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Abstract: Recently, with the emergence of Industry 4.0 (I4.0), smart systems, machine learning
(ML) within artificial intelligence (AI), predictive maintenance (PdM) approaches have been
extensively applied in industries for handling the health status of industrial equipment. Due to digital
transformation towards I4.0, information techniques, computerized control, and communication
networks, it is possible to collect massive amounts of operational and processes conditions data
generated form several pieces of equipment and harvest data for making an automated fault detection
and diagnosis with the aim to minimize downtime and increase utilization rate of the components and
increase their remaining useful lives. PdM is inevitable for sustainable smart manufacturing in I4.0.
Machine learning (ML) techniques have emerged as a promising tool in PdM applications for smart
manufacturing in I4.0, thus it has increased attraction of authors during recent years. This paper aims
to provide a comprehensive review of the recent advancements of ML techniques widely applied
to PdM for smart manufacturing in I4.0 by classifying the research according to the ML algorithms,
ML category, machinery, and equipment used, device used in data acquisition, classification of data,
size and type, and highlight the key contributions of the researchers, and thus offers guidelines and
foundation for further research.
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1. Introduction

Industries are currently going through “The Fourth Industrial Revolution,” as professionals have
called it, a term also known as “Industry 4.0.” (I4.0) Integration amongst physical and digital systems
of the production contexts is what mainly concerns Industry 4.0 [1]. With the appearance of I4.0,
the concept of prognostics and health management (PHM) has become unavoidable tendency in the
framework of industrial big data and smart manufacturing; plus, at the same time, it offers a reliable
solution for handling the industrial equipment health status. I4.0 and its key technologies play an
essential role to make industrial systems autonomous [2,3] and thus make possible the automatized
data collection from industrial machines/components. Based on the collected data type machine
learning algorithms can be applied for automated fault detection and diagnosis. However, it is very
cruel to select appropriate maching learning (ML) techniques, type of data, data size, and equipment
to apply ML in industrial systems. Selection of inappropriate predictive maintenance (PdM) technique,
dataset, and data size may cause time loss and infeasible maintenance scheduling. Therefore, this study
aims to present a comprehensive literature review to discover existing studies and ML applications,
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and thus help researchers and practitioners to select appropriate ML techniques, data size, and data
type to obtain a feasible ML application.

The industrial equipment predictive maintenance (PdM) can perceive the degradation performance
because it was designed to achieve near-zero; hidden dangers, failures, pollution, and near-zero
accidents in the entire environment of manufacturing processes [4].

These huge amounts of data collected for ML contains very useful information and valuable
knowledge which can improve the whole productivity of manufacturing processes and system
dynamics, and can also be applied into decision support in several areas, mainly in condition-based
maintenance and health monitoring [5]. Due to the recent advances in technology, information
techniques, computerized control, and communication networks, it is now possible to collect vast
volumes of operational and processes conditions data generated from several pieces of equipment in
order to be harvested in making an automated Fault Detection and Diagnosis (FDD) [6]. The datasets
collected can also be applied to develop more efficient methodologies for the intelligent preventive
maintenance activities, similarly known as PdM [7].

ML applications provide some advantages which include maintenance cost reduction, repair stop
reduction, machine fault reduction, spare-part life increases and inventory reduction, operator safety
enhancement, increased production, repair verification, an increase in overall profit, and many more.
These advantages also have a tremendous and strong bond with the procedures of maintenance [1,8–11].
Moreover, fault detection is one of the critical components of predictive maintenance; it is very much
needed for industries to detect faults at very early stage [12]. Techniques for maintenance policies can
be categorized into the following main classifications [13–17].

1. (R2F) Run 2 Failure: also known as corrective maintenance or unplanned maintenance. It is the
simplest amongst maintenance techniques which is performed only when the equipment has
failed. It may lead to high equipment downtime and a high risk of secondary faults and thus,
create a very large number of defective products in production.

2. Preventive Maintenance (PvM): also known as scheduled maintenance or time-based maintenance
(TBM). PvM refers to periodically performed maintenance based on a planned schedule in order
to anticipate the failures. It sometimes leads to unnecessary maintenance which increase the
operating costs. The main aim here is to improve the efficiency of the equipment by minimizing
the failures in production [18].

3. Condition-based Maintenance (CBM): this method of maintenance is based on a constant machine
or equipment monitoring or their process health that can be carried out only when they are
actually necessary. The maintenance actions can only be carried out when the actions on the
process are taken after one or more conditions of degradation of the process. CBM usually cannot
be planned in advance.

4. PdM: known as Statistical-based maintenance: maintenance schedules are only taken when
needed. It is based on the continuous monitoring of the equipment or the machine, as like CBM.
It utilizes prediction tools to measure when such maintenance actions are necessary, hence the
maintenance can be scheduled. Furthermore, it allows failure detection at an early stage based on
the historical data by utilizing those prediction tools such as machine learning methods, integrity
factors (such as visual aspects, coloration different from original, wear), statistical inference
approaches, and engineering techniques.

It is required that any maintenance strategy ought to minimize equipment failure rates,
must improve equipment condition, should prolong the life of the equipment, and reduce the
maintenance costs. An overview for the maintenance classifications is shown in Figure 1. PdM turned
out to be one of the most promising strategies amongst other strategies of maintenance that has the
ability of achieving those characteristics [19], thus the strategy has been applied recently in many fields
of studies. PdM captivates the attention of the industries, hence it has been applied in the era of I4.0
due to it is capability of optimizing the use and management of assets [1,20].



Sustainability 2020, 12, 8211 3 of 42Sustainability 2020, 12, x FOR PEER REVIEW 3 of 42 

 

Figure 1. Maintenance types [1]. 

ML, within the contexts of artificial intelligence (AI) (Figure 1, copyright permission of Figure 1 

has taken on 20 September 2020), lately, has appeared to be one of the most powerful tools that can 

be applied in several applications to develop intelligent predictive algorithms. It has been developed 

into a wide field of research over the past decades. ML can be defined as a technology by which the 

outcomes can be forecasted based on a model prepared and trained on past or historical input data 

and its output behavior [21]. According to Samuel, A.L. [22], ML mainly means that if computers are 

allowed to solve without specifically being programmed in doing so. ML approaches are known to 

have tremendous advantages, as they have the ability in handling multivariate, high dimensional 

data and can extract hidden relationships within data in complex, dynamic, and chaotic 

environments [1,23,24]. However, depending on the ML approach chosen, the performance and 

advantages might differ. As of today, ML techniques have been widely applied in several areas of 

manufacturing (such as maintenance, optimization, troubleshooting, and control) [23]. Consequently, 

this paper aims to provide the recent advancements of ML techniques applied to PdM from an ample 

perspective. Predominantly, this ample review uses Scopus database while acquiring and identifying 

the articles used. From a comprehensive perspective, this paper aims to pinpoint and categorize 

based on the ML technique considered, ML category, equipment used, device used in data acquiring, 

applied data description, data size, and data type. 

The following describes how the paper is organized: firstly, this section gives a brief introduction 

on the current field of study. Secondly, Section 2 presents a brief background on PdM and ML 

techniques. Thirdly, Section 3 explains the methodology employed in the literature while considering 

and categorizing the papers to review and how they are grouped. Section 4 presents the 

comprehensive applications of ML techniques applied to PdM. Subsequently, discussions are drawn 

based on the analysis carried out in the literature of ML algorithms for PdM. Finally, a conclusion 

and future research guidelines are given. 

2. PdM and ML Techniques 

Currently, the PHM system has become a safe-fire method for maintaining the safety status of 

equipment (e.g., defect detection and Remaining Useful Life (RUL)). It is accomplished by the 

systematic use of the current testing findings in AI technology and IT technology. [4]. Additionally, 

PdM cannot only provide reduction in the costs of the maintenance, it can also prolong the RUL [25]. 

The incipient issues that may lead to disastrous failures can be correctly forecast and appropriate 

steps can be set in order to avoid these failures on the basis of the prediction outcomes [4]. 

R
el

ia
b

ili
ty

: O
EE

 a
n

d
 u

p
ti

m
e

 

Level 1 Level 2 Level 3 Level 4 

REACTIVE 

Fix when broken 

 

PLANNED 

Scheduled 

maintenance 

activities 

PROACTIVE 

Defect 

elimination to 

improve 

performance 

PREDICTIVE 

Advanced 

analytics and 

sensing data to 

predict machine 

reliability 

 
<50% OEE 

 
50%-70% OEE 

 
<90% OEE 75%-90% OEE 

Figure 1. Maintenance types [1].

ML, within the contexts of artificial intelligence (AI) (Figure 1, copyright permission of Figure 1
has taken on 20 September 2020), lately, has appeared to be one of the most powerful tools that can be
applied in several applications to develop intelligent predictive algorithms. It has been developed
into a wide field of research over the past decades. ML can be defined as a technology by which the
outcomes can be forecasted based on a model prepared and trained on past or historical input data
and its output behavior [21]. According to Samuel, A.L. [22], ML mainly means that if computers are
allowed to solve without specifically being programmed in doing so. ML approaches are known to have
tremendous advantages, as they have the ability in handling multivariate, high dimensional data and
can extract hidden relationships within data in complex, dynamic, and chaotic environments [1,23,24].
However, depending on the ML approach chosen, the performance and advantages might differ.
As of today, ML techniques have been widely applied in several areas of manufacturing (such as
maintenance, optimization, troubleshooting, and control) [23]. Consequently, this paper aims to
provide the recent advancements of ML techniques applied to PdM from an ample perspective.
Predominantly, this ample review uses Scopus database while acquiring and identifying the articles
used. From a comprehensive perspective, this paper aims to pinpoint and categorize based on the
ML technique considered, ML category, equipment used, device used in data acquiring, applied data
description, data size, and data type.

The following describes how the paper is organized: firstly, this section gives a brief introduction
on the current field of study. Secondly, Section 2 presents a brief background on PdM and ML
techniques. Thirdly, Section 3 explains the methodology employed in the literature while considering
and categorizing the papers to review and how they are grouped. Section 4 presents the comprehensive
applications of ML techniques applied to PdM. Subsequently, discussions are drawn based on the
analysis carried out in the literature of ML algorithms for PdM. Finally, a conclusion and future research
guidelines are given.

2. PdM and ML Techniques

Currently, the PHM system has become a safe-fire method for maintaining the safety status
of equipment (e.g., defect detection and Remaining Useful Life (RUL)). It is accomplished by the
systematic use of the current testing findings in AI technology and IT technology. [4]. Additionally,
PdM cannot only provide reduction in the costs of the maintenance, it can also prolong the RUL [25].
The incipient issues that may lead to disastrous failures can be correctly forecast and appropriate steps
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can be set in order to avoid these failures on the basis of the prediction outcomes [4]. Nevertheless,
at any appropriate time, an industrial equipment can be replaced or repaired before the fault happens,
and thus might restore the original condition of the equipment or system after each and every completed
maintenance. Moreover, the equipment, component, system, or a machine’s health status can be
obtained at any instance. Their failures can also be predicted in order to achieve a non-zero downtime
performance [26]. PdM mainly focuses on utilizing predictive info in order to accurately schedule the
future maintenance operations [27].

The aim of PdM is not only to collect process data and its parameters, but also to collect the physical
health aspects of the equipment, machine, or component (such as pressure, vibration, temperature,
viscosity, acoustics, viscosity, flow rate data) and many as such. At the same time, this information
collected is now widely used for fault identification, early fault detection, equipment health assessment,
and predicting the future state of the equipment [12].

According to [12], ML is a subcategory of AI and is defined as any algorithm or a program that
has the ability of learning with the smallest or no additional support. ML assists in solving many
difficulties such as in vision, big data, robotics, and speech recognition [12]. Moreover, ML techniques
are designed to derive knowledge out of existing data [23,28]. PdM process and technologies to drive
PdM is shown in Figure 2. Crucial technologies for PdM such as smart sensors, network, artificial
intelligence, big data, and cloud systems are also highlighted by [29,30].
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Figure 2. PdM process and technologies to drive PdM.

Deloitte [31] classifies the technologies that drive PdM into five different categories. Those are
sensors, network, integration, augmented intelligence, and augmented behavior. Smart sensors are
used to gather machine information with the use of built-in sensors or environment information with
the use of external sensors. The network provides data storage as well as data transfer by using
Bluetooth and WiFi [32,33]. Technology integration allows data management and data accumulation
via Internet of Things (IoT), augmented intelligence assist data processing, and data analytics [30],
whereas augmented behavior allows virtualization, computing and service platform via apps, and
tickets to assist the operator [29].

ML algorithms are categorized into three different types; (1) supervised, (2) unsupervised, and (3)
reinforcement learning (RL) (see Figure 3) [23,34,35]. The aim is to show how complex the structure
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can be and the commonly used available learning techniques. Moreover, as stated by [23], different
algorithms can be combined together in order to maximize the classification power. To add on,
some among the ML algorithms are both applicable to unsupervised and supervised learning.
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In unsupervised machine learning, there is no feedback from an external teacher or knowledgeable
expert [23]. Based on the existing data, the algorithm identifies the clusters. The main aim here
in supervised learning is determining the unknown classes of items by clustering [36], whereas
classification is for supervised learning. Unsupervised ML basically defines any ML method that
attempts to learn structure in the absence of either an identified output (like supervised ML) or feedback
(like Reinforcement learning (RL)) [23].

Clustering, self-organizing maps, and association rules are the basic three main examples of
unsupervised learning. In this paper, reviewed articles are categorized into three ML categories,
classification, regression, and clustering, as shown in Figure 3. Data utilized in papers are categorized
into two data types, real data that are taken from real world machineries, and simulated or synthetic
data that are generated to meet specific needs such as model validation in ML. Authors [12,23,32,37,38]
has also defined ML categories.

RL is characterized by the delivery of information on training to the community. Through RL,
the learner must discover which actions produce the greatest outcomes (numeric reinforcement signal)
by attempting instead of being told. [23]. Nonetheless, some of the researchers considered RL as
some sort of special supervised learning, like [34]. Moreover, as stated by RL, problems differ from
supervised learning, as they can be described by the absence of labeled examples of “good” and
“bad” behavior [23].

There are several available supervised machine learning algorithms, as few can be seen from
Figure 3. Each of these algorithms has its own specific advantages as well as limitations regarding the
application (either PdM or manufacturing). Selecting the most appropriate and suitable ML algorithm
can be a major challenge for the requirements of the PdM problem. It is also important to get good at
applied machine learning by practicing on lots of different datasets. Therefore, each problem requires
different subtlety, different data preparation, and modelling methods. Datasets are classified into



Sustainability 2020, 12, 8211 6 of 42

seven categories: multivariate, sequential text, time series, sequential, univariate, text, and domain
theory. However, this paper classifies datasets into two categories. One of them is real datasets that are
any production data obtained from real production processes and applicable to ML. Another one is
synthetic datasets that are any kind of production data applicable to ML, but they are simulated data
rather than direct measurement in the production.

Ethical/legal permission is not required for this study. The study complies with research and
publication ethics in obtaining all kinds of data and images.

3. Survey Methodology and Analysis

The scholarly or academic databases used for this review include articles from Scopus,
ScienceDirect, Institute of Electronic and Electrical Engineers (IEEE), and Google Scholar. The Scopus
database was mainly used for this review. In this review, the articles reviewed are categorized into two
groups. The first group comprises the articles collected from Scopus and are considered as the main
featured articles of the research. The second group comprises the articles that are used as supporting
or background work in the contexts of introduction and the study in general. The second group of
the articles that are obtained from the four databases stated above helped in building the theoretical
foundations to the PdM, ML techniques, and the ML algorithms.

Strategy and keywords used while collecting the article from Scopus are as follows:

• Firstly, the search was carried out based on “machine learning.”
• Followed by search within search, with “predictive maintenance,” note that the use of quotation

here means that the whole phrase was searched entirely, not as separate word by word.

With (TITLE-ABS-KEY (“machine learning”) AND (“predictive maintenance”)), as the search
keywords, 788 documents appeared, and the survey was carried out on 30 July 2020.

• The documents were then limited to the recent time parameters of 2010 to 2020. All inclusively,
the number of the documents reduced to 367.

• Subject area was limited to engineering, energy, and materials science, then the documents reduced
to 273.

• Then, from the document type, review and conference review were excluded from the analysis.
That left a total of 217 documents. From the language section, the documents were limited
to English.

Figure 4 shows the number of documents that are published over the years, between 2010 and
2020. As can be seen from Figure 4, it is confirmed that just recently (i.e., from the last three years) ML
techniques in PdM captivates the attention of the researchers. As there are very few papers published
in 2010 and 2011 in comparison to how the number of published articles just spiked-up through the
year 2017–2018. Thus, it can be concluded that application of ML technique in the field of PdM is a
new method with a growing interest in the field of research. This might be due to the increase in the
amount of dataset that are generated in industries, by the industrial equipment, system, or components,
and at the same time it could be due to the recent advances of ML techniques and their algorithms [1].
Figure 5 shows the information on how the documents are published by type considered in this review,
134 conference papers, 72 articles, and 11 book chapters.

Among these 217 documents, we were able to download 103. These 103 articles and 33 from
IEEE, combined together gives a total of 126 articles. Then, they are analyzed and screened for the
removal of any duplicates. The number of publications are given in Figure 4. Article selection criteria
aforementioned can be summarized and pictured from the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) flowchart given in Figure 5.
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“Predictive Maintenance”), (d) Published documents by country with keywords: (“Machine Learning”),
(e) Published documents by country with keywords: (“Predictive Maintenance”), (f) Published
documents by country with keywords: (“Predictive Maintenance” AND “Machine Learning”).
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4. Applications of ML Algorithms in PdM

ML algorithms can be used to solve several problems with the enormously available data generated
from industries, thus, ML has been widely used in computer science and other areas, such as PdM of
manufacturing system, tool or machine, and is one of the possible areas of use for data-driven methods
(Artificial Neural Network (ANN), Reinforcement Learning (RF), Support Vector Machine (SVM),
Logistics Regression (LR), and Decision Tree (DT)) [4,23]. Recently, ML techniques have been widely
applied in various fields of study. Selecting the most appropriate, simple, and the most efficient could be
of a great concern. ML algorithms usually require collecting huge amounts of data of the failure status
scenarios and the health conditions scenarios for model training. These algorithms that mainly require
large amounts of data involves Vector Space Model (VSM), LR, DT, and RF. ML algorithm development
covers historical data selection, pre-processing data, model selection, model training, model validation,
and maintenance. The steps involved in ML algorithm development can be specified as input, feature
extraction & selection, features, traditional ML techniques, and output [4]. Similarly, Ref. [1] describes
the main steps for ML development as historical data, data pre-processing, model selection, training
and validation, and model maintenance. Further details on the main steps involved can be found in [1].
PdM has been broadly applied in industries such as manufacturing industries using ML techniques [39]
and deep learning [40].

4.1. Artificial Neural Network (ANN)

In fact, ANN is developed from the subject of biology, where the Neural Network (NN) plays
a significant role in the human brain. [41]. ANN is an intelligent computational technique that has
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been inspired by biological neurons [10]. It is a massively parallel computing system consisting of
an extremely large number of simple processors with many interconnections. Instead of following
the set of laws specified by human experts, ANNs learn the basic laws from the set of given symbolic
situations in examples [42]. They are organized in three layers or more, (i.e., input layer, several hidden
layers, and an output layer) [43]. Moreover, the analytical activity of these ANNs derives from the
relations between the network processing units.

ANN models are broadly applied in many fields of studies due to their capability to learn from
examples. To add on, ANNs models in comparison to the other traditional machine learning algorithms
have noticeable advantages in addressing random data, fuzzy data, and nonlinear data. ANNs are
primarily appropriate for systems with a complex, large scale structure and unclear information [4].
ANNs are widely applied and they are the most common ML algorithms [1], at the same time they
have been suggested in several industrial applications involving soft sensing [44], and in predictive
control systems [45]. Hesser, D.F. and Markert, B. [46] trained an ANN model to classify tool state of a
Computer Numerical Control (CNC) milling machine with acceleration data. The proposed study was
based on a retrofitting approach in order to facilitate older machines towards to I4.0. The tool wear
was monitored by utilizing a programmable prototyping platform equipped with built-in sensors.
The study proves the feasibility of retrofitting older machines. In the study, the performance of the
built model was compared and outperformed the performance of Support Vector Machine (SVM) and
K-Nearest Neighbors (KNN) models.

A methodology was proposed by Sampaio, G.S. et al. [47] to treat and convert the collected data of
vibration measurements from a vibration system that simulated a motor and to build a dataset in order
to train and test an ANN model capable of predicting the future condition of the equipment, predicting
when a failure can happen. The methodology involves the use of frequency and amplitude data by
classifying the dataset and defining a way of calculating the vibrating system’s failure time. In the
study, Multilayer Perceptron (MLP) methodology was used in performing the prediction task, due to
its easier implementation with a good generalization index. The ANN model proposed was then
compared in terms of its efficiency and based on Root Mean Square Error (RMSE) performance index
values with other ML techniques, including Regression Tree (RT), Random Forest (RF), and Support
Vector Machine (SVM). Comparative and training results were adequate and showed that ANN was
greater than the others. In terms of medium-term and long-term prediction, ANN outperforms the
others, whereas generalization in short term predictions between ANN, RF, and RT were equal.

ANN and SVM ML algorithms are applied in developing gauge degradation measurements
prediction for two types of rail track including straight and curved segments by Falamarzi, A. et al. [48].
Mean squared error and coefficient of determination are used in the performance evaluation of the
proposed models, ANN with greater than 0.9 coefficient of determination value. Based on the results
obtained from the study, both ANN and SVM models provide satisfactory and slightly similar outcomes,
but the performance of ANN models in predicting gauge deviation of straight segments is slightly
better than SVM models. Biswal, S. and Sabareesh, G.R. [10] designed and developed a bench top
test-rig for investigating the time domain vibration signatures of several critical components in wind
turbine by imitating the operating condition of an actual wind turbine and use it for monitoring
its condition. In their work, they acquired the healthy and faulty condition vibration signature of
the critical components, then developed and applied ANN model to carry out the classification of
the faulty and healthy state features. The model developed shows a 92.6% accuracy classification
efficiency. Zhang, Y. et al. [49] reported a study on Physics-based Model and Neural Network Model
for Monitoring Starter Degradation of Auxiliary Power Unit (APU). In their study, a generic modeling
technique is adopted to overcome the limitations of lack of component characteristics. A comparative
analysis between back-spreading and forward-feed neural network models has been performed, trained,
and tested. Both models are applied under nominal and deteriorated conditions and their capabilities
are validated. Depending on the data collected, their analysis concluded that the physics-based
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approach produces more consistent outcomes for cases with degraded starters, although the neural
network model showed better results with starters in healthy condition.

4.2. Support Vector Machine (SVM)

SVM is a well-known ML technique which is widely used for both classification and regression
analysis, due to its high accuracy [1,50,51]. SVM is defined as a statistical learning concept with
an adaptive computational learning method. SVM learning algorithm is presented in Figure 6.
SVM learning technique employs input vectors to map nonlinearly into a feature space whose
dimension is high [52–54].
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SVM is a supervised ML technique that can perform pattern recognition, classification,
and regression analysis. In the PdM of industrial equipment, SVMs have been widely applied
for identifying a specific status based on the acquired signal [55]. SVM and ANN ML algorithms
are applied in developing gauge degradation measurements prediction for two types of rail track
including straight and curved segments by Falamarzi, A. et al. [48], where mean squared error and
coefficient of determination are used in the performance evaluation of the proposed models, SVM with
greater than 0.75 coefficient of determination value. Based on the results obtained from the study,
both ANN and SVM models provide satisfactory and slightly similar outcomes, but, the performance
of SVM models in predicting gauge deviation of curved segments is slightly better than ANN models.
Moreover, in the study, Melbourne tram network has been used as a case study.

A data driven diagnostics and prognostics framework for machines to increase efficiency
and reduce maintenance cost was proposed by Xiang, S. et al. [56]. Moreover, an accurate data
labeling methodology is developed for supervised learning via comparing the serial number of target
components in the adjacent dates. In the study, vending machine real data was used to validate the
proposed framework for three different classifiers including SVM, RF, and Gradient Boosting Machines
(GBM). Moreover, two models were developed for PdM, one for diagnostics and the other for two-stage
prognostics. Results for the cross-validated simulation obtained shows that the diagnostics model can
achieve more than 80% of accuracy, thus the developed model of SVM can be applied for diagnosis and
prognostics monitoring of complex vending machines. The prognostics model outperforms one-stage
conventional prediction models.

4.3. Decision Tree (DT)

Decision Tree is a network system composed primarily of nodes and branches, and nodes
comprising root nodes and intermediate nodes. The intermediate nodes are used to represent a feature,
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and the leaf nodes are used to represent a class label [52]. DT can be used for feature selection [57].
DT algorithm is presented in Figure 7.
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DT classifiers have gained considerable popularity in a number of areas, such as character
identification, medical diagnosis, and voice recognition. More notably, the DT model has the potential
to decompose a complicated decision-making mechanism into a series of simplified decisions by
recursively splitting covariate space into subspaces, thereby offering a solution that is sensitive
to interpretation [58,59].

4.4. Random Forest (RF)

RF was developed by Breiman, L. [60]. This is an ensemble learning algorithm made up of several
DT classifiers, and the output category is determined collectively by these individual trees. When the
number of trees in the forest increases, the fallacy in generalization error for forests converges. There are
also important benefits of the RF. For example, it can manage high-dimensional data without choosing
a feature; trees are independent of each other during the training process, and implementation is
fairly simple; however, the training speed is generally fast and, at the same time, the generalization
functionality is good enough [4]. Random forest algorithm for machine learning has tree predictions,
and based on tree predictions, the RF provides random forest predictions [61]. The RF model is
visualized in Figure 8.
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Figure 8. Random forest regression algorithm for machine learning.

A study was reported on forecasting the downtime of a printing machine based on real time
predictions of imminent failures [62]. In their study, they used unstructured historical machine data
to train the ML classification algorithms including RF, XGBoost, and LR to predict the machine
failures. Different metrics were analyzed to determine the fitness of the models. These metrics



Sustainability 2020, 12, 8211 12 of 42

include empirical cross-entropy, area under the receiver operating characteristic curve (AUC), receiver
operating characteristic curve itself (ROC), precision-recall curve (PRC), number of false positives
(FP), true positives (TP), false negatives (FN) and true negatives (TN) at various decision thresholds,
and calibration curves of the estimated probabilities. Based on the results obtained, in terms of ROC,
all the algorithms performed significantly better and almost similar. But in terms of decision thresholds,
RF and XGBoost perform better than LR.

ML algorithms including Linear Regression, RF, and Symbolic Regression (SR) are applied in
modeling the condition of a healthy industrial machinery [63]. They proposed a methodology for
detecting and predicting drifting behavior (called concept drifts) in continuous data streams. Further,
a real-world case study was presented on industrial radial fans. Based on the results obtained using
the synthetic data, both the results from concept drift detection and prediction are highly successful.
Moreover, based on the conducted real word study, experts on-site at the strained radial fan reported that
the principle of drift detection has been successfully deployed. However, due to the lack of continuous
deterioration information, the predictability of concept drifts is currently based on assumptions and
cannot be measured yet, even though results of the tests are already very promising.

Janssens, O. et al. [64] proposed a multi-sensor device that uses not only infrared thermal
imaging data, but also uses vibration measurements for automatic conditioning and fault detection
in rotating machines. The feature fusion is utilized where model-driven features are derived from
vibration measurements and data-driven features are derived from infrared thermal imaging data.
Then, the extracted features are combined together and presented to RF classifiers for actual fault
detection. They have demonstrated in the study by mixing these two types of sensor data, a variety of
conditions/faults and combinations can be measured more accurately than in the case of individual
sensor streams.

Lacaille, J. and Rabenoro, T. [65] developed a learning algorithm that can automatically detect
and analyze multidimensional datasets of turbofan engine. The developed model uses a very wide
population of pre-treatments and statistic tests on the data and has the ability to select good combinations
of tests with higher than 85% pre-identification. Quiroz, J.C. et al. [66] proposed a new approach to
diagnose broken rotor bar failure in a Line Start-Permanent Magnet Synchronous Motor (LS-PMSM)
using RF. The transient current signal during the motor startup was acquired from a healthy motor
and a faulty motor with a broken rotor bar fault. The model was trained using features extracted
from thirteen different statistical time-domain features, and these features were used in determining
the state of the motor where it is operating under faulty or normal conditions. Feature importance
was considered for their feature selection in order to reduce the number of features to very few
from the RF. Results have shown that RF categorizes the motor disorder as safe or deficient with
an accuracy of 98.8% using all the features and an accuracy of 98.4% using only the mean index
and impulsion features. A comparison was carried out between the developed model and other
traditional ML algorithms including Decision Tree (DT), Naive Bayes classifier (NBC), LR, linear ridge,
and SVM, the RF consistently outperforms these algorithms with having a higher accuracy than the
other algorithms. The suggested methodology can be used for electronic tracking and fault detection of
LS-PMSM motors in the industry, and the findings can be beneficial for the development of preventive
maintenance plans in factories.

Yan, W. and Zhou, J.H. [67] proposed a predictive model using Term Frequency-Inverse Document
Frequency (TF-IDF) and RF can forecast faults of high sensitivity in advance by analyzing the historical
data of aircraft maintenance systems, and preventive maintenance may be carried out on the basis
of the model’s prediction performance. TF-IDF has been employed in order to extract the features
from raw data in the past consecutive flights. Different priorities were considered in classifying the
faults by the proposed RF model. The ROC curve has been adopted as a performance metric as the
dataset is highly imbalanced. Compared to the other method, the suggested approach reaches the
maximum true positive rating of 100% and the lowest false positive rate of 0.13%. For the testing
dataset, the proposed method achieves true positive rate 66.67% and false positive rate 0.13%.
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4.5. Logistic Regression (LR)

Binding, A. et al. [62] reported a study on forecasting the downtime of a printing machine based on
real time predictions of imminent failures. In their study, they utilized unstructured historical machine
data to train the ML classification algorithms including RF, XGBoost, and LR in predicting the machine
failures. Various metrics were analyzed to determine the goodness of fit of the models. These metrics
include empirical cross-entropy, area under the receiver operating characteristic curve (AUC), receiver
operating characteristic curve itself (ROC), precision-recall curve (PRC), number of false positives
(FP), true positives (TP), false negatives (FN), and true negatives (TN) at various decision thresholds,
and calibration curves of the estimated probabilities. Based on the results obtained, in terms of ROC,
all the algorithms performed significantly better and almost similar. But in terms of decision thresholds,
RF and XGBoost perform better than LR. Using a given set of independent variables, linear regression
is used to estimate the continuous dependent variations. However, using a given set of independent
variables, logistic regression is used to estimate the categorical contingent variations [68]. Graph of the
linear regression model and logistics regression model are shown in Figure 9.
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4.6. Extreme Gradient Boosted Trees (XGBoost)

XGBoost was developed by Chen, T. & Guestrin, C. [69], a scalable tree boosting system that is
widely used by data scientists and provides state-of-the-art results on many problems. Open source C++

was utilized in the implementation of XGBoost algorithm on forecasting the downtime of a printing
machine based on real time predictions of imminent failures [62] and used unstructured historical
machine data to train the ML classification algorithms including RF, XGBoost, and LR in predicting
the machine failures. Various metrics were analyzed to determine the goodness of fit of the models.
These metrics include; empirical cross-entropy, area under the receiver operating characteristic curve
(AUC), receiver operating characteristic curve itself (ROC), precision-recall curve (PRC), number of
false positives (FP), true positives (TP), false negatives (FN) and true negatives (TN) at various decision
thresholds, and calibration curves of the estimated probabilities. Based on the results obtained, in terms
of ROC all the algorithms performed significantly better and almost similar. But in terms of decision
thresholds, XGBoost and RF perform better than LR. XGBoost algorithm tree uses majority voting
technique to define final class [70]. XGBoost algorithm tree is presented in Figure 10.
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4.7. Gradient Boosting Machines (GBM)

GBM is a family of powerful machine-learning techniques that have shown considerable success
in a wide range of practical applications. It is also an assembly-based model that learns to update
prediction results on new models consecutively [71,72].

A data driven diagnostics and prognostics framework for machines to increase efficiency
and reduce maintenance cost was proposed by Xiang, S. et al. [56]. Moreover, an accurate data
labeling methodology is developed for supervised learning via comparing the serial number of target
components in the adjacent dates. In the study, vending machine real data was used to validate the
proposed framework for three different classifiers including SVM, RF, and Gradient Boosting Machines
(GBM). Moreover, two models were developed for PdM, one for diagnostics and the other for two-stage
prognostics. Results for the cross-validated simulation obtained shows that the diagnostics model can
achieve more than 80% of accuracy, thus the developed model of GBM can be applied for diagnosis and
prognostics monitoring of complex vending machines. The prognostics model outperforms one-stage
conventional prediction models.

4.8. Linear Regression

Linear regression refers to a multivariate linear combination of regression coefficients [63].
The coefficients are calculated by the generalized least square technique. Linear regression is
deterministic and the parameter is less, there is no need to adjust something other than the data break
for model training and testing. Linear regression and Random Forest Regression are very common
regression algorithms in general and time series regression algorithms that have already been used in
the field of predictive maintenance [73]. Linear regression model in machine learning is presented
in Figure 11.

ML algorithms including linear regression, RF, and Symbolic Regression (SR) are applied in
modeling the condition of a healthy industrial machinery [63], where they proposed a methodology for
detecting and predicting drifting behavior (called concept drifts) in continuous data streams. Further,
a real-world case study was presented on industrial radial fans. Based on the results obtained using
the synthetic data, both the results from concept drift detection and prediction are highly successful.
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Figure 11. Linear regression in machine learning.

4.9. Symbolic Regression (SR)

SR refers to models in the form of a syntax tree composed of arbitrary mathematical symbols
(terminals: constants and variables, non-terminals: mathematical functions) that can be easily converted
into simple mathematical functions. Top-down syntax trees are reviewed for target estimation [63].
Syntax trees are developed using the stochastic genetic programming technique from the field of
evolutionary algorithms [74].

SR has been applied in modeling the condition of a healthy industrial machinery [63]. The study
proposed concept drifts methodology in continuous data streams. Further, a real-world case study was
presented on industrial radial fans. Based on the results obtained using the synthetic data, both the
results from concept drift detection and prediction were highly successful. Sample of SR algorithm is
shown in Figure 12.
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Figure 12. Example of SR algorithm.

4.10. Other Machine Learning Algorithms

Janssens, O. et al. [75] reported a study on DL for Infrared Thermal Image Based Machine Health
Monitoring, where in the study they considered Convolutional Neural Network (CNN), a Feature
Learning (FL) tool, in detecting the various conditions of the machine. Moreover, FL was considered
because it requires no feature extraction nor expert knowledge. Transfer Learning (TL) is a means
to reuse layers of a pretrained Deep Neural Network (DNN). This was mitigated in their study.
Case studies have been carried out on machine-fault detection and the oil-level prediction; in both
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cases, results have shown that CNN outperforms the classical FE methods. They added that the
proposed method has the potential to improve online CM, like offshore wind turbines. Another
potential application is the monitoring of bearings in manufacturing lines. Using thermal imaging
together to the trained CNN allows identifying the location of the faults in the manufacturing lines.

Huuhtanen, T. and Jung, A. [76] proposed a study on DL for predictive maintenance of photovoltaic
panels. CNN was applied for monitoring the operation of photovoltaic panels. In fact, they estimate
the regular electrical power curve of the photovoltaic panel depending on the power curves of the
neighboring panels. An unusually broad difference between the predicted and the actual (observed)
power curve can be used to suggest a malfunctioning panel. By the means of numerical experiments,
they are able to demonstrate that the proposed method is able to predict accurately the power curve
of a functioning panel and the method out-performs the existing methods that are based on simple
interpolation filters.

Pan, Z. et al. [77] proposed a modular cognitive acoustics analytics service for IoT that provides
customers with an incremental learning approach to improve their analytical capabilities for
non-intuitive and unstructured acoustic data through a combination of acoustic signal processing.
They pointed out that different types of data formats created from complicated acoustic environments
can go through pre-processing and noise reduction stages and then feed into higher-level analytics
platforms. The model allows for acoustic signal-based anomaly detection, acoustic grouping, acoustic
signal processing, acoustic array processing, and other features. In classification, the model uses a
baseline algorithm when a small amount of data is used, while when a huge amount of data is used,
this model utilizes a technique based on the DNN to perform a more accurate classification. This service
will include signal processing data, such as sound intensity, spectral centroid, frequency, etc., and can
support numerous applications. Eventually, the service can also detect several sources of sound that
allows detection and enhancement of the acoustic source. Experimental findings show that this service
achieve excellent performance. The application case for the diagnosis of a washing machine is defined.

Jimenez-Cortad, A. et al. [78] carried out a case study based on the application of predictive
maintenance to a real machining process. The aim of their study is to increase tool life of the machine
by application of ML methods for RUL prediction. Real-time data obtained from the computer and
then approximation of the data performed in the analysis. Their study conducted linear and quadratic
regression models to perform the design application for RUL estimation. Finally, accurate results
were found in their study to predict RUL for comparison. Luo, W. et al. [79] employed predictive
maintenance approach for machine tool driven by digital twin to avoid faults and causalities. In their
study, a hybrid approach was utilized to calculate RUL results that show the prediction error ratio
(between actual value and predicted value).

In this section, a summary on the applications of ML algorithms in PdM will be given.
Table 1 summarizes the analysis and comparison among these algorithms that are mainly applied in
the field of PdM according to ML techniques, ML categories, equipment systems, and type of data.
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Table 1. Recent Applications of machine learning (ML) in Predictive Maintenance.

ML
Techniques ML Cat. Equipment/

System

Device Used
for Data

Acquisition

PdM Data
Description Data Size Data Type Key-Findings Ref

ANN C

Tool wear for
CNC-MM,

Deckel Maho
DMU 35M

Bosch XDK
sensor

Acceleration
data

3-dimensional
input vector Real data

• Tool wear monitoring of a CNC-MM
with equipped built-in sensors.

• Applicable to older machines that can be
utilized in I4.0.

• Explore and enable a rapid adaptation to
new environmental conditions.

• It can be used to predict RUL of the tool.

[46]

ANN C
AK-FN059 with
12 cm cooilng

fan

MMA8452Q-
Accelerometer

Motor vibration
measurements

9180
observations

with 4 attributes
Synthetic data

• Generates a training dataset based on
vibration measurements.

• ANN trained to predict equipment
failure time.

• k-fold cross-validation and model
generalization performed.

• Compared with other ML techniques.
Resulted that ANN performs better.

• In comparison to RT, RF, and SVM, ANN
shows better results.

[47]

LR
XGBoost

RF
C Printing

machine -
Machine’s

operational
status data

100 operational
variables/minute Real data

• The fit of the models was determined by
various metrics.

• Based on decision thresholds, RF and
XGBoost perform better than LR.

• All the algorithms performed similarly
better in terms of ROC.

[62]

ANN
SVM C, R

Rail-Tram track,
250 km of

double tracks
and 25 routes

Non-contact
optical laser

Track geometry
data-gauge

measurements
data

- Real data

• Used for tracking gauge deviation and
measurements prediction.

• Slightly ANN models perform better in
predicting the gauge deviation of
straight segments.

• SVM models are better in predicting
gauge deviation of curved segments.

[48]
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Table 1. Cont.

ML
Techniques ML Cat. Equipment/

System

Device Used
for Data

Acquisition

PdM Data
Description Data Size Data Type Key-Findings Ref

ANN C Wind turbine at
1200 rpm

Accelerometer
sensor

Vibration
signals data

243 datasets
with 10,000

sample length
Real data

• Investigated the time domain vibration
signatures for critical components.

• Acquired the healthy and faulty
condition vibration signature.

• Model classifies faulty and healthy state
features with 92.6%
classification efficiency.

[10]

DNN-CNN,
DL C Rotating

machinery

IRT image,
temperature

sensors

Accelerometer,
thermocouple,
and thermal

camera
measurements

5 REBs × 8
conditions for

IRT and
5 REBs × 12
temperature

measurements

Real data

• CNN algorithm applied to detect several
conditions of rotary machinery.

• The technique is able to improve online
CM in offshore wind turbines.

• Can be applied in manufacturing lines to
monitor bearings.

• Oil-level prediction and machine-fault
detection CNN outperforms.

• FL technique provides 6.67% better
compared to the FE technique.

[75]

CNN C Photovoltaic
panels Wireless sensor Electrical power

signals

400 samples at
1-min sample

interval for
1000 days

Synthetic data
and real data

• CNN techniques can be applied in PdM
of PV panels.

• Validated with the means of numerical
experiments, that can accurately predict
the power-curve of functioning panel.

[76]

CNN C

IoT- IBM system
x3650 M4

machine that
has 16 hardware

threads with
192 GB memory

Acoustic sensor Acoustic sensor
data

Dataset of
>20 h-audio

within 7-sounds
of classes

Real data

• Model allows acoustic classification,
signal based anomaly detection, signal
processing, sensor array processing.

• Uses deep-NN to provide more precise
classification when large amount of data
is used.

• Presented excellent performance and it
can provide signal analysis results.

[77]
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Table 1. Cont.

ML
Techniques ML Cat. Equipment/

System

Device Used
for Data

Acquisition

PdM Data
Description Data Size Data Type Key-Findings Ref

NN -
APU-gas

turbine, GTCP
331–430 kW

Fleet of Airbus Gas path
measurements

310 routine
records, with 14-
starter nominal
and 12-starter

degraded
conditions

Real data

• Developed an NN and physics-based
models for starter
degradation monitoring.

• Both models are able to monitor the
health of the starter and can illustrate
symptoms of degradation.

• NN provides more accurate results with
the starters at healthy condition.

• Physics-based provides better results on
the starters with growing degradations.

[49]

BN C TASMI-01 - Semiconductor
manufacturer

1890-time
intervals with

24 failure
occurrences

Real data

• Failure predictions performed by BN for
event-driven maintenance data.

• The promising results obtained from
offline prediction of the case study
reveals the significance to outspread it
for real time predictions.

• The BN model can be used for fault
diagnosis not only for failure inference.

[80]

RF C

Rotating
machinery with
SEW Euro drive

1.1 kW motor

IRT imaging
and

Vibration-based
sensors

Thermal
imaging and

vibration data

5 bearings × 8
conditions for

IRT and 5
bearings × 12
measurements

Real data

• A multi-sensor system for rotating
machinery using a feature
fusion method.

• Multi-sensor technique can compensate
the shortcomings of the heat
or vibrations.

• Offers a significant increase in fault
detection performance.

[64]

RF, DT, NB,
BC C Turbofan-engine

Phonic
wheel-pressure,
fuel metering

valve,
temperature

sensors

Turbofan-engine
multidimensional

data

1616
observations of
abnormal and

healthy engines

Real data

• Developed a learning algorithm that
automatically detects and analyzes
multidimensional dataset
of turbofan-engine.

• The model has the ability to select good
combinations of tests with higher than
85% pre-identification.

[65]
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Table 1. Cont.

ML
Techniques ML Cat. Equipment/

System

Device Used
for Data

Acquisition

PdM Data
Description Data Size Data Type Key-Findings Ref

RF, -DT,
NBC, SVM,
LR, linear

ridge

C Rotor bar-
LS-PMSM

Torque and
speed sensors

Transient
current signal

data

320 tests for
healthy and
faulty motor

Real data

• Uses RF to detect a broken rotor bar
failure in LS-PMSM.

• RF classifiers results outperformed
compared to other techniques result.

• Validity and reliability of the RF
technique for fault detection performed.

• The technique attained 98.8% correct rate
of diagnosis.

• Impulsion and mean-index
are identified.

[66]

RF, TF-IDF
-SVM, LR C Aircrafts -

Historical data
of aircraft

maintenance
systems

1542 events
with 131 fault

types for 2 years
Real data

• ML model for fault prediction using
TF-IDF and RF of aircraft.

• Used TF-IDF to extract the features of
the raw-dataset from past flights.

• RF achieves 66.67% true positive rate
with a low of 0.13%.

[67]

RF, and
XGBoost C

Production lines
and

semiconductor
-

Bosch and
SECOM

manufacturing
datasets

Bosch: 1.2 mill
observations

and over 4000
features.

Real data • Analytics framework applied in fault
detection to Bosch and SECOM datasets.

[81]

GLM, RF,
GBM, DL - Semiconductor

Tool sensors,
process recipe

and wafer
count.

Past
maintenance,
tool sensors,
and process

datasets

21 tool-sensors,
3 process recipe
and wafer count

Real data

• Ensemble learning selected as best fit
technique for PdM for semiconductors.

• PdM strategies on ML models and
equipment data.

• Emphasized the need to adopt cross
validation on ensemble PdM
based models.

[82]

SAFE R

Semiconductor
Ion

Implantation
process

31 sensors, -
ion-implantation

tool

Maintenance
cycles dataset

33 R2F
maintenance
cycles with 31

variables

Real data

• An approach that dealt with time-series
data extraction for PdM.

• Applied SAFE methodology in
time-series PdM.

• The technique outperforms the classical
feature extraction methods.

[83]
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Table 1. Cont.

ML
Techniques ML Cat. Equipment/

System

Device Used
for Data

Acquisition

PdM Data
Description Data Size Data Type Key-Findings Ref

RF C Industrial
pumps

Accelerometer
and

temperature
sensors - ABB
WiMon 100

Industrial
pumps

vibration data

30 chemical
plant industrial
pumps for 2.5

years with 1066
features.

Real data

• A case study based on real data of
industrial plant.

• RF algorithm that can detect faults in
vibration data for up to 7 days.

• The model was validated using data
collected for over 2.5 years.

[84]

RF C Industry 4.0 -
cutting machine

Machine PLCs
and

communication
protocols
sensors

PLCs and
communication

protocols
sensors data

530,731 data
readings for 15

different
machine
features

Real data

• Permits dynamical decision rules
for PdM.

• Shows a suitable performance in
predicting the machine stages with
good precision.

• Predicts different stages of machine with
95% of high accuracy.

[85]

RF C
Refrigeration

systems of
supermarket

Temperature
sensors

Temperature,
work-order data
and defrost state

2265
refrigeration

cases across 17
stores for 2

months

Real data

• ML based model for early detection in
refrigeration system.

• Validated with a real data for 2265
different refrigerators.

• Achieved 89% in precision.
• A lead time of 7 days.
• A recall of 46% when evaluated on

unseen cases.

[86]

RF C HDD - Historical data

Dataset of
16,862 failures

and 47,677
non-failures for

2 years

Real data

• PdM of HDD failure detection based on
Apache Spark.

• The model can assist IT staff by making
them more proactive and productive by
identifying imminent disk
failure quickly.

[87]

RF C Induction motor,
2.2 kW

Datalogger with
WIFI

communication
capability

Voltage and
Current

waveforms data

3-phases dataset
of

1159-(357-healthy
and 802-faulty)

Real data

• Analyzed single and double
classifier approach.

• Methods could effectively be used in
detecting the inter-turn short- circuits
using few numbers of data points.

• Double classifier approach produces a
better result than single.

[88]
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Table 1. Cont.

ML
Techniques ML Cat. Equipment/

System

Device Used
for Data

Acquisition

PdM Data
Description Data Size Data Type Key-Findings Ref

RF C Wind turbine
Alarms

activations and
deactivations

Alarm types
and operational

dataset for
17-turbines

448-alarm
types and

104-operational
data (2 years-

1,787,040
dataset)

Real data

• Approach to generate a predictive data
driven models based upon
historical dataset.

• A front-end where the status of the
turbine can be visualized in real time.

• Experiments proved that the
implementation has gained an optimal
overall success.

[89]

RF C
Trucks and
buses air

compressors

Logged
on-board

LVD and VSR
dataset with

65,000 European
Volvo trucks

1250 unique
features Real data

• Commercial vehicles air compressor to
detect forthcoming faults.

• Generalizes to repair several
components of a vehicle.

• Used RF and two techniques for
feature selection.

• The ML feature-based model outperform
compared to the human ones.

• Usage sets and Beam search 1 were
found to be the best features.

• A positive profit was shown by all the
features at final evaluation.

[90]

LSTM Classifier Turbofan engine C-MAPSS tool –
multiple sensors

NASA Ames
Prognostics

Data Repository

A dataset of
4subsets with

708-trajectories
by 21 columns
for 21 sensors

Synthetic data

• A DPM framework can be used for
pro-prognostics decisions and
prognostics estimations.

• No specific degradation model or a
specific RUL function.

• Does not predict the RUL.
• It provides the probabilities of when the

system will fail into several
time intervals.

• Model that permits maintenance costs
and inventory evaluation.

[91]
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Table 1. Cont.

ML
Techniques ML Cat. Equipment/

System

Device Used
for Data

Acquisition

PdM Data
Description Data Size Data Type Key-Findings Ref

LSTM Clustering Engine Operational and
Sensors

CMAPSS NASA
simulation
dataset of

engine
degradation

14-inputs and
4-outputs of (21

sensor
measurements

and
3-operational

settings)

Synthetic data

• Implemented an LSTM model to Apache
Spark on a large-scale dataset for current
life condition predictions of an engine.

• Deals with sequential data.
• LSTM network output is to decide the

current state of a component before their
life ends.

• Trained and tested on an engine
degradation open source data.

• It can used in industries to detect break
downs before they occur.

[92]

1NNC,
LS-SVM-linear

kernal
C Rolling bearing TFI recognition Vibration

signals data

80 samples for a
test with 1024
data points.

Real data

• Developed an approach for fault
monitoring in bearings based on sparse
TFIs recognition.

• Traditional time–frequency drawbacks
can be overcome by applying STFA-PD.

• STFA-PD method shows a promising
diagnosing performance.

• Used to obtain high-quality TFIs and also
used in analyzing non-stationary signals.

[93]

SVM, - PF,
GAPF R Aircraft LVDT and

RVDT

Actuator
internal oil

leakage fault
data

2400- training
samples and
480- testing

samples
datasets

Real data

• Studied a novel oil leakage fault
prognostics method for actuators.

• Presented a hybrid SVM-PF framework
for actuator fault prognostics.

• Tested and the results obtained as a
satisfactory performance.

• SVM-PF hybrid framework has better
prognostics accuracy.

• Higher fault resolution was observed
compared to traditional ML.

[94]
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Table 1. Cont.

ML
Techniques ML Cat. Equipment/

System

Device Used
for Data

Acquisition

PdM Data
Description Data Size Data Type Key-Findings Ref

SVM, RF,
GBM R Vending

machines -

System logs,
operation logs,

context, process
and

performance
logs data.

3450
malfunction

machines data
Real data

• Framework for machines to increase
efficiency and reduce maintenance cost.

• Used vending machines real data to
validate the proposed framework.

• Two models developed for PdM, one for
diagnostics and the other for
two-stage prognostics.

• The diagnostics model can achieve more
than 80% of accuracy.

• The prognostics model outperforms
one-stage conventional
prediction models.

[56]

SVM, Binary
LR, Gamma

process
C, R, D Track - Track geometry

data of railroads

6500 red and
17,500 yellow

tag defects
records of

dataset

Real data

• Suggested that ensemble methodology
outperform the other techniques.

• A technique for forecasting track
geometry defects by developing an
ensemble classifier.

• In all cases, ensemble classifier proved to
outperform the individual algorithms.

• The technique can be applied to any type
of tracks and other type of defects.

[95]

SVM, RF,
LDA C Railways -Mile

track - Track geometry
data

1 mile of track
with 28

inspection dates
and 31 features

by 31
parameters

Real data

• Investigated the possibility of
minimizing multivariate track geometry
indices into a low-dimensional form.

• SVM was found to be the most effective
technique and predicts better
track defects.

• Measured the performance of the model
using TPR and FPR.

[96]
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Table 1. Cont.

ML
Techniques ML Cat. Equipment/

System

Device Used
for Data

Acquisition

PdM Data
Description Data Size Data Type Key-Findings Ref

SVM-
Regression

kernel
R

Gas turbine
engine of an

aircraft

Time series
sensor

Sensor
measurements
data of the time

series from
CMAPSS
dataset of
aircrafts

CMAPSS
dataset-14

inputs with 21
outputs

Synthetic data

• Model for SVM in prognostics prediction
of multiple time series tasks.

• Testing was carried out with simplified
time-series simulated data.

• Improvements were shown from the
results obtained over the conventional
SVM results.

[97]

1st and 2nd
class SVM,

DT, RF,
LSTM-NN

- Power
Transformer -

Insulating oil
tests dataset:

Mechanical and
chemical

measurements

15,031 tests with
30 variables Real data

• Used insulating oil tests dataset for
failure prediction in power transformers
using several ML techniques.

• SVM produces best performance among
the other tested techniques.

• SVM achieved 77% recall performance
with 35% FPR.

• LSTM did not give better performance
because the data was collected at
low frequency.

• Collecting the data at an adequate
frequency is better than large number
of observations.

[98]

SVM,
K-means,

K-NN,
Euclidean
Distance,
and CRA

C Wind turbine
bearings

Accelerometer,
displacement,
velocity, and

torque sensors

Vibration
signals data - Real data

• Applied several ML methods for bearing
fault detection.

• Investigated the similarity of the ML
models results.

• Vibration signal analysis was performed
while studying and extracting the
pattern-behavior of bearings.

• CRA can recommend a fault with
93% accuracy.

[99]
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Table 1. Cont.

ML
Techniques ML Cat. Equipment/

System

Device Used
for Data

Acquisition

PdM Data
Description Data Size Data Type Key-Findings Ref

SVM,
MLP-ANN C Electrical power

systems -

Partial
Discharge

samples and
noise samples

dataset

100 thousand
datasets

Synthetic data &
Real data

• Parallelism and pipelining methods can
give a significant maximization of
sample rates.

• The method provides better performance
compared to other classifiers.

• Use low number of self-configuration
capabilities and
configuration parameters.

• The technique can deal with uneven
dimensional input spaces.

• The model can process with simple
evaluation function.

[100]

SVM, k-NN,
MC C

Tungsten
filament - Ion
implantation

Ion-implantation
tool

Maintenance
cycles dataset

N = 33 R2F
maintenance
cycles with 31
variables and
3671 batches

Real data

• Approach for integral faults type.
• Can be used in high-dimensional and

censored data problems.
• Can be applied to any maintenance

problems as R2F data is available.
• The model can be applied in health

factor indicator.
• Shows better performance than other

PdM classical methods and SVM.
• MC-PdM - k-nn outperforms

PvM approaches.
• SVM offers better performance

than k-nn.

[14]
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Table 1. Cont.

ML
Techniques ML Cat. Equipment/

System

Device Used
for Data

Acquisition

PdM Data
Description Data Size Data Type Key-Findings Ref

Dynamic
regression R Bearing PRONOSTIA

platform

Vibration
measurements

data

2560 samples
amplitude of the
vibration signals

Real data

• Method for rolling element bearing.
• Predicts the bearing health and its URL

using regression models.
• Used dimensionless quantity as bearing

health indicator.
• ABT was used to determine TSP.
• Validated and tested on

PRONOSTIA dataset.
• Achieved a reasonable result compared

to the existing techniques.

[101]

GA-ANN,
SVM C

Rotating
machine-Gear

box

Acoustic
emission and

vibration
sensors

Acoustic
emission and

vibration signals

(16 time-domain
and 6

frequency-domain
Real data

• Investigated an early detection of the
potential failures of rotating machine.

• Early misalignment detection was very
hard using frequency analysis technique.

• The feature analysis method can detect a
growth in fault.

[102]

SMDP -
Ram

feed-Boring
machine

-

Feed
straightness,

positioning and
hydrostatic

pressure units

18 degradation
histories and 16
failure histories

Real data

• Developed a unit-level and system-level
maintenance of a boring machine.

• Achieved low maintenance cost in
comparison to other techniques.

• The model can be generalized to a wide
variety of systems with a particular
failure mode.

[103]

HC,
k-means,

PCA,
model-based
and Fuzzy
C-Means
clustering

Clustering Exhaust fan Vibration
monitor sensor Vibration data

The vibration
was collected at
every 240 min

for 12 days with
41 observations

Real data

• Early fault detection of exhaust fan using
several ML algorithms.

• T2 statistic method is the best for faults
detection only.

• Clustering algorithms is the best for fault
detection under different levels.

• PAC produced better results compared
to model-based techniques.

[12]
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Table 1. Cont.

ML
Techniques ML Cat. Equipment/

System

Device Used
for Data

Acquisition

PdM Data
Description Data Size Data Type Key-Findings Ref

k-means Clustering Laser melting Temperature &
pressure sensors

Laser melting
machine sensor

data

206
manufacturing
processes data

with 3D- matrix
(7 × 3 × 206)

Real data

• Analyzing and visualizing offline-data
from several sources.

• The clusters were identified by utilizing
three sensors.

• Three faulty and normal operation
stages were identified by the sensors.

• Implemented a CMS that permits
machine tools for PdM solutions.

[104]

k-means, -
DL, RNN, C - Vibration

sensors

Vibration data
and categorical

metadata.

51 vibration
sensors for 2.5

years
Real data

• Sequential data with categorical inputs
were used in machine health predictions.

• Validated using an ablation study.
• Can be used without making any

assumptions to the data on any dataset.

[105]

PCA,
k-means

C,
Clustering

Oil-immersed
power

transformer
-

Dissolved gas
concentrations

data

46-observations
with 6-variables Real data

• A study for automatically extracting
classes in dissolved gases.

• Class interpretation was according to the
information obtained for each gas
and TDCG.

• Permits to identify the major working
periods of the power transformer.

[106]

FURIA,
-ANN, SVM,

RF,
BayesNet,
LogitBoost

C Gas turbine - Big dataset of
gas turbine

11,934 instances
with 16

independent
variables for 49
measurements

Synthetic data

• Big data analytics maintenance
optimizing through CBM.

• The FURIA model produces better
decision boundaries.

• Simulation dataset of a sophisticated gas
turbine propulsion plant is used.

[107]
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Table 1. Cont.

ML
Techniques ML Cat. Equipment/

System

Device Used
for Data

Acquisition

PdM Data
Description Data Size Data Type Key-Findings Ref

DL C CNC machine Accelerometer
sensor Vibrational data

10,000 samples
with 1024 data
points for 288

days

Real data

• An early fault detection DL model under
time varying conditions for
CNC machine.

• Developed from vibration signals to
select impulse responses.

• Experiment show that the proposed
technique is not affected by
time-varying conditions.

• The model has the potential to detect an
early fault in manufacturing.

• The method can significantly detect the
machine tool health status.

[108]

DT, ANN,
RF, GNB,

BNB
C

Anode
production of

industrial
equipment

Process sensor

Process sensor
data within the

period of
operation

29 features and
96 faults with
4,852,153 data

points

Real data

• PdM technique for fault forecast in real
time before occurrence of an
industrial equipment.

• Predicts faults in industrial equipment
5–10 min before it occurs.

[109]

LR, DT,
SVM, RF,

kNN,
K-Means,

GBM,
AdaBoost

- Turbofan engine
Sensor

run-to-failure
measurements

Repository
dataset of
NASA for

turbofan-engine

Dataset
collected from

100 to 250
engines, each

engine with 21
sensor values.

Real data

• A comparative study for ML techniques
in predicting RUL of
aircraft-turbofan engine.

• The models can be applied in predicting
faults before their occurrence.

• Developed the ML models using NASA
prognostics data of turbofan-engine.

• Tested and validated, results obtained
have shown a promising result.

[21]

MGGP C Metal lathe
machine

Accelerometer
and noise level

meter

Vibration and
acoustic signals

data
42 data samples Real data

• Developed for probable faults detection
of metal lathe machine using
vibro-acoustic condition monitoring.

• Proposed MGGP framework based on it
is new measure of complexity.

• The model outperforms the classical
MGGP models.

[110]
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Table 1. Cont.

ML
Techniques ML Cat. Equipment/

System

Device Used
for Data

Acquisition

PdM Data
Description Data Size Data Type Key-Findings Ref

RLS, SVM R LM 2500 - Gas
turbine

Sophisticated
simulator of a

gas turbine

CODLAG
propulsion
plant data

9 × 51
experiments Synthetic data

• Techniques for the degradation
forecasting of propulsion plant.

• Tested using realistic and sophisticated
simulator of a gas-turbine.

• Effective solution in real application of
maritime for CBM purposes.

[111]

HC,
K-medoids,

K-means
Clustering

Semiconductor
manufacturing-

CVD process
CVD process Sensors dataset

80-sensors for
6-months:

6,912,000 data
points

Real data

• Validated the model using CVD process
sensor data.

• Outperforms the model with full sensors.
• OPTICS was found to be the best of all

the 5 algorithms.
• The model can be applied in engineers

making decision of CBM.

[13]

ARIMA, GB,
RF and RNN

R,
Clustering

Machine tool of
CNC Machine

Machine tool
signal recorder

Spindle load,
piece number,

and tool
position

2 years data.
1100 series and
550,000 pieces
were stored.

Real data

• Developed for simulation of RUL in a
machining phase based on a linear
regression model.

• Obtained more precise findings to
predict the RUL for comparison.

• Can be applicable to other processes
in production.

[78]

GBM,
K-nearest

Neighbors,
BNB, NN,

DT

C
Engine

equipped with a
rotating shaft

MEMS triaxial
accelerometer

Vibration, noise,
pressure,

temperature,
humidity

4000
acceleration

values
Real data

• Maximum peak in the Naïve Bayes
algorithm with a precision loss of 5%.

• Only NN algorithm behaves differently
compared to other algorithms.

• Best results obtained with isolation
forest algorithm by increasing the
training time with 20%.

[112]

LR, DTR,
RFR, SVR R CNC machine

tool

Accelerometer,
Dynamometer,

AE sensor

Vibration, force,
temperature,

federate, cutting
depth

3 sensors
utilized for data

collection
Real data

• Hybrid method predicts value close to
actual value with small error.

• Data driven method provides
less accuracy.

• Hybrid approach driven by Digital Twin
provides more precise predicted values,
6.27% at the end stage.

[79]
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Table 1. Cont.

ML
Techniques ML Cat. Equipment/

System

Device Used
for Data

Acquisition

PdM Data
Description Data Size Data Type Key-Findings Ref

• Approach verified by a case study of the
CNCMT tool life prediction.

K-means,
PCA Clustering Machine motor

Sensor, PLC,
Production
monitoring

system

Power, torque,
vibration,

temperature

13 datasets for
machine1, 9
datasets for
machine 2

Real data

• There are inliers within the dataset
which are seen in low frequency.

• Observed that torque measurement
deviates from normal range and
achieves the peak value. So that, the
spindle of Machine1 may not work
within the normal range.

• There are many inliers found and they
can give diagnostic information.

[113]

ANN, SVM C, R Building
facilities

IoT sensor
network

Temperature,
pressure, flow

rate

300 datasets for
condition

prediction.
Real data

• BIM and IoT facilitated the
implementation of predictive
maintenance to improve the feasibility of
FMM process.

• Consists of two layers: information layer
and application layer.

• Four modules are applied for
maintenance: (1) condition prediction,
(2) maintenance planning, (3) condition
monitoring, (4) condition assessment.

[30]

ANN C Packaging robot Sensor
Vibration,

temperature,
humidity

157 failure for 2
years. 8 input,

20 hidden and 4
output nodes

Real data

• MLP structure can cope with unplanned
downtime occurrence.

• Can reduce the unplanned production
downtime costs immensely.

• Theoretical and practical comparison of
failures provided.

[114]

SVM, LR C, R Nuclear power
plant

Temperature
sensor, pressure

sensor

Temperature,
power, current,

speed
- Synthetic data

• ML algorithm to predict maintenance of
nuclear infrastructure.

• Power consumption is monitored.
• Temperatures within electrical panels

are captured.

[115]



Sustainability 2020, 12, 8211 32 of 42

Table 1. Cont.

ML
Techniques ML Cat. Equipment/

System

Device Used
for Data

Acquisition

PdM Data
Description Data Size Data Type Key-Findings Ref

FFNN, RF,
LR C, R Oil analysis of

gearbox

Data obtained
from oil analysis

company

Oil condition
(loss of

additives or
contamination

detection)

26 features with
887,255 samples
collected from

126,644
gearboxes

Synthetic data

• Demonstrated the potential use of RF as
a diagnostic tool in PdM.

• The RF models managed to achieve high
recall, but the precision was low.

• RF achieved for LEAK a mean accuracy
of 0.9837.

• For OVHT, POIL, and OTHR, none of
the classification models showed
significant classification ability.

[116]

DT, RF, LR C, R Backblaze data
center SMART sensor vibration

232,662
recordings in

2018.
Real data

• Simulated the operation of several
predictive maintenance systems.

• Method used for bearing vibration
failure data.

• RF technique performs the best in terms
of predictive accuracy.

[117]

DNN, KNN C, R Turbofan engine Multi-sensor
temperature,

rotation speed,
pressure

21 featured data
sets. Real data

• C-RE has proven to be a robust feature
selection method.

• Identifies faults or occurrence of faults
during the asset’s life cycle.

[118]

NN,
weighted
NN, DT

C
Boiler and heat

pump of
(HVAC) system

Sensor in each
boiler and IoT

platform

Temperature,
number of

boilers, heating
requests, and

cycle

The data was
collected for 16
months, 1000
appliances of
ten different

models.

Real data

• Model exhibited best performance when
the LSTM2 with 3 hidden layers of 50
neurons and the LSTM3 with 1 hidden
layer of 25 neurons.

• Models exhibited worse performance
than other techniques.

• Weighted NNs has poor precision
compared with the NN models.

[119]

GBM, RF,
XGBoost,

NN
classifier

C
Woodworking

industrial
machines

Big Data
provided by
machine tool

data log systems

Vibration,
current,

temperature

Dataset divided
into two groups:

a training
set (70%) and

testing set (30%)

Real data

• up to 98.9%, 99.6%, and 99.1% accuracy,
recall, and precision respectively.

• PdM implemented to Big Data stream
processing system.

• Screens log files and forecasts the
computer’s status every 24 h.

[120]
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Table 1. Cont.

ML
Techniques ML Cat. Equipment/

System

Device Used
for Data

Acquisition

PdM Data
Description Data Size Data Type Key-Findings Ref

RNN, SVMi
k-nearest
neighbor

C Switchgear,
Infrared Sensor,

thermopile
array sensor

Temperature,
voltage, current - Real data

• The combination of novel sensor
technology and ML methods.

• Provides predictive maintenance
solutions for medium
voltage switchgear.

[121]

RF C Aircraft
Aircraft

advanced
sensors

Pre-defined
parameters,

failure messages

More than 7
years’ worth of
data collected.

Real data

• Model has a precision of more than 70%.
• Model predicts aircraft failure that leads

to component replacement.
• Predicts more than 50% of aircraft

component replacement.

[122]

LR R Jet engine
blades Flight sensor Temperature,

stress, strain - Real data
• 87% or higher in life consumption

prediction for 19 out 21 blade that had
failed at visual inspection.

[123]

MLP, LR,
GBT, SVM

R, C,
Clustering Wind turbine Public dataset

library, SCADA

Rotation,
temperature,

itch angle, wind
speed

Real data

• MLP produces the most promising
model for predicting failures on the
given dataset.

• MLP models is a good way of producing
a model with a lower variance than the
individual base models.

[124]

CNC-MM: CNC milling machine; PF: Particle filter; LVDT: Linear variable differential transformer; RVDT: Rotary variable differential transformer; GAPF: Genetic algorithm particle filter;
DBN: Dynamic Bayesian Network; FDD: Fault detection and diagnosis; BC: Bayesian classification; DT: Decision tree; GMB: Gradient boosting machines; DNN: Deep Neural Network;
GA: Genetic Algorithms; LS-PMSM: Line start-permanent magnet synchronous motor; DT: Decision tree: NBC: Naïve Bayes classifier; LR: logistic regression; 1NNC: 1-nearest neighbor
classifier; TFI: Time–frequency image; IRT: Infrared thermal; STFA-PD: Sparse time–frequency analysis method based on the first-order primal-dual algorithm; SMDP: Semi-Markov
decision process; APU: Auxiliary power unit; TF-IDF: Term Frequency-Inverse Document Frequency; HC: Hierarchical clustering; PCA: Principle component analysis; GLM: Generalized
linear model; GBM: Gradient boosting machine; FURIA: Fuzzy unordered rule induction algorithm; D: Deterioration; SLM: Selective laser melting; GNB: Gaussian Naïve Bayes;
BNB: Bernoulli Naïve Bayes; RNN: Recurrent neural network; RUL: Remaining useful life; LDA: Linear discriminant analysis; HDD: Hard Disk Drive; LSTM: Long Short Term Memory;
SAFE: Supervised Aggregative Feature Extraction; CRA: Collaborative Recommendation Approach; MLP: Multilayer Perceptron; LVD: Logged Vehicle Data; VSR: Volvo Service Records;
MC: Multiple classifier; MGGP: multi-gene genetic programming; BN: Bayesian Network; TASMI: Thermal Treatment equipment; R2F: Run to failure; RLS: Regularized least square;
REB: Rolling element bearings; MOM: Manufacturing operation measurement; CVD: Chemical vapor deposition; DBSCAN: Density based spatial clustering of applications with noise;
OPTICS: Ordering points to identify the clustering structure; FE: Finite element: FL: Feature learning; TPR: True Positive Rate; FPR: False Positive Rate; ABT: Alarm bound technique;
TSP: Time to start prediction; CMS: Condition Monitoring System; CODLAG: COmbined Diesel eLectric And Gas propulsion plant; DPM: Dynamic Predictive Maintenance.
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4.11. Commercial Platforms available for Machine Learning in Smart Manufacturing Industry 4.0

Data Science and Machine Learning Platforms offer platforms for the development,
implementation, and analysis of machine learning algorithms. Such systems integrate intelligent
algorithms for decision taking with data, thereby enabling developers to build a business solution.
Several platforms provide pre-constructed algorithms and simple workflows with functionality such
as drag and drop modeling and visual interfaces that quickly link required data to the end solution,
whereas others need further programming and coding skills. In addition to other machine learning
applications, these algorithms have functionalities for image recognition, natural language processing,
speech recognition, and recommendation systems [125]. The most common platforms are mentioned
in Table 2.

Table 2. Most common commercial platforms for ML.

Software Remarks

TensorFlow • Open source software library for numerical computation

IBM Watson Studio • ML framework designed for an AI-powered company.

RapidMiner • Combines the whole lifecycle of data science from data planning to
machine learning to predictive algorithm implementation.

Google Cloud AI Platform • Machine learning on any data, of any size.

Box Skills • Create structure and extract insights from your data at scale.

Google Cloud AutoML • Train high-quality models specific to their enterprise needs.
• Google’s transfer learning and Neural Architecture Search technology.

SAS Enterprise Miner • Streamlines the data mining process to develop models quickly.
• Find the patterns that matter most for processes.

MATLAB • Programming, modeling, and simulation tool developed by MathWorks.

IBM Watson Machine
Learning

• Use of existing data to create, train, and deploy machine learning and deep
learning models.

• An automated, collaborative workflow to grow intelligent business.

Anaconda Enterprise • Harness data science, machine learning, and AI.

Amazon SageMaker • Quickly build, train, and deploy machine learning models at any scale.

IBM Decision Optimization • Combines mathematical and AI techniques to help decision-making such
as operational, tactical/strategic planning, and scheduling processes.

IBM Cloud Pak for Data • Modernizes data collection and data analytics to infuse AI across
their organization.

BigML • Programmatic machine learning.

H2O
• Decrease fraud and money laundering risks.
• Improve product design, marketing and business innovation.
• Early disease detection, drug discovery, personalized medicine.

Oracle Data Science Cloud
Service • Train, deploy, and manage models on the Oracle Cloud.

Domino • Develop and deploy predictive models more rapidly.

Deep Cognition • Design, train, and deploy ML models without coding.

KNIME Analytics • Open source data analytics, reporting and integration platform.

Qubole • Provides a simple and secure data lake platform for ML, streaming,
and ad-hoc analytics.

5. Discussion and Conclusions

The literature review is categorized based on ML techniques, ML categories, equipment used,
device used in data acquiring, description of the applied data, data size, and data type. Based on
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performed comprehensive literature review, predictive maintenance continues to be an important
method for improving efficiency in all kinds of environments where machines that wear down over
time are involved. The possibilities of manufacturing and placing cheap, connected sensors will
continue to increase with the rise of IoT. As the amount of data increases with the number of sensors,
so will the possibilities of applying machine learning algorithms to perform predictive maintenance.

This paper presents a comprehensive review of ML techniques applied in PdM of industrial
components. Recent applications within the timeframe of ten years (i.e., 2010–2020) for several ML
algorithms were reviewed and presented. Finally, some discussions have been drawn based on the
literature review performed.

It is observed that predictive maintenance has enormous market opportunities, and that machine
learning is an innovative solution to predictive maintenance implementation. Yet, according to a
PwC survey, only 11% of the companies surveyed have “realized” predictive maintenance based on
ML [126]. There are some challenges implementing ML algorithms for PdM in I4.0 and those are
identified in Table 3.

Table 3. Challenges in implementing ML for Industry 4.0 (I4.0).

Challenges Remarks References

Identification of required data
to collect

• Launch of connected machines.
• Unclear evidence of data that provide value.
• Unclear business goal and planning.

[33]

Getting required dataset

• Without input data, it is not possible to run
ML algorithm.

• Much time and resources to establish
ML solutions.

• Choosing wrong ML algorithm causes loss time
and loss in cost.

[29]

Enhanced data science

• Determine an appropriate method of analyzing
the data.

• Choosing a correct method of presenting the
data-driven insights.

[126]

Security
• Safeguarding admission to critical equipment.
• Proactive approach to cybersecurity whilst

protecting connected assets
[29,33,126]

SVM, RF, and ANN, are the most used ML algorithms in reviewed literature. They have been
successfully applied in several field of PdM applications. Some authors [10,30,46–48,75–77,107,114,118–121]
focused on ANN ML algorithms. Some other authors [64–67,81,82,84–88,90,116,117] studied RF
technique. In the last years, use of SVM technique has received attention from authors [14,21,48,56,66,
79,93–100,102,107,111,115,121,124]. Some authors [21,56,82,112,120,124] have given attention to GBM
technique. Some authors [65,66,79,109,112,117] carried out studies by use of DT technique. However,
it is observed that there is less consideration given to XGBoost technique and there are only a few
studies found in the literature [62,81,120].

Based on the literature, it is observed that RF algorithm is the most extensively applied
ML technique for PdM, as it has been applied on various industrial equipment, components,
or systems, including rotating machineries, turbofan engines, rotor bar-LS-PMSM, aircrafts, production
lines, semiconductors, industrial pumps, cutting machines, refrigeration systems of supermarket,
hard drive disk (HDD), wind turbine, vending machines, and many others. However, authors
usually focused on CNC Machines [46,78,79], wind turbine [10,89,99,124], aircraft [67,94,97,122,123],
and semiconductor [13,81–83].

Most of the data type used is real data; very few studies applied simulated or synthetic data
while developing the ML algorithms. Public data applied in developing ML algorithm PdM models
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include Bosch data, SECOM data, Repository dataset of NASA for turbofan-engine, CMAPSS dataset
of aircrafts, CMAPSS NASA simulation dataset of engine degradation.

• Vibration signals acquired using accelerometer are the most used data.
• The most applied ML category is classification.

According to existing research, a couple of limitations are highlighted. The limitations are the
following: (1) Although the classifiers have presented excellent accuracy in the distinction between
states, they are required to be trained with a complete dataset of all the faults. (2) Algorithms are
selected base on developer’s experience and this situation can have influence on variable of prediction
results. (3) Carrying out a study with a single prediction method may not present excellent results.
Therefore, application of other methods to provide comprehensive results between methods can give
better understanding about the study. (4) Cross validation for models can be unsuccessful due to lack
of RAM memory.

Moreover, some of the works conducted by this research employ regular machine learning
methods without parameter tuning. Perhaps this is due to the fact that PdM is a new subject for
industry experts and is beginning to be explored. It is also important to point out that it is appropriate
to have the R2F and PvM strategies already applied in its process to collect data for PdM modeling in
order to obtain good results of a PdM strategy in a plant. Based on that data, designing and validating
a PdM strategy becomes feasible. During this study, it was noted that there is incremental application
of machine learning techniques to develop PdM applications. Integrating PdM and machine learning
in some applications provides cost reduction. However, the incorporation of PdM techniques with the
new sensor technologies can be seen as avoiding unnecessary replacement of equipment, saving costs
and improving process safety, availability, and performance.

This paper presents a comprehensive review of ML techniques in PdM by identifying the most
used ML techniques, industrial areas where ML is applied, and utilized data type for ML applications,
and proposes a way forward, and provides a foundation for further research. Below, remarks for
further researches are made to motivate authors and practitioners.

• Extraction of real time data using intelligent data acquisition system can help to automate
predictive maintenance.

• Combination of more than one ML models can provide better prediction compared to use of
individual model.

• ML model implementations based on cloud can be further studied.
• Classification and Anomaly Detection algorithms can be combined to maintain precision of

classification models without losing Anomaly detection advantages. By this way, PdM can be
applied to equipment or system which does not have large dataset.
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