# Assessment and Management of Small Yellow Croaker (Larimichthys polyactis) Stocks in South Korea

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Data

#### 2.2. Generalized Linear Model for CPUE Standardization

#### 2.3. Surplus Production Model

#### 2.4. Bayesian State-Space Model

#### Model Implementation and Comparison

## 3. Results

#### 3.1. GLM Analysis Results and Model Comparison

^{2}value of the estimate was very high, at 0.99. As illustrated in Figure 5, all standardized CPUEs were included in the posterior 95% confidence level of the CPUE estimated using the Bayesian state-space model. Therefore, small yellow croaker stocks were assessed based on the estimates of the Bayesian state-space model, with an inverse-gamma distribution, using the Fox model, which has the lowest DIC.

_{MSY}) (56,985 tons). However, since 1992, its biomass has exhibited considerable variations, and it had dropped below the B

_{MSY}between 1993 and 2004.

_{MSY}.

#### 3.2. Analysis of Appropriate TAC Levels

_{1.2}), 10% increase (TAC

_{1.1}), 10% decrease (TAC

_{0.9}), 20% decrease (TAC

_{0.8}), and 20,800 tons (TAC

_{1.0}), which was the mean catch of small yellow croakers by gill-net, stow-net, and pair-trawl fisheries in 2014–2018, and the MSY (TAC

_{MSY}) of 21,301 tons.

## 4. Discussion

_{MSY}, which was substantially different from the results obtained with the Fox function, where the biomass was greater than the B

_{MSY}. The sensitivity analysis for the Bayesian state-space model estimates to date has focused on prior distributions. However, in future Bayesian state-space model estimates, more reliable stock assessments could be obtained if growth function analyses are performed in addition to sensitivity analysis for prior distributions.

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A

Variable | Coefficient | Std. Error | t-Statistics | p-Value |
---|---|---|---|---|

(Intercept) | 0.294 | 0.316 | 0.931 | 0.357 |

year1993 | −0.042 | 0.4 | −0.106 | 0.916 |

year1994 | 0.072 | 0.4 | 0.179 | 0.858 |

year1995 | −0.069 | 0.4 | −0.172 | 0.865 |

year1996 | −0.153 | 0.4 | −0.383 | 0.703 |

year1997 | −0.208 | 0.4 | −0.52 | 0.605 |

year1998 | −0.444 | 0.4 | −1.112 | 0.272 |

year1999 | −0.377 | 0.4 | −0.944 | 0.350 |

year2000 | 1.818 | 0.46 | 3.952 | 0.000 *** |

year2001 | 0.836 | 0.46 | 1.817 | 0.076 . |

year2002 | 1.496 | 0.46 | 3.252 | 0.002 ** |

year2003 | 1.17 | 0.46 | 2.543 | 0.014 * |

year2004 | 2.145 | 0.46 | 4.663 | 0.000 *** |

year2005 | 2.724 | 0.437 | 6.231 | 0.000 *** |

year2006 | 3.272 | 0.437 | 7.484 | 0.000 *** |

year2007 | 3.769 | 0.437 | 8.619 | 0.000 *** |

year2008 | 3.631 | 0.437 | 8.305 | 0.000 *** |

year2009 | 3.761 | 0.437 | 8.603 | 0.000 *** |

year2010 | 3.549 | 0.437 | 8.118 | 0.000 *** |

year2011 | 4.547 | 0.437 | 10.399 | 0.000 *** |

year2012 | 3.855 | 0.437 | 8.818 | 0.000 *** |

year2013 | 3.516 | 0.437 | 8.043 | 0.000 *** |

year2014 | 3.448 | 0.437 | 7.886 | 0.000 *** |

year2015 | 3.658 | 0.437 | 8.367 | 0.000 *** |

year2016 | 2.76 | 0.437 | 6.312 | 0.000 *** |

year2017 | 2.638 | 0.437 | 6.034 | 0.000 *** |

year2018 | 2.752 | 0.437 | 6.294 | 0.000 *** |

pair_trawl | 3.189 | 0.245 | 13.029 | <2e−16 *** |

stow_net | 2.509 | 0.245 | 10.249 | 0.000 *** |

pair_trawl:move23 | −2.023 | 0.395 | −5.124 | 0.000 *** |

stow_net:move23 | −2.601 | 0.395 | −6.59 | 0.000 *** |

pair_trawl:move24 | −4.065 | 0.307 | −13.248 | <2e−16 *** |

stow_net:move24 | −3.042 | 0.307 | −9.912 | 0.000 *** |

## References

- Lee, S.G.; Midani, A.R. National comprehensive approaches for rebuilding fisheries in South Korea. Mar. Policy
**2014**, 45, 156–162. [Google Scholar] [CrossRef] - National Institute of Fisheries Science. Fishes of the Pacific Ocean; National Institute of Fisheries Science: Busan, Korea, 2015.
- Park, J.M. Historical consideration of Production and using of a croaker. Korean J. Agric. Hist.
**2010**, 9, 197–222. [Google Scholar] - Choi, M.J.; Kim, D.H. Comparing surplus production models for selecting effective stock assessment model: Analyzing potential yield of East Sea, Republic of Korea. Ocean Polar Res.
**2019**, 41, 183–191. [Google Scholar] - Choi, M.J.; Kim, D.H.; Choi, J.H. Comparative analysis of stock assessment models for analyzing potential yield of fishery resources in the West Sea, Korea. J. Korean Soc. Fish. Ocean Technol.
**2019**, 55, 206–216. [Google Scholar] [CrossRef] - Korean Statistical Information Service. Available online: http://kosis.kr/ (accessed on 18 January 2020).
- National Institute of Fisheries Science. Target Fish Species of Fisheries Resources Recovery Project. Available online: https://www.nifs.go.kr/page?id=rec_fish (accessed on 5 February 2020).
- Kim, D.H. Evaluating the TAC policy in the sandfish stock rebuilding plan. J. Fish. Bus. Adm.
**2015**, 46, 29–39. [Google Scholar] [CrossRef] - Kim, D.Y.; Lee, J.S.; Kim, D.H. A study on establishing the performance evaluation system of the fish stock rebuilding plans. J. Fish. Bus. Adm.
**2011**, 42, 15–29. [Google Scholar] - National Law Information Center. Enforcement Decree of the Fisheries Resources Management Act. Available online: http://www.law.go.kr (accessed on 5 February 2020).
- Jeong, M.J.; Nam, J.O. Effectiveness analysis on comb pen shell based on TAC system. J. Fish. Bus. Adm.
**2016**, 47, 15–33. [Google Scholar] [CrossRef][Green Version] - Sim, S.H.; Lee, J.S.; Oh, S.Y. An analysis of the effects in the TAC system by analyzing catch of TAC target species. Ocean Polar Res.
**2020**, 42, 157–169. [Google Scholar] - Korea Fisheries Resources Agency. TAC Introduction. Available online: https://www.fira.or.kr/fira/fira_030601.jsp (accessed on 5 February 2020).
- National Institute of Fisheries Science. Resource Status and Restoration Recommendation of Fisheries Resources in 2017; National Institute of Fisheries Science: Busan, Korea, 2017.
- Sim, S.H.; Nam, J.O. A Stock Assessment of yellow croaker using bioeconomic model: A case of single species and multiple fisheries. Ocean Polar Res.
**2015**, 37, 161–177. [Google Scholar] [CrossRef] - Zhang, C.I.; Kim, S.; Yoon, S.B. Stock assessment and management implications of small yellow croaker in Korean waters. Korean J. Fish. Aquat. Sci.
**1992**, 25, 282–290. [Google Scholar] - Clarke, R.P.; Yoshimoto, S.S.; Pooley, S.G. A bioeconomic analysis of the Northwestern Hawaiian Islands lobster fishery. Mar. Resour. Econ.
**1992**, 7, 115–140. [Google Scholar] [CrossRef] - Millar, R.B.; Meyer, R. Non-linear state space modelling of fisheries biomass dynamics by using Metropolis-Hastings within-Gibbs sampling. J. R. Stat. Soc. C Appl.
**2000**, 49, 327–342. [Google Scholar] [CrossRef] - Polacheck, T.; Hilborn, R.; Punt, A.E. Fitting surplus production models: Comparing methods and measuring uncertainty. Can. J. Fish. Aquat. Sci.
**1993**, 50, 2597–2607. [Google Scholar] [CrossRef] - Bolker, B. Ecological Models and Data in R; Princeton University Press: Princeton, NJ, USA, 2008; pp. 233–242. [Google Scholar]
- Chaloupka, M.; Balazs, G. Using Bayesian state-space modelling to assess the recovery and harvest potential of the Hawaiian green sea turtle stock. Ecol. Model.
**2007**, 205, 93–109. [Google Scholar] [CrossRef] - Meyer, R.; Millar, R.B. BUGS in Bayesian stock assessments. Can. J. Fish. Aquat. Sci.
**1999**, 56, 1078–1087. [Google Scholar] [CrossRef] - Choi, M.J.; Kim, D.H.; Lee, H.W.; Seo, Y.I.; Lee, S.I. Assessing stock biomass and analyzing management effects regarding the black scraper (Thamnaconus modestus) using Bayesian state-space model. Ocean Polar Res.
**2020**, 42, 63–76. [Google Scholar] - McAllister, M.K.; Pikitch, E.K.; Punt, A.E.; Hilborn, R. A Bayesian approach to stock assessment and harvest decisions using the sampling/importance resampling algorithm. Can. J. Fish. Aquat. Sci.
**1994**, 51, 2673–2687. [Google Scholar] [CrossRef] - Otsuyama, K.; Kitakado, T. Bayesian state-space production models for the Indian Ocean bigeye tuna (Thunnus Obesus) and their predictive evaluation. IOTC
**2016**, WPTT18-19. [Google Scholar] - Parker, D.; Winker, H.; da Silva, C.; Kerwath, S. Bayesian state-space surplus production model JABBA assessment of Indian Ocean black marlin (Makaira indica) stock. IOTC
**2018**, WPB16-15. [Google Scholar] - Winker, H.; Carvalho, F.; Kapur, M. JABBA: Just another Bayesian biomass assessment. Fish. Res.
**2018**, 204, 275–288. [Google Scholar] [CrossRef] - McAllister, M.K.; Pikitch, E.K.; Babcock, E.A. Using demographic methods to construct Bayesian priors for the intrinsic rate of increase in the Schaefer model and implications for stock rebuilding. Can. J. Fish. Aquat. Sci.
**2001**, 58, 1871–1890. [Google Scholar] [CrossRef] - Millar, R.B. Reference priors for Bayesian fisheries models. Can. J. Fish. Aquat. Sci.
**2002**, 59, 1492–1502. [Google Scholar] [CrossRef] - Van Dongen, S. Prior specification in Bayesian statistics: Three cautionary tales. J. Theor. Biol.
**2006**, 242, 90–100. [Google Scholar] [CrossRef] [PubMed] - Dick, E.J.; MacCall, A.D. Depletion-based stock reduction analysis: A catch-based method for determining sustainable yields for data-poor fish stocks. Fish. Res.
**2011**, 110, 331–341. [Google Scholar] [CrossRef] - Dowling, N.A.; Smith, D.C.; Knuckey, I.; Smith, A.D.; Domaschenz, P.; Patterson, H.M.; Whitelaw, W. Developing harvest strategies for low-value and data-poor fisheries: Case studies from three Australian fisheries. Fish. Res.
**2008**, 94, 380–390. [Google Scholar] [CrossRef] - Free, C.M.; Jensen, O.P.; Wiedenmann, J.; Deroba, J.J. The refined ORCS approach: A catch-based method for estimating stock status and catch limits for data-poor fish stocks. Fish. Res.
**2017**, 193, 60–70. [Google Scholar] [CrossRef] - Zhou, S.; Punt, A.E.; Ye, Y.; Ellis, N.; Dichmont, C.M.; Haddon, M.; Smith, D.C.; Smith, A.D. Estimating stock depletion level from patterns of catch history. Fish
**2017**, 18, 742–751. [Google Scholar] [CrossRef][Green Version] - Gelman, A. Prior distributions for variance parameters in hierarchical models. Bayesian Anal.
**2006**, 1, 515–534. [Google Scholar] [CrossRef] - Punt, A.E.; Hilborn, R. Fisheries stock assessment and decision analysis: The Bayesian approach. Rev. Fish Biol. Fish.
**1997**, 7, 35–63. [Google Scholar] [CrossRef][Green Version] - Thorson, J.T.; Cope, J.M. Uniform, uninformed or misinformed? The lingering challenge of minimally informative priors in data-limited Bayesian stock assessments. Fish. Res.
**2017**, 194, 164–172. [Google Scholar] [CrossRef] - Maunder, M.N. Is it time to discard the Schaefer model from the stock assessment scientist’s toolbox? Fish. Res.
**2003**, 1, 145–149. [Google Scholar] [CrossRef] - Schaefer, M.B. Some aspects of the dynamics of populations important to the management of the commercial marine fisheries. IATTC Bull.
**1954**, 1, 23–56. [Google Scholar] - Fox Jr, W.W. An exponential surplus-yield model for optimizing exploited fish populations. T. Am. Fish. Soc.
**1970**, 99, 80–88. [Google Scholar] [CrossRef] - Hinton, M.G.; Maunder, M.N. Methods for standardizing CPUE and how to select among them. Collect Vol. Sci. Pap. ICCAT
**2004**, 56, 169–177. [Google Scholar] - Kimura, D.K. Standardized measures of relative abundance based on modelling log (CPUE), and their application to Pacific Ocean perch (Sebastes alutus). ICES J. Mar. Sci.
**1981**, 39, 211–218. [Google Scholar] [CrossRef] - Gavaris, S. Use of a multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci.
**1980**, 37, 2272–2275. [Google Scholar] [CrossRef] - Kim, D.Y.; Kim, B.H. Restructuring of the off-shore otter trawl fishery in Korea. J. Fish. Mar. Sci. Edu.
**2004**, 16, 124–141. [Google Scholar] - Lee, D.W.; Choi, K.H.; Kang, S. Changes of fishing ground of the large pair trawl fishery off Korean Waters. Korean J. Fish. Aquat. Sci.
**2013**, 46, 917–922. [Google Scholar] - Seo, Y.I.; Oh, T.Y.; Cha, H.K.; Kim, B.Y.; Jo, H.S.; Jeong, T.Y.; Lee, Y.W. Change of relative fishing power index from technological development in the small yellow croaker drift gillnet fishery. J. Korean Soc. Fish. Ocean Technol.
**2019**, 55, 198–205. [Google Scholar] [CrossRef] - Nishida, T.; Bigelow, K.; Mohri, M.; Marsac, F. Comparative study on Japanese tuna longline CPUE standardization of yellowfin tuna (Thunnus albacares) in the Indian Ocean based on two methods: General linear model (GLM) and habitat-based model (HBM)/GLM combined. IOTC Proc.
**2003**, 6, 48–69. [Google Scholar] - Shono, H. Application of the Tweedie distribution to zero-catch data in CPUE analysis. Fish. Res.
**2008**, 93, 154–162. [Google Scholar] [CrossRef][Green Version] - Lim, Y.N.; Kim, H.Y.; Kim, D.H. Predicting changes in fishing conditions for the small yellow croaker Larimichthys polyactis based on expansions of the Yellow Sea bottom cold water. Korean J. Fish. Aquat. Sci.
**2014**, 47, 419–423. [Google Scholar] - Best, J.K.; Punt, A.E. Parameterizations for Bayesian state-space surplus production models. Fish. Res.
**2020**, 222, 105411. [Google Scholar] [CrossRef] - Coppola, G.; Pascoe, S. A surplus production model with a nonlinear catch-effort relationship. Mar. Resour. Econ.
**1998**, 13, 37–50. [Google Scholar] [CrossRef] - Karim, E.; Qun, L.; Hasan, S.J.; Ali, M.Z.; Hoq, M.E.; Mahmud, M.Y. Maximum sustainable yield estimates of marine captured shrimp fishery of the Bay of Bengal, Bangladesh by using surplus production model. Thalassas
**2020**, 36, 471–480. [Google Scholar] [CrossRef] - Haddon, M. Modelling and Quantitative Methods in Fisheries; CRC Press: New York, NY, USA, 2010; pp. 285–333. [Google Scholar]
- Kim, D.H. Bayesian Statistics Using R and WinBUGS; Freedom Academy: Paju, Korea, 2013; pp. 87–248. [Google Scholar]
- Ntzoufras, I. Bayesian Modeling Using WinBUGS; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 698, p. 520. [Google Scholar]
- Martell, S.; Froese, R. A simple method for estimating MSY from catch and resilience. Fish
**2013**, 14, 504–514. [Google Scholar] [CrossRef] - Gilks, W.R.; Wild, P. Adaptive rejection sampling for Gibbs sampling. J. R. Stat. Soc. C Appl.
**1992**, 41, 337–348. [Google Scholar] [CrossRef] - Kéry, M.; Schaub, M. Bayesian Population Analysis using WinBUGS: A Hierarchical Perspective; Academic Press: Cambridge, UK, 2011; p. 55. [Google Scholar]
- Lunn, D.J.; Thomas, A.; Best, N.; Spiegelhalter, D. WinBUGS-a Bayesian modelling framework: Concepts, structure, and extensibility. Stat. Comput.
**2000**, 10, 325–337. [Google Scholar] [CrossRef] - Neal, R.M. Markov Chain Monte Carlo Methods Based on ‘Slicing’ the Density Function. 1997, pp. 1–27. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.886&rep=rep1&type=pdf (accessed on 17 February 2020).
- Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; Van Der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. B
**2002**, 64, 583–639. [Google Scholar] [CrossRef][Green Version] - Spiegelhalter, D.J.; Thomas, A.; Best, N.; Lunn, D. WinBUGS User Manual. 2003, pp. 1–60. Available online: https://www.mrc-bsu.cam.ac.uk/wp-content/uploads/manual14.pdf (accessed on 15 March 2020).
- Punt, A.E.; Hilborn, R. Bayesian Stock Assessment Methods in Fisheries: User’s Manual; Food and Agriculture Organization: Rome, Italy, 2001; pp. 1–68. [Google Scholar]
- Pella, J.J.; Tomlinson, P.K. A generalized stock production model. IATTC Bull.
**1969**, 13, 416–497. [Google Scholar] - Chen, Y.; Shan, X.; Wang, N.; Jin, X.; Guan, L.; Gorfine, H.; Yang, T.; Dai, F. Assessment of fish vulnerability to climate change in the Yellow Sea and Bohai Sea. Mar. Freshw. Res.
**2020**, 71, 729–736. [Google Scholar] [CrossRef] - Shan, X.; Li, X.; Yang, T.; Sharifuzzaman, S.M.; Zhang, G.; Jin, X.; Dai, F. Biological responses of small yellow croaker (Larimichthys polyactis) to multiple stressors: A case study in the Yellow Sea, China. Acta Oceanol. Sin.
**2017**, 36, 39–47. [Google Scholar] [CrossRef]

**Figure 1.**Small yellow croaker catch by fishing type (

**a**) and number of vessels (

**b**) from 1992 to 2018.

**Figure 3.**Fishery ground ellipses computed using the catch per unit effort distribution of small yellow croakers in the three fisheries under different periods (

**a**) and the centers of fishing grounds in different fishing years (

**b**) [49].

**Figure 4.**Prior distributions (dashed line) and posterior distributions (solid line) of K and r assessed using the Bayesian state-space model.

**Figure 5.**Standardized catch per unit effort (CPUE) and the 2.5th (lower dotted line), 50th (median; red line), and 97.5th (upper dotted line) percentiles from the posterior distribution of CPUE based on the Bayesian state-space model using the Fox function as a non-informative prior distribution (inverse-gamma distribution) of the K assumption.

**Figure 6.**Change in the annual stock biomass trajectories with 95% confidence intervals with biomass at sustainable yield (B

_{MSY}) (

**a**) and catch in comparison with the maximum sustainable yield (

**b**) of small yellow croakers based on the Bayesian state-space model.

**Figure 7.**Forecasting changes in small yellow croaker biomass under total allowable catch scenarios based on the Bayesian state-space model with a historical line (yellow line).

**Table 1.**Summary of prior distributions used for the sensitivity analysis with the Bayesian state-space model.

Parameter | Informative Prior Distribution | Non-Informative Prior Distribution | |
---|---|---|---|

Uniform | Inverse-Gamma | ||

r | Lognormal (−1.1, 0.51^{2}) | Lognormal (−0.69, 0.51^{2}) | Lognormal (−0.69, 0.51^{2}) |

K | Inverse-lognormal (12.38, 0.75^{2}) | Uniform (10,000–100,000,000) | Inverse-gamma (0.01, 0.01) |

q | Inverse-gamma (1,1) | Inverse-gamma (1,1) | Inverse-gamma (1,1) |

${\sigma}^{2}$ | Inverse-gamma (3.79, 0.01) | Inverse-gamma (3.79, 0.01) | Inverse-gamma (3.79, 0.01) |

${\tau}^{2}$ | Inverse-gamma (1.71, 0.01) | Inverse-gamma (1.71, 0.01) | Inverse-gamma (1.71, 0.01) |

Parameter | Schaefer | Fox | ||||
---|---|---|---|---|---|---|

Informative K | Non-Informative K | Informative K | Non-Informative K | |||

Lognormal K | Uniform | Inverse-Gamma | Log-Normal K | Uniform | Inverse-Gamma | |

r | 0.4469 | 0.5426 | 0.5703 | 0.3273 | 0.3854 | 0.3738 |

K (ton) | 214,100 | 198,700 | 187,600 | 169,700 | 148,500 | 154,900 |

q | 2.03E-04 | 2.31E-04 | 2.46E-04 | 2.35E-04 | 2.72E-04 | 2.63E-04 |

MSY (maximum sustainable yield) | 23,920 | 26,954 | 26,747 | 20,433 | 21,054 | 21,301 |

B_{2018}/B_{MSY} | 0.85 | 0.82 | 0.82 | 1.24 | 1.22 | 1.21 |

${\sigma}^{2}$ | 1.16E-04 | 1.13E-04 | 1.10E-04 | 1.33E-04 | 1.46E-04 | 1.43E-04 |

${\tau}^{2}$ | 0.03117 | 0.03382 | 0.03559 | 0.01848 | 0.01402 | 0.01473 |

R^{2} | 0.96 | 0.96 | 0.95 | 0.99 | 0.99 | 0.99 |

DIC (deviance information criterion) | 149.599 | 150.050 | 150.953 | 142.938 | 139.631 | 139.226 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Choi, M.-J.; Kim, D.-H.
Assessment and Management of Small Yellow Croaker (*Larimichthys polyactis*) Stocks in South Korea. *Sustainability* **2020**, *12*, 8257.
https://doi.org/10.3390/su12198257

**AMA Style**

Choi M-J, Kim D-H.
Assessment and Management of Small Yellow Croaker (*Larimichthys polyactis*) Stocks in South Korea. *Sustainability*. 2020; 12(19):8257.
https://doi.org/10.3390/su12198257

**Chicago/Turabian Style**

Choi, Min-Je, and Do-Hoon Kim.
2020. "Assessment and Management of Small Yellow Croaker (*Larimichthys polyactis*) Stocks in South Korea" *Sustainability* 12, no. 19: 8257.
https://doi.org/10.3390/su12198257