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Abstract: The evolution of toppling deformation of anti-dip slope is essentially a process of energy
dissipation and transformation. Aiming to study the characteristics of energy evolution in different
stages, the DEM (discrete element method) software PFC (Particle Flow Code) was utilized to
establish a two-dimensional numerical model for a bank slope in Chongqing based on geological
background data and field investigation. The DEM model was proven to be reliable not only because
the deformation discrepancy between the numerical model and actual bank slope was not large but
also because some obvious fractures in the actual bank slope can readily be found in the numerical
model as well. In this article, content about displacement in the shallow layer was analyzed briefly.
Special effort was made to analyze the energy field and divide the toppling deformation process
into three stages. (1) Shear deformation stage: this is an energy accumulating stage in which the
strain energy, friction energy, and kinetic energy are all small and the deformation is mainly shear
deformation in the slope toe. (2) Stage of main toppling fracture surface hole-through: all three kinds
of energy present the increasing trend. The shear deformation in the slope toe expands further, and
the toppling deformation also appears in the middle and rear parts of the bank slope. (3) Stage of
secondary toppling and fracture surface development: strain energy and friction energy increase
steadily but kinetic energy remains constant. Deformation consists mainly of secondary shearing and
a fracture surface in the shallow layer. Secondary toppling and fracture surface develop densely.

Keywords: anti-dip slope; energy field; toppling deformation; evolutionary characteristics; discrete
element method

1. Introduction

According to statistics, 33% of slope deformation occurs in the anti-dip slope, and most large or
huge slope deformation failure usually occurs in the anti-dip slope [1]. A large number of engineering
examples indicated that the obvious feature in the failure of anti-dip slope was that the formation
of the flexural fracture surface needed a long incubation process, but once this kind of slope was
unstable, the extent of the damage was severe and would cause catastrophic failure [1]. Therefore, it
is necessary to study the evolutionary characteristics of deformation of this kind of slope, and many
scholars have utilized information about the strain and stress fields in the deformation process in order
to study evolutionary characteristics [2–14]. The mechanism of flexural toppling failure of jointed
rock slope was investigated by centrifuge tests. The basal failure plane oriented at an angle of 12
to 20 degrees was found to emanate from the slope toe, and a theoretical model based on limiting
equilibrium was utilized to analyze the experimental data, which was subsequently proven to have
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good accuracy [15]. The numerical simulation software 3DEC (3 Dimension Distinct Element Code)
was used to study the toppling deformation mechanism, founding the assumption that the slope
was continuous and setting to be constant in the two-dimensional case would make a significant
difference when it is applied in the three-dimensional case, and the dip direction of the toppling
discontinuity set was shown to clearly influence slope failure and stability [16]. Wu et al. [17] used
the three-dimensional DDA (Discontinuous Deformation Analysis) method to study the deformation
and failure mechanism of a local anti-dip slope in Amatoribashi, Japan, and finally found a new
calculation approach which could predict the rock mass instability process. Gschwind et al. [18]
analyzed a slope in Preonzo of Switzerland with the multi-stage structural and kinetic method and
found that planar or wedge sliding is the preferred kinematic mode. Alejano et al. [19] studied the
failure mechanism of a workbench with 30 m height and considered that the reason for its instability
was that a slender rock mass in the middle area overwhelmed the rock mass in the lower part, resulting
in the increasing damage. Xu et al. [20] utilized the microseismic (MS) monitoring system to detect
failure in a rock slope under long-term, continuous excavation and then used a numerical simulation
method to study the bank slope deformation and failure mechanism. Simulation data agreed well with
the monitoring data, all of them indicating that the deformation and failure characteristics of the rock
slope were mainly controlled by the pre-existing weak structural plane. Wu et al. [21] made use of
a composite fiber device in rock slope monitoring. The evolution process of rock slope sliding was
divided into three stages: the compression stage, uniform velocity deformation stage, and acceleration
stage. Zhang et al. [22] conducted a comprehensive analysis of the deformation mechanism of anti-dip
slope and divided the evolution process into four phases: bending tensile, bending fracture, sliding
tensile crack deformation, and ground subsidence and deep sliding. Li et al. [23] integrated the shear
strength reduction method (SSR) and a novel continuum-based discrete element method (CDEM) to
carry out a numerical simulation with a large-scale open-pit rock slope with typical anti-dip joint
in Fushun. Deformation characteristics and the failure process in simulation agreed well with data
obtained from radar, and the evolutionary process from stable to unstable was divided into three
stages: stable state, development, and initial failure state.

In summary, most of the scholars studied toppling deformation in view of stress or strain, and
analysis with respect to energy is relatively rare. However, the slope deformation process is essentially a
process of energy evolution, and the same amount of energy can not only present large area deformation
but also can present small area deformation. From above, the universality of existing research is
relatively poor, and the evolutionary characteristics of toppling deformation need to be studied in view
of the energy field.

2. Geological Background of the Bank Slope

2.1. Engineering Overview

Shown in Figure 1, the Xiaodongcao bank slope is located in the right bank of the upper Xixi
River in Zhongliang, Wuxi County, Chongqing. The slope height is around 526 to 1183 m; width is
around 700 m. The middle front section of the slope is quite steep, and the slope angle is around 45 to
68 degrees; the rear section is relatively gentle, and the slope angle is around 11 to 18 degrees. The
research region belongs to the middle and lower mountain karst geomorphology unit, generally high
in the south and low in the north. The main mountain ranges are arranged along the tectonic line, and
the river between mountains cuts deeply. The height difference in the river valley and mountain on
both sides can reach 800 to 1000 m.
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Figure 1. Geographic location of the Xiaodongcao bank slope. 

Shown in Error! Reference source not found.a, field investigation indicated that the bank slope 
is made up of Jialingjiang formation and Daye formation of lower Triassic nature. The front part is 
Jialingjiang formation, with thin to medium thick layered dolomite limestone (T1j); the middle and 
rear part is Daye formation, with thin to medium thick layered argillaceous limestone (T1d). As 
presented in Error! Reference source not found.b, strata in the slope topple and most of the 
occurrences are 185°∠82°. Regarding the influence of flexural toppling deformation, the change in the 
rock strata inclination in the affected area is around 20 to 75 degrees. 
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Figure 2. Details of exposed rock and soil: (a) plan of the exposed rock and soil mass on the bank 
slope; (b) profile of the exposed rock and soil on the bank slope. 

2.2. Regionalization of Surface Deformation of the Bank Slope 

Since the Zhongliang reservoir began to impound in January 2011, local deformation failure 
phenomena with different scales began to occur in the Xiaodongcao bank slope. Main deformation 
types in the affected area are fractures in the trailing edge, house cracking, many tensile fractures 
along the highway, and large areas of collapse which occurred on both sides of the valleys. 

The investigation of the engineering geological environment showed that the essence of the bank 
slope is a flexural toppling deformation body. Without the influence of human engineering, the bank 
slope had good stability, even though there was already some weak deformation. However, toppling 
deformation is aggravated into severe deformation due to the influence of reservoir construction and 
excavation of highway slopes. According to the investigation of surface deformation, the bank slope 
body was divided into seven deformation zones, as presented in Error! Reference source not found.. 

Figure 1. Geographic location of the Xiaodongcao bank slope.

Shown in Figure 2a, field investigation indicated that the bank slope is made up of Jialingjiang
formation and Daye formation of lower Triassic nature. The front part is Jialingjiang formation, with
thin to medium thick layered dolomite limestone (T1j); the middle and rear part is Daye formation,
with thin to medium thick layered argillaceous limestone (T1d). As presented in Figure 2b, strata in the
slope topple and most of the occurrences are 185◦∠82◦. Regarding the influence of flexural toppling
deformation, the change in the rock strata inclination in the affected area is around 20 to 75 degrees.
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Figure 2. Details of exposed rock and soil: (a) plan of the exposed rock and soil mass on the bank slope;
(b) profile of the exposed rock and soil on the bank slope.

2.2. Regionalization of Surface Deformation of the Bank Slope

Since the Zhongliang reservoir began to impound in January 2011, local deformation failure
phenomena with different scales began to occur in the Xiaodongcao bank slope. Main deformation
types in the affected area are fractures in the trailing edge, house cracking, many tensile fractures along
the highway, and large areas of collapse which occurred on both sides of the valleys.

The investigation of the engineering geological environment showed that the essence of the bank
slope is a flexural toppling deformation body. Without the influence of human engineering, the bank
slope had good stability, even though there was already some weak deformation. However, toppling
deformation is aggravated into severe deformation due to the influence of reservoir construction and
excavation of highway slopes. According to the investigation of surface deformation, the bank slope
body was divided into seven deformation zones, as presented in Figure 3.
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According to the investigation of the surface geological deformation, the deformation and failure
characteristics of each zone were statistically analyzed (Table 1). Shown in Figure 3 and Table 1, obvious
deformation zones were distributed in the front part and rear part of the bank slope and mainly were
surficial tensile fractures, slide of colluvium, and flexural fracture of rock strata.

Table 1. Each partition’s characteristics of slope surface deformation failure.

Zone
Number

Deformation
Extent Position Distribution

Height (m)
Area

(104 m2)
Material
Structure

Deformation
Characteristics

I Failure Trailing edge 1070–1180 4.9

Residual
slope,

mainly silty
clay

Cracks, house
deformation

II
Weak

deformation
Local failure

Ditch four 610–880 0.2
Landslide

layer, block
stone

Rock mass
collapse

III Failure Right side of
ditch four 610–755 1.2

Strongly
weathered
rock mass

Rock and soil
slide

IV Weak
deformation

Left side of
ditch two 650–720 0.5

Landslide
layer,

gravelly soil

Rock and soil
slide

V Failure Right side of
ditch four 610–755 2.4

Landslide
layer,

gravelly soil

Rock and soil
slide

VI Failure Ditch one 610–1160 1.1
Landslide

layer, block
stone

Rock mass
collapse

VII Weak
deformation

The whole
bank slope 526–1180 62.8

Dolomite
limestone,

mud
limestone

Flexural
toppling

2.3. Monitoring System

(1) Arrangement of monitoring system
As shown in Figure 4, the monitoring system of the displacement of the Xiaodongcao bank slope

is composed of 22 surface displacement monitoring points and 3 deep monitoring points. Monitoring
points of surface displacement were evenly distributed in the whole research area, 17 of them set in the
bank slope body and 5 of them set in the bank slope boundary. Monitoring points of deep displacement
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were installed along the middle line of the bank slope at the middle front part, middle rear part, and
rear part of the bank slope, respectively.
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Monitoring started in December 2011 and ended in December 2013. For the feature of the
arrangement of the monitoring system, we obtained five cross-sections and three longitudinal profiles,
as indicated in Figure 4. Since the subsequent numerical model of the bank slope will be made on
the basis of the 2-2′ profile (middle line), only displacement in the middle line will be introduced for
subsequent model verification.

(2) Monitoring displacement of middle line
Monitoring results (Figure 5) obtained from the 2-2′ profile showed that the horizontal displacement

gradually decreased from the front to rear part of the bank slope, and vertical displacement increased in
the same direction. In the middle line of the bank slope, analysis showed that horizontal displacement
(presented in shear deformation) is dominant in the front part; vertical displacement (shown in toppling
deformation) is dominant in the rear part.
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3. Establishing Engineering Geological Model for Bank Slope

3.1. Parameter Calibration

Particle Flow Code (PFC) is a general calculation and analysis program based on discrete element
theory, which is suitable for delineating granular and colloidal material into micro mechanical properties
and analyzing stress and deformation.
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The numerical model in the two-dimensional case is essentially a combination with lots of disks
with thick units. For this, the parameters set in the PFC are microscopic parameters describing the
physical features of particles and cemented section. Therefore, microscopic parameters should be
determined by numerical rock test in order to ensure that they match the experimental data as much
as possible.

A linear contact bond model (CBM) and linear parallel bond model (PBM) are provided in PFC to
simulate the cement section between particles. The PBM is selected for its mechanical property by
which it can resist moment. This property makes the combination of disks more similar to real rock
material. The maximum tensile and shear stress in the cement section are as follows:

σmax =
−F

n

A
+

∣∣∣∣Ms
∣∣∣∣R

I
(1)

τmax =

∣∣∣∣Fs
∣∣∣∣

A
+

∣∣∣∣Mn
∣∣∣∣R

J
(2)

R, A, I, and J are the radius, area, moment of inertia, and polar moment of inertia of the cement
section, respectively; F

n
, F

s
, M

n
, and M

s
are the axial and tangential force and moment. When

σmax > σc or τmax > τc, the cement section will break, where σc and τc are the tensile strength and shear
strength, respectively.

All traditional rock tests can be simulated in PFC, and we can also obtain numerical macroscopic
parameters. When numerical macroscopic parameters match well with the real ones, this set of
microscopic parameters will be used in the subsequent simulation.

Calibrating microscopic parameters is mainly based on traditional macroscopic parameters like
Poisson’s ratio υ, Young’s modulus E, and uniaxial compressive strength σc. Having already obtained
the macro parameters (Table 2), a numerical uniaxial compression test (UCS) and biaxial rock tests
(Figure 6) were continuously conducted to calibrate the microscopic parameters based on methods
recommended by Itasca and existing research results [24–26].

Table 2. Macro parameters of rock mass.

Formation
Lithology

Young′ s
Modulus

Poisson’s
Ratio

Uniaxial
Compressive

Strength

Tension
Strength Cohesion

Internal
Friction
Angle

E/GPa ν σc/MPa σt/MPa c/MPa ϕ/◦

T1j 5.540 0.245 18.15 −0.186 1.843 29.74
T1d 2.254 0.297 10.16 −0.037 1.003 20.33
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From uniaxial compression tests, uniaxial compressive strength (σc) can be directly observed from
the stress–strain curve (Figure 6). Young’s modulus (E) and Poisson’s ratio (υ) can be obtained from
Formula (3) and (4) shown below:

E =
σ50

εl50
(3)

υ =
εd50

εl50
(4)

σ50 represents half of the uniaxial compression strength; εl50 and εd50 are the axial strain and
transverse strain to σ50, respectively. Axial stress can be obtained from monitoring the force in walls;
axial strain can be measured from displacement of walls.

Cohesion c and internal friction angle ϕ are obtained by biaxial test under different pressures and
the envelope of the Moore stress circles; tension strength (σt) was obtained by tensile test.

Microscopic parameters of two type of rock in the research area are shown in Table 3.

Table 3. Microscopic parameters of rock mass.

Items Values

Formation Lithology T1j T1d

Minimum particle size (m) 0.5 0.5
Maximum particle size (m) 1.0 1.0

Particle contact module (GPa) 2.5 1.2
Ratio of contact module 1.8 2.2

Particle friction coefficient 0.2 0.1
Parallel bond module (GPa) 2.5 1.2

Ratio of parallel bond module 1.8 2.2
Normal strength (MPa) 10.0 6.0

Tangential strength (MPa) 5.0 3.0
Friction angle (◦) 10.0 5.0

3.2. Model Introduction and Arrangement of Monitoring Points

(1) Model introduction
On the basis of obtaining rock data of the bank slope, the profile of the middle line of the bank slope

was chosen for establishing this numerical model. This model contains 102,462 particles (Figure 7),
where particles in the area of the joints are bonded by the smooth joint model and others bonded by
the parallel bond model. Horizontal displacement in the left and right boundary was fixed, as was the
vertical displacement in the bottom boundary.

Sustainability 2020, 12, x FOR PEER REVIEW 8 of 20 

 
Figure 7. Numerical simulation model of bank slope. 

(2) Arrangement of monitoring points in numerical model 
Aiming to obtain the evolutionary characteristics of the displacement field in the deformation 

process, monitoring points on the numerical model with horizontal spacing of 100 m were arranged 
at the shallow layer with a depth of 40 m (Error! Reference source not found.). All of them are named 
from A to J in the direction from slope toe to slope crest. 

 
Figure 8. Arrangement of monitoring points for numerical simulation of bank slope. 

3.3. Model Verification 

(1) Displacement contrast 
We compared the actual displacement monitored in JCD5 (above mentioned in Error! Reference 

source not found.) with simulation data obtained from monitoring point C, which also is located in 
the front part of the bank slope. The horizontal displacement curve obtained from the simulation is 
shown in Figure 9. 

Figure 7. Numerical simulation model of bank slope.

(2) Arrangement of monitoring points in numerical model



Sustainability 2020, 12, 7544 8 of 18

Aiming to obtain the evolutionary characteristics of the displacement field in the deformation
process, monitoring points on the numerical model with horizontal spacing of 100 m were arranged at
the shallow layer with a depth of 40 m (Figure 8). All of them are named from A to J in the direction
from slope toe to slope crest.
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3.3. Model Verification

(1) Displacement contrast
We compared the actual displacement monitored in JCD5 (above mentioned in Figure 5) with

simulation data obtained from monitoring point C, which also is located in the front part of the bank
slope. The horizontal displacement curve obtained from the simulation is shown in Figure 9.
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According to Figure 5, we can determine that the horizontal and vertical displacement of JCD5 at
the end of the monitoring time is around 161 and 66 mm, respectively. From Figures 9 and 10, we can
see that the simulated horizontal and vertical displacement of monitoring point C is around 223 and
43 mm, respectively, and the difference is 38% and 34%. The difference is possible when we do not
take the influence of the groundwater and engineering activities into consideration. The simulated
displacement and actual displacement similarly all show an increasing tendency.

(2) Deformation and fractures contrast
After the numerical model iteratively calculating 1 million steps, simulation results (Figure 11a)

show that shear failure occurs in the front region of the bank slope and the dip angle change is small;
obvious toppling failure occurs in the rear region and the dip angle change is large. The difference in
the angle change of strata is consistent with actual deformation characteristics (Figure 11b). Moreover,
the 80 m deep fracture revealed by actual well exploration and the back fracture in the trailing edge
exposed by trenching can be found in the marked area of Figure 11a.
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(3) Contrast with other methods
Cai et al. [27] made use of the cantilever beam limit equilibrium model to study the failure of

anti-dip rock slopes. They calculated the depth of the fracture surface of the Xiaodongcao bank slope
in elevations from 613 to 680 m and the average failure depth was 23.29 m. Marked with the orange
line in Figure 11a, the failure depth is around 27.74 m.

From the above, it is reasonable to assume that the model is dependable.

4. Evolutionary Characteristics of Displacement Field

Comparing the difference in shape features of the bank slope before and after the evolution of the
toppling deformation (Figure 12), we know that deformation becomes more and more obvious
from slope toe to slope crest. Deformation characteristics in various areas can be delineated
through the displacement field. The vertical and horizontal displacement will be combined with
deformation characteristics to analyze the characteristics of the displacement field in the process of
toppling deformation.

Vertical and horizontal displacement curves from monitoring points of the surface were compared
and analyzed. Figure 13 indicates that, in the early stage of the evolutionary process, areas with
large horizontal displacement are mainly distributed in regions with heights below 800 m, and the
deformation increases with cycle steps. It also shows that deformation to the free face occurs on the
whole surface of the bank slope. The increasing speed and value of horizontal displacement is the
largest in the area with heights of 900 to 1050 m. Then, it gradually decreases in the direction of the
slope toe and slope crest, and horizontal displacement at the slope crest is larger compared with that in
the slope toe.
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Comparing Figure 14 with Figure 13, vertical displacement is smaller with horizontal displacement.
Large vertical displacement areas are mainly distributed in regions with heights from 800 to 1100 m. In
the front part of the bank slope, vertical displacement is the smallest, and vertical upward displacement
occurs in this area in the later stage of the evolutionary process. The vertical upward deformation is
related to shearing deformation, which occurs in the front region and causes surficial rock mass in the
slope toe to be uplifted.
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In Figure 15, the spatial distribution of the ratio of vertical displacement to horizontal displacement
in the toppling process was analyzed, from which we see that displacement of the bank slope is mainly
composed of horizontal displacement. Vertical displacement in the slope toe is relatively larger for
uplift by shearing deformation, and the value of the ratio is larger in the middle and rear parts of
the bank slope, meaning that the influence of vertical displacement is stronger than that in the front
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part. In the evolutionary process, the value of the ratio in the middle part (elevation of around 900
to 1050 m) of the bank slope gradually increases with cycle steps, but the value in the front and rear
parts of the slope gradually decrease with cycle steps. The decrease showed that the influence of
vertical displacement in the middle section becomes more and more significant in the later stage of the
evolutionary process.
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Figure 15. Evolutionary characteristics of the ratio of vertical displacement to horizontal displacement
on surface.

Although the evolutionary characteristics of the toppling deformation can be directly and vividly
expressed in the displacement field, there are a lot of significant differences in various regions of
the slope, so it was hard to establish a unified reference standard for analyzing the evolutionary
characteristics of toppling deformation.

5. Evolutionary Characteristics of Energy Field

5.1. Energy Evolution Characteristics in Whole Toppling Process

Energy dissipation in PFC obeys the following rules:
Total energy deposited in particle:

W(i) =
1
4

(
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(i)
+ M−

(i)

)
V2
(i) (5)

Lost energy in every cycle for friction:
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[1
2

(
M+

(i)
−M−

(i)

)
V2
(i)

]
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V(i): Particle velocity

M(i): Particle mass

The ratio of lost energy in every cycle to maximum energy saved in particle is called the “ratio of
the lost”, which can be expressed as follows:
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Critical friction coefficient D can be expressed as the ratio of the lost when the friction coefficient
is small:
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∆W(i)/W(i)
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π

(8)
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α is the friction coefficient deciding the value of the friction force. It can be set to all of the particles
in the model by PFC’s built-in code, which has the following advantages: (1) friction influence is only
installed at the acceleration part and there will be no wrong friction force in static state; (2) friction
coefficient is dimensionless; (3) friction is independent of frequency.

The toppling deformation process is essentially a process of transformation and dissipation
of energy. Under the action of the self-weight, part of the gravitational potential energy will be
transformed into strain energy and the other part will be dissipated into friction energy. As strain
energy is deposited in rock mass, when it exceeds the maximum value, the rock will break up and
release energy, then inducing lots of cracks, as shown in Figure 16. For studying the evolutionary
characteristics of the energy field in the toppling deformation process, characteristics of strain energy,
friction energy, and crack propagation will be monitored in the simulation.

Sustainability 2020, 12, x FOR PEER REVIEW 13 of 20 

α is the friction coefficient deciding the value of the friction force. It can be set to all of the 
particles in the model by PFC’s built-in code, which has the following advantages: (1) friction 
influence is only installed at the acceleration part and there will be no wrong friction force in static 
state; (2) friction coefficient is dimensionless; (3) friction is independent of frequency. 

The toppling deformation process is essentially a process of transformation and dissipation of 
energy. Under the action of the self-weight, part of the gravitational potential energy will be 
transformed into strain energy and the other part will be dissipated into friction energy. As strain 
energy is deposited in rock mass, when it exceeds the maximum value, the rock will break up and 
release energy, then inducing lots of cracks, as shown in Figure 16. For studying the evolutionary 
characteristics of the energy field in the toppling deformation process, characteristics of strain energy, 
friction energy, and crack propagation will be monitored in the simulation. 

 
Figure 16. Graph of crack propagation by toppling deformation. 

According to Error! Reference source not found., strain energy is the largest; the friction energy 
is smaller; the kinetic energy is the smallest. All of them increase with cycle steps, and the steeply 
increasing range is from 100,000 to 300,000 cycle steps. 

 
Figure 17. Characteristic curve of the energy field in toppling deformation. 

The energy field can be presented by crack propagation, and the development characteristics of 
crack number (Figure 18) with cycle steps are similar to those of energy evolution. The similarity can 
be found in that the crack number also increases slowly at the beginning, from 0 to 100,000 cycle 
steps; it then steeply increases from 100,000 to 300,000 cycle steps, finally slowing down and 
becoming stable after 300,000 cycle steps. 

Figure 16. Graph of crack propagation by toppling deformation.

According to Figure 17, strain energy is the largest; the friction energy is smaller; the kinetic
energy is the smallest. All of them increase with cycle steps, and the steeply increasing range is from
100,000 to 300,000 cycle steps.
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Figure 17. Characteristic curve of the energy field in toppling deformation.

The energy field can be presented by crack propagation, and the development characteristics of
crack number (Figure 18) with cycle steps are similar to those of energy evolution. The similarity can
be found in that the crack number also increases slowly at the beginning, from 0 to 100,000 cycle steps;
it then steeply increases from 100,000 to 300,000 cycle steps, finally slowing down and becoming stable
after 300,000 cycle steps.
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5.2. Dividing Evolution Stage of Toppling Deformation Based on Characteristics of Energy Field

Combining analysis of the evolutionary characteristics of the energy field with characteristics
of crack propagation, the evolution of toppling deformation was divided into three stages: (1) shear
deformation stage, (2) stage of main toppling fracture surface hole-through, and (3) stage of secondary
toppling and fracture surface development.

(1) Shear deformation stage
As presented in Figure 19, toppling deformation between 0 and 100,000 cycle steps is categorized

as the shear deformation stage, in which the strain energy, friction energy, and kinetic energy are small.
In the later period of this stage, strain energy and friction energy have a relatively small increasing
tendency, but the variation rate of kinetic energy is stable, which means that energy is accumulating
and the rate of the deformation of the bank slope is slow at this stage.
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Figure 19. Evolutionary characteristics of the energy field at the shear deformation stage.

In this stage, deformation of the bank slope consists of mainly shearing deformation in the slope
toe, as shown in Figure 20. The toppling deformation in the middle and rear parts is weak, and there is
integral deformation failure in deep strata of the slope toe due to the shearing action. At this stage,
variation of the slope angle is tiny.
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Figure 21 shows that shear cracks develop in a nearly horizontal direction in the slope toe, resulting
in shearing fractures in the deep rock strata, weak toppling deformation in the middle and rear parts,
and sporadically distributed cracks within a depth of 100 m in the bank slope.
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(2) Stage of main toppling fracture surface hole-through
As shown in Figure 22, toppling deformation from 100,000 to 300,000 cycle steps is classified as

the stage of main toppling fracture surface hole-through, in which all three types of energy present an
increasing tendency, which is especially obvious for strain energy and kinetic energy.
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Figure 22. Evolutionary characteristics of the energy field at the stage of main toppling fracture
surface hole-through.

At the stage of main toppling fracture surface hole-through, the bank slope deformation is mainly
shown as further expansion of shearing failure in the slope toe and toppling deformation in the middle
and rear parts. According to Figure 23, shear deformation in the region below a height of 900 m is
dominant where variation of the slope angle is small, and secondary shearing and fracture surface are
found at a depth of 80 m; toppling deformation along the fracture surface occurs in the region above
the height of 900 m, and the deflection angle in rock strata is around 10 to 20 degrees.
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Deformation characteristics of the actual bank slope in the later period of monitoring are similar
to those of the numerical model at this stage, shearing deformation being dominant in the frontal
strata and toppling deformation being dominant in the rear part. However, main toppling and fracture
surface in this stage are not completely visible, there being no slip surface in the area with a height of
around 900 m. It is easy to see that the fracture mentioned in Figure 11 is rather obvious at this stage,
meaning that the accuracy of the numerical model is further proven.

At this stage, shear cracks in the slope toe expand to deeper areas; tensile cracks in the bank slope
are densely distributed in the region with a depth of 100 m (Figure 24). Propagation of these tensile
cracks induces main toppling and fracture surface.
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(3) Stage of secondary toppling and fracture surface development
The period after 300,000 cycle steps is classified as the stage of secondary toppling and fracture

surface development, as shown in Figure 25, in which strain energy and friction energy increase at a
stable velocity, with kinetic energy almost keeping constant.
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Figure 25. Evolutionary characteristics of energy field at the stage of secondary toppling and fracture
surface development.

At the stage of secondary toppling and fracture development, bank slope deformation is mainly
presented as secondary shearing and fracture surface and dense development of secondary toppling
and fracture surface. Marked in Figure 26, there is further shear failure with rock mass in the shallow
layer and the development of secondary shearing and fracture surface in the region below the height of
900 m; there is further toppling failure with rock mass in the shallow layer, development of secondary
toppling and fracture surface, and further dip angle deflection of strata along secondary toppling and
fracture surface in the region with a height above 900 m.
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surface development.

At the stage of secondary toppling and fracture surface development, there is more dense
development of cracks in the region above the main toppling and fracture surface, inducing plenty of
secondary toppling and fracture surfaces (Figure 27).
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Figure 27. Diagram of crack distribution at stage of secondary toppling and fracture
surface development.

6. Conclusions

1. Evolutionary characteristics of displacement field
Analysis of the evolutionary characteristics of the displacement field showed that horizontal

displacement is dominant on the surface, and there is an uplift in the front part of the bank slope
for shearing deformation. The influence of vertical displacement in the middle and rear regions is
stronger than that in the front region and becomes stronger in the middle region in the later period of
the evolutionary process.

2. Evolutionary characteristics of energy field
Analysis of the evolutionary characteristics of the energy field showed that all three types of

energy have an increasing trend, and the period with 100,000 to 300,000 cycle steps is the most steeply
increasing period. The strain energy is the largest, friction energy second, and kinetic energy is smallest.
It also showed that the evolutionary characteristic of cracks is the same as that of energy in that crack
number also increases slowly in the early period, steeply in the middle period, then becomes slow and
stable in the later period.

3. According to the evolutionary characteristics of the energy field, the evolution stages of toppling
deformation was divided into (1) shear deformation stage, (2) stage of main toppling fracture surface
hole-through, and (3) stage of secondary toppling and fracture surface development.

In the shear deformation stage, shear deformation in the slope toe is dominant at this stage,
in which friction energy, strain energy, and kinetic energy are all relatively small. It is an energy
accumulating stage, and cracks are loosely distributed in the bank slope body within a depth of
100 m. At the stage of main toppling fracture surface hole-through, all three types of energy present an
increasing trend, which is especially obvious for strain energy and kinetic energy. Shear cracks expand
further to deeper places; at the same time, tensile cracks are densely distributed in the region within a
100 m deep. At the stage of secondary toppling and fracture surface development, deformation consists
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of mainly secondary shearing of the fracture surface and the development of secondary toppling and
fracture surface, in which strain energy and friction energy increase uniformly and kinetic energy
remains constant.
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