F.F.D. A Altura que Maximiza a Taxa de Ingestão em Azevém Anual (Lolium Multiflorum Lam.) é Afetada Pela
Existência de Palhada Quando o Método de Estabelecimento é em Semeadura Direta? UFPR: Curitiba, Brazil, 2013.

24. Ellner, S.P.; Childs, D.Z.; Rees, M. Data-Driven Modelling of Structured Populations. In A Practical Guide to
the Integral Projection Model; Springer: Cham, Switzerland, 2016.

25. Förster, L.; Grant, J.; Michel, T.; Ng, C.; Barth, S. Growth under cold conditions in a wide perennial ryegrass
panel is under tight physiological control. PeerJ 2018, 6, 5520. [CrossRef]

26. Cumming, D.H.; Cumming, G.S. Ungulate community structure and ecological processes: Body size,
hoof area and trampling in African savannas. Oecologia 2003, 134, 560–568. [CrossRef]

27. Linnane, M.I.; Brereton, A.J.; Giller, P.S. Seasonal changes in circadian grazing patterns of Kerry cows
(Bos taurus) in semi-feral conditions in Killarney National Park, Co. Kerry, Ireland. Appl. Anim. Behav. Sci.
2001, 71, 277–292. [CrossRef]

28. Hirata, M.; Higashiyama, M.; Hasegawa, N. Diurnal pattern of excretion in grazing cattle. Livest. Sci. 2011,
142, 23–32. [CrossRef]

29. Krizsan, S.J.; Ahvenjärvi, S.; Huhtanen, P. A meta-analysis of passage rate estimated by rumen evacuation
with cattle and evaluation of passage rate prediction models. J. Dairy Sci. 2010, 93, 5890–5901. [CrossRef]

30. Demment, M.W.; Van Soest, P.J. A nutritional explanation for body-size patterns of ruminant and nonruminant
herbivores. Am. Nat. 1985, 125, 641–672. [CrossRef]

31. Chilibroste, P.; Tamminga, S.; Boer, H. Effects of length of grazing session, rumen fill and starvation time
before grazing on dry-matter intake, ingestive behaviour and dry-matter rumen pool sizes of grazing
lactating dairy cows. Grass Forage Sci. 1997, 52, 249–257. [CrossRef]

32. Illius, A.W.; Gordon, I.J. The allometry of food intake in grazing ruminants. J. Anim. Ecol. 1987, 56, 989–999.
[CrossRef]

33. Laca, E.A.; Ungar, E.D.; Demment, M.W. Mechanisms of handling time and intake rate of a large mammalian
grazer. Appl. Anim. Behav. Sci. 1994, 39, 3–19. [CrossRef]

34. Rook, A.J.; Harvey, A.; Parsons, A.J.; Orr, R.J.; Rutter, S.M. Bite dimensions and grazing movements by sheep
and cattle grazing homogeneous perennial ryegrass swards. Appl. Anim. Behav. Sci. 2004, 88, 227–242.
[CrossRef]

35. Stephens, D.W.; Krebs, J.R. Foraging Theory; Princeton University Press: Princeton, NJ, USA, 1986.
36. Brosh, A.; Henkin, Z.; Ungar, E.D.; Dolev, A.; Orlov, A.; Yehuda, Y.; Aharoni, Y. Energy cost of cows’

grazing activity: Use of the heart rate method and the Global Positioning System for direct field estimation.
J. Anim. Sci. 2006, 84, 1951–1967. [CrossRef] [PubMed]

37. Brosh, A.; Henkin, Z.; Ungar, E.D.; Dolev, A.; Shabtay, A.; Orlov, A.; Yehuda, Y.; Aharoni, Y. Energy cost of
activities and locomotion of grazing cows: A repeated study in larger plots. J. Anim. Sci. 2010, 88, 315–323.
[CrossRef]

38. National Research Council. Nutrient Requirements of Beef Cattle; National Academies Press: Washington, DC,
USA, 2016.

39. National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World
Camelids; National Academies Press: Washington, DC, USA, 2007.

40. Piñeiro, G.; Perelman, S.; Guerschman, J.P.; Paruelo, J.M. How to evaluate models: Observed vs. predicted or
predicted vs. observed? Ecol. Model. 2008, 216, 316–322. [CrossRef]

41. Orr, R.J.; Rutter, S.M.; Yarrow, N.H.; Champion, R.A.; Rook, A.J. Changes in ingestive behaviour of yearling
dairy heifers due to changes in sward state during grazing down of rotationally stocked ryegrass or white
clover pastures. Appl. Anim. Behav. Sci. 2004, 87, 205–222. [CrossRef]

42. Mott, G.O.; Lucas, H.L. The design, conduct and interpretation of grazing trials on cultivated and improved
pastures. Int. Grassl. Congr. 1952, 6, 1380–1395.

43. Sollenberger, L.E.; Moore, J.E.; Allen, V.G.; Pedreira, C.G. Reporting forage allowance in grazing experiments.
Crop Sci. 2005, 45, 896–900. [CrossRef]

44. Rouquette, F.M., Jr. Invited review: The roles of forage management, forage quality, and forage allowance in
grazing research. Prof. Anim. Sci. 2016, 32, 10–18. [CrossRef]

45. Holling, C.S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 1959, 91, 385–398.
[CrossRef]

46. Spalinger, D.E.; Hobbs, N.T. Mechanisms of foraging in mammalian herbivores: New models of functional
response. Am. Nat. 1992, 140, 325–348. [CrossRef]

http://dx.doi.org/10.7717/peerj.5520
http://dx.doi.org/10.1007/s00442-002-1149-4
http://dx.doi.org/10.1016/S0168-1591(00)00188-X
http://dx.doi.org/10.1016/j.livsci.2011.06.015
http://dx.doi.org/10.3168/jds.2010-3457
http://dx.doi.org/10.1086/284369
http://dx.doi.org/10.1111/j.1365-2494.1997.tb02355.x
http://dx.doi.org/10.2307/4961
http://dx.doi.org/10.1016/0168-1591(94)90011-6
http://dx.doi.org/10.1016/j.applanim.2004.03.006
http://dx.doi.org/10.2527/jas.2005-315
http://www.ncbi.nlm.nih.gov/pubmed/16775080
http://dx.doi.org/10.2527/jas.2009-2108
http://dx.doi.org/10.1016/j.ecolmodel.2008.05.006
http://dx.doi.org/10.1016/j.applanim.2004.01.009
http://dx.doi.org/10.2135/cropsci2004.0216
http://dx.doi.org/10.15232/pas.2015-01408
http://dx.doi.org/10.4039/Ent91385-7
http://dx.doi.org/10.1086/285415


Sustainability 2020, 12, 8676 16 of 17

47. Gross, J.E.; Shipley, L.A.; Hobbs, N.T.; Spalinger, D.E.; Wunder, B.A. Functional response of herbivores in
food-concentrated patches: Tests of a mechanistic model. Ecology 1993, 74, 778–791. [CrossRef]

48. Thompson Hobbs, N.; Gross, J.E.; Shipley, L.A.; Spalinger, D.E.; Wunder, B.A. Herbivore functional response
in heterogeneous environments: A contest among models. Ecology 2003, 84, 666–681. [CrossRef]

49. Bergman, C.M.; Fryxell, J.M.; Gates, C.C. The effect of tissue complexity and sward height on the functional
response of wood bison. Funct. Ecol. 2000, 14, 61–69. [CrossRef]

50. Mezzalira, J.C.; Bonnet, O.J.; Carvalho, P.C.D.F.; Fonseca, L.; Bremm, C.; Mezzalira, C.C.; Laca, E.A.
Mechanisms and implications of a type IV functional response for short-term intake rate of dry matter in
large mammalian herbivores. J. Anim. Ecol. 2017, 86, 1159–1168. [CrossRef]

51. Ungar, E.D.; Genizi, A.; Demment, M.W. Bite dimensions and herbage intake by cattle grazing short
hand-constructed swards. Agron. J. 1991, 83, 973–978. [CrossRef]

52. Laca, E.A.; Ungar, E.D.; Seligman, N.; Demment, M.W. Effects of sward height and bulk density on bite
dimensions of cattle grazing homogeneous swards. Grass Forage Sci. 1992, 47, 91–102. [CrossRef]

53. Cangiano, C.A.; Galli, J.R.; Pece, M.A.; Dichio, L.; Rozsypalek, S.H. Effect of liveweight and pasture height
on cattle bite dimensions during progressive defoliation. Aust. J. Agric. Res. 2002, 53, 541–549. [CrossRef]

54. Milne, B.T.; Turner, M.G.; Wiens, J.A.; Johnson, A.R. Interactions between the fractal geometry of landscapes
and allometric herbivory. Theor. Popul. Biol. 1992, 41, 337–353. [CrossRef]

55. Carvalho, P.D.F.; Bremm, C.; Mezzalira, J.C.; Fonseca, L.; Da Trindade, J.K.; Bonnet, O.J.F.; Tischler, M.;
Genro, T.C.M.; Nabinger, C.; Laca, E.A. Can animal performance be predicted from short-term grazing
processes? Anim. Prod. Sci. 2015, 55, 319–327. [CrossRef]

56. Barnes, M.K.; Norton, B.E.; Maeno, M.; Malechek, J.C. Paddock size and stocking density affect spatial
heterogeneity of grazing. Rangel. Ecol. Manag. 2008, 61, 380–388. [CrossRef]

57. Raynor, E.J.; Griffith, C.D.; Twidwell, D.; Schacht, W.H.; Wonkka, C.L.; Roberts, C.P.; Bielski, C.L.;
Debinski, D.M.; Miller, J.R. The emergence of heterogeneity in invasive-dominated grassland: A matter of
the scale of detection. Landsc. Ecol. 2018, 33, 2103–2119. [CrossRef]

58. Allred, B.W.; Scasta, J.D.; Hovick, T.J.; Fuhlendorf, S.D.; Hamilton, R.G. Spatial heterogeneity stabilizes
livestock productivity in a changing climate. Agric. Ecosyst. Environ. 2014, 193, 37–41. [CrossRef]

59. Bailey, D.W.; Mosley, J.C.; Estell, R.E.; Cibils, A.F.; Horney, M.; Hendrickson, J.R.; Walker, J.W.;
Launchbaugh, K.L.; Burritt, E.A. Synthesis Paper: Targeted Livestock Grazing: Prescription for Healthy
Rangelands. Rangel. Ecol. Manag. 2019, 72, 865–877. [CrossRef]

60. Fulkerson, W.J.; Donaghy, D.J. Plant-soluble carbohydrate reserves and senescence-key criteria for developing
an effective grazing management system for ryegrass-based pastures: A review. Aust. J. Exp. Agric. 2001,
41, 261–275. [CrossRef]

61. Wade, M.H.; Carvalho, P.D.F. Defoliation Patterns and Herbage Intake on Pastures. In Grassland Ecophysiology
and Grazing Ecology; Lemaire, G., Hodgson, J., Moraes, A., Nabinger, C., Carvalho, P.C.F., Eds.; CABI Publishing:
Wallingford, CT, USA, 2000; pp. 233–248.

62. Mueggler, W.F. Influence of competition on the response of bluebunch wheatgrass to clipping. J. Range Manag.
1972, 25, 88–92. [CrossRef]

63. Gdara, A.O.; Hart, R.H.; Dean, J.G. Response of tap- and creeping-rooted alfalfas to defoliation patterns.
J. Range Manag. 1991, 44, 22–26. [CrossRef]

64. Briske, D.D.; Derner, J.D.; Brown, J.R.; Fuhlendorf, S.D.; Teague, W.R.; Havstad, K.M.; Gillen, R.L.; Ash, A.J.;
Willms, W.D. Rotational grazing on rangelands: Reconciliation of perception and experimental evidence.
Rangel. Ecol. Manag. 2008, 61, 3–17. [CrossRef]

65. Augustine, D.J.; Derner, J.D.; Fernández-Giménez, M.E.; Porensky, L.M.; Wilmer, H.; Briske, D.D. Adaptive,
multipaddock rotational grazing management: A ranch-scale assessment of effects on vegetation and
livestock performance in semiarid rangeland. Rangel. Ecol. Manag. 2020, in press. [CrossRef]

66. Noy-Meir, I. Rotational grazing in a continuously growing pasture: A simple model. Agric. Syst. 1976,
1, 87–112. [CrossRef]

67. Wang, T.; Teague, W.R.; Park, S.C. Evaluation of continuous and multipaddock grazing on vegetation and
livestock performance—A modeling approach. Rangel. Ecol. Manag. 2016, 69, 457–464. [CrossRef]

68. Griggs, T.C.; MacAdam, J.W.; Mayland, H.F.; Burns, J.C. Temporal and vertical distribution of nonstructural
carbohydrate, fiber, protein, and digestibility levels in orchardgrass swards. Agron. J. 2007, 99, 755–763.
[CrossRef]

http://dx.doi.org/10.2307/1940805
http://dx.doi.org/10.1890/0012-9658(2003)084[0666:HFRIHE]2.0.CO;2
http://dx.doi.org/10.1046/j.1365-2435.2000.00389.x
http://dx.doi.org/10.1111/1365-2656.12698
http://dx.doi.org/10.2134/agronj1991.00021962008300060010x
http://dx.doi.org/10.1111/j.1365-2494.1992.tb02251.x
http://dx.doi.org/10.1071/AR99105
http://dx.doi.org/10.1016/0040-5809(92)90033-P
http://dx.doi.org/10.1071/AN14546
http://dx.doi.org/10.2111/06-155.1
http://dx.doi.org/10.1007/s10980-018-0725-x
http://dx.doi.org/10.1016/j.agee.2014.04.020
http://dx.doi.org/10.1016/j.rama.2019.06.003
http://dx.doi.org/10.1071/EA00062
http://dx.doi.org/10.2307/3896791
http://dx.doi.org/10.2307/4002632
http://dx.doi.org/10.2111/06-159R.1
http://dx.doi.org/10.1016/j.rama.2020.07.005
http://dx.doi.org/10.1016/0308-521X(76)90009-3
http://dx.doi.org/10.1016/j.rama.2016.07.003
http://dx.doi.org/10.2134/agronj2006.0036


Sustainability 2020, 12, 8676 17 of 17

69. Gregorini, P.; Eirin, M.; Refi, R.; Ursino, M.; Ansin, O.E.; Gunter, S.A. Timing of herbage allocation in strip
grazing: Effects on grazing pattern and performance of beef heifers. J. Anim. Sci. 2006, 84, 1943–1950.
[CrossRef]

70. Chen, A.; Bryant, R.H.; Edwards, G.R. Morphology and nutritive value of perennial ryegrass cultivars at
different phenological stages. Grass Forage Sci. 2019, 74, 576–581. [CrossRef]

71. Gregorini, P.; Provenza, F.D.; Villalba, J.J.; Beukes, P.C.; Forbes, M.J. Dynamics of forage ingestion,
oral processing and digesta outflow from the rumen: A development in a mechanistic model of a grazing
ruminant, MINDY. J. Agric. Sci. 2018, 156, 980–995. [CrossRef]

72. Shiyomi, M.; Okada, M.; Takahashi, S.; Tang, Y. Spatial pattern changes in aboveground plant biomass in a
grazing pasture. Ecol. Res. 1998, 13, 313–322. [CrossRef]

73. Boval, M.; Sauvant, D. Ingestive behaviour of grazing ruminants: Meta-analysis of the components of bite
mass. Anim. Feed Sci. Technol. 2019, 251, 96–111. [CrossRef]

74. Pérez-Prieto, L.A.; Delagarde, R. Meta-analysis of the effect of pasture allowance on pasture intake,
milk production, and grazing behavior of dairy cows grazing temperate grasslands. J. Dairy Sci. 2013,
96, 6671–6689. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2527/jas.2005-537
http://dx.doi.org/10.1111/gfs.12441
http://dx.doi.org/10.1017/S0021859618000886
http://dx.doi.org/10.1046/j.1440-1703.1998.00266.x
http://dx.doi.org/10.1016/j.anifeedsci.2019.03.002
http://dx.doi.org/10.3168/jds.2013-6964
http://www.ncbi.nlm.nih.gov/pubmed/23958002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Model Description 
	Simulations 

	Results 
	Functional Response and Sward Heterogeneity 
	Spatio-Temporal Distribution of Grazing 
	Herbage Allowance and Paddock Size 

	Discussion 
	Functional Response and Sward Heterogeneity 
	Spatio-Temporal Distribution of Grazing 
	Herbage Allowance and Paddock Size 

	Conclusions 
	
	References

