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Methods  

The section is divided into four consecutive sub-sections that build on each other. starting by GIS data 

collection; then moving to cropland calibration method to develop a GIS map of the irrigated cropland 

layer; then estimating the irrigation water requirements; which will then feed into the estimation of the 

electricity requirement for pumping. Finally, the last sub-section describes the method implemented to 

find the least cost electricity supply option in each location. Figure S1 represents a schematic overview 

of the approach. 

 

 

Figure S1: Schematic representation of the methodology used for estimating the electricity demand for 

groundwater irrigation in the NWSAS. 

1.1 GIS data Collection  

The first step of the analysis consisted of data rendering and cleaning. Climatic datasets such as 

temperature, wind speed, solar irradiation and precipitation were collected on a monthly basis. Other 



 

 

biophysical characteristics such as elevation, water table and ground properties were collected on an 

aggregated – annual – basis. All the collected layers were spatially processed and projected to a 

1kmX1km resolution map using World Mercator as the projection system [1] which is consistent with 

the obtained datasets. Table S1 provides a more detailed description of the datasets characteristics.    

 

Table S1. Summary table of the GIS layers used in this analysis 

# Dataset Type Resolution Spatial scope Source  

1 Administrative boundaries Vector 

polygon 

- Administrative levels [2] 

2 Elevation (m) Raster 1 km × 1 

km 

Water/Energy 

demand 

[3] 

3 Cropland area (ha) Raster 20 m x 20 

m 

Water/Energy 

demand 

[4] 

4 Irrigated harvested area (ha) Raster 20 m x 20 

m 

  [4] 

5 Minimum monthly temperature 

(oC)  

Raster 1 km × 1 

km 

Water demand [2] 

6 Maximum monthly 

temperature (oC) 

Raster 1 km × 1 

km 

Water demand [2] 

7 Average monthly temperature 

(oC) 

Raster 1 km × 1 

km 

Water demand [2] 

8 Monthly solar radiation  (kJ m-2 

day-1) 

Raster 1 km × 1 

km 

Water 

demand/Energy 

Supply 

[2] 

9 Monthly wind speed (m s-1) Raster 1 km × 1 

km 

Water demand [2] 

10 Monthly precipitation (mm) Raster 1 km × 1 

km 

Water demand [2] 

11 Water table depth (m)  Raster 1 km × 1 

km 

Energy demand [5] 

 

Wind potential  

GIS data of the monthly wind speeds at 1 km spatial resolution were obtained by the WorldClim [2] 

based on monthly data from 1970 – 2000. This data was geospatially processed to 12 layers each showing 

data for one month of the year for each grid cell in (m/sec) which was further processed into python 

and used to calculate the reference evapotranspiration and the LCOE as will be demonstrated in the 

following sections. Figure S2 shows the wind speed in the NWSAS region in April.  



 

 

 

Figure S2. Wind speed in the NWSAS in (m/sec) for the month of April. 

Solar energy potentials  

The global solar data set was obtained from WorldClim [2]. This represents average monthly solar 

radiation in (kJ m-2 day-1) for 1970-2000 at 1 km resolution. The solar radiation data were further 

processed using standard geospatial analysis to convert it to 12 layers each showing data for one month 

of the year for each grid cell in (kWh m-2 month−1). This was used as an input parameter for the LCOE 

calculation of stand-alone solar PVs which is based on the radiation, the system costs and the electricity 

demand for irrigation. An illustration of the solar radiation map is shown in Figure S3. 



 

 

 

Figure S3. Solar radiation in NWSAS region in (KJ m-2 day-1) in August.  

The following table shows the extracted values for monthly solar radiation in each province and the 

total annual radiation in (KWh/m2). 

Table S2. Monthly and yearly solar radiation in (KWh/m2). 

Province Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

sum 

Adrar        

123     

       

150     

       

184     

       

212     

       

223     

       

232     

       

233     

       

219     

       

192     

       

157     

       

127     

       

114         2 166     

Biskra          

85     

       

114     

       

149     

       

179     

       

208     

       

214     

       

225     

       

204     

       

171     

       

127     

         

91     

         

78         1 845     

Djelfa          

90     

       

121     

       

154     

       

182     

       

210     

       

219     

       

224     

       

206     

       

172     

       

131     

         

97     

         

82         1 889     

El Oued          

92     

       

124     

       

155     

       

183     

       

211     

       

215     

       

229     

       

212     

       

175     

       

133     

       

100     

         

85         1 915     

Gabes          

95     

       

121     

       

147     

       

175     

       

203     

       

210     

       

231     

       

215     

       

170     

       

132     

       

103     

         

88         1 890     

Ghadamis        

103     

       

129     

       

155     

       

177     

       

205     

       

207     

       

225     

       

208     

       

169     

       

136     

       

110     

         

95         1 918     

Ghardaia        

107     

       

137     

       

170     

       

197     

       

217     

       

224     

       

231     

       

215     

       

177     

       

143     

       

109     

         

99         2 027     

Gharyan        

101     

       

128     

       

154     

       

176     

       

203     

       

208     

       

228     

       

212     

       

169     

       

135     

       

109     

         

93         1 916     

Illizi        

121     

       

148     

       

176     

       

196     

       

212     

       

215     

       

229     

       

217     

       

184     

       

155     

       

123     

       

112         2 090     



 

 

Jufrah        

115     

       

142     

       

165     

       

177     

       

205     

       

212     

       

230     

       

219     

       

178     

       

144     

       

123     

       

105         2 016     

Kebili          

93     

       

121     

       

149     

       

176     

       

205     

       

209     

       

229     

       

214     

       

170     

       

133     

       

103     

         

86         1 887     

Khenchela          

91     

       

116     

       

147     

       

175     

       

202     

       

212     

       

228     

       

209     

       

169     

       

127     

         

95     

         

83         1 852     

Laghouat          

90     

       

120     

       

154     

       

184     

       

210     

       

218     

       

222     

       

205     

       

171     

       

131     

         

97     

         

82         1 885     

Musrata          

90     

       

121     

       

146     

       

173     

       

202     

       

209     

       

225     

       

208     

       

162     

       

127     

       

102     

         

82         1 847     

Ouargla        

103     

       

134     

       

166     

       

193     

       

214     

       

218     

       

232     

       

214     

       

179     

       

141     

       

108     

         

95         1 997     

Tamanrasset        

127     

       

153     

       

186     

       

211     

       

221     

       

226     

       

233     

       

220     

       

192     

       

160     

       

129     

       

116         2 173     

Tataouine        

100     

       

126     

       

151     

       

176     

       

206     

       

208     

       

227     

       

211     

       

169     

       

134     

       

107     

         

92         1 906     

Tebessa          

91     

       

118     

       

149     

       

175     

       

205     

       

212     

       

229     

       

210     

       

170     

       

129     

         

98     

         

84         1 870     

Tozeur          

92     

       

119     

       

148     

       

174     

       

204     

       

209     

       

227     

       

210     

       

169     

       

130     

       

100     

         

86         1 869     

 

Water table depth: 

Data for water table depth were obtained from [5] which shows global observations of water table depth 

compiled from government archives and literature along with the use of a groundwater model, forced 

by modern climate, terrain, and sea level,  to fill in data gaps and infer patterns. The resulting map 

shows simulated water table depth in (m) at 1 km resolution as illustrated in Figure S4. The average, 

minimum and max water table levels for each province were extracted from the dataset and show in 

Table S3. The depth to water table was used as input to calculate the energy requirement for pumping 

as will be shown later. It is worth mentioning that data from the GIS layer were validated with 

measurement data provided by OSS. However, both sources show different values compared to the 

maximum water depth of CT and CI reported in the literature.   

 



 

 

 

Figure S4. Water table depth in NWSAS region in (m). 

Table S3. Summary of water table depth values for each province.  

Country Province Ground water depth (m) 

(a) 

avg min max 

Algeria Adrar 37 0 166 

Biskra 62 5 178 

Djelfa 44 0 180 

El Oued 35 0 81 

Ghardaia 44 0 158 

Illizi 66 0 161 

Khenchela 83 46 192 

Laghouat 12 0 77 

Ouargla 22 0 116 

Tamanrasset 72 0 226 

Tebessa 40 19 58 

Libya Ghadamis 87 0 235 

Gharyan 62 0 318 

Jufrah 57 0 252 

Musrata 27 0 130 

Tunisia Gabes 74 3 224 

Kebili 26 0 235 

Tataouine 79 0 208 

Tozeur 43 0 186 
(a) Data extracted from map [5].  



 

 

 

1.2 Cropland calibration 

The cropland layer is a crucial component of this analysis. It provides a classification of land types and 

can be used as a proxy for identifying cultivated and/or irrigated area. There are several GIS land cover 

and cropland data options available [6] [7] [8]. The European Spatial Agency’s (ESA) Climate Change 

Initiative (CCI) land cover S2 prototype for Africa dataset [4] provides a fine spatial resolution 

throughout the entire NWSAS region. Using ESA CCI, the total cropland area in the NWSAS was 

estimated at 860,000 ha. However, national statistics indicate only about 270,000 ha of irrigated land 

(using NWSAS groundwater) in the same region.  Consultation with local stakeholders was performed 

in order to understand the sources of classification error in ESA CCI map and identify the parameters 

that increase the probability of cropland to be irrigated with NWSAS groundwater. This consultation 

process allowed for the development of a calibration methodology to eliminate the misclassification 

errors and identify croplands using groundwater, based on a Multi-Criteria Decision Analysis 

(MCDA)1. Four (potential) sources of misclassification in the ESA CCI were identified. They included 

sparse vegetation, rain-fed crops, irrigated crops using surface water and irrigated crops using water 

from external sources (in relation to NWSAS) such as nearby dams. Following an Analytical Hierarchy 

Process (AHP) [9] the decision criteria were ranked and weighted by local experts. The AHP process 

has been previously used for conducting suitability analysis of GIS-based problems, assisting the 

creation of land suitability for farming maps [10], [11], land slide susceptibility maps [12] and 

assessment of groundwater potential zones [13], proofing its effectiveness for GIS applications. Four 

decision criteria were selected to address different sources of misclassification, as presented in Table S4. 

 

 

Table S4. Cropland calibration process decision criteria. 

Decision criteria Error description Calibration process 

Distance from rivers Sparse vegetation that is very close to 

river beds is more probable of being 

misclassified as croplands. Croplands 

close to rivers have a higher probability 

of being irrigated by surface water. 

Decrease the probability of data 

points that are close to rivers, of 

being cropland irrigated by 

NWSAS groundwater. 

Cropland density Very small crop fields and/or low crop 

density areas are less likely to be 

irrigated by groundwater (due to high 

pumping cost). 

Decrease the probability of data 

points with low-density area, of 

being cropland irrigated by 

groundwater. 

Distance to dams Croplands located in proximity to 

dams are less likely to be irrigated by 

groundwater. 

Decrease the probability of data 

points that are close to dams, of 

being cropland irrigated by 

groundwater. 

Known irrigated 

areas 

In some areas the presence of irrigated 

agriculture is certain. Data points 

within those areas are more probable 

to be irrigated, whereas data points 

outside those areas are more probable 

of being classified as sparse vegetation 

or rain-fed cropland. 

Increase the probability of data 

points within known irrigated 

areas to be irrigated by 

groundwater. The global dataset 

of the irrigated area serviced by 

groundwater from AQUASTAT 

was used. 

                                                             
1 Data obtained from Sahara and Sahel Observatory (OSS).  



 

 

The selected decision criteria help at increasing or decreasing the confidence that some areas are 

irrigated through groundwater, meaning that a “correction factor” is applied to the map. In three cases 

is a “negative” factor (i.e. decrease probability) and in one case is “positive” (i.e. increase probability). 

The aforementioned decision criteria were then ranked, making use of a pairwise comparison matrix, 

in order to compute weights that are then applied as “correction factors” to the ESA CCI map. Each 

criterion was ranked against every other in a scale ranging from 1 to 9 according to the fundamental 

ranking scale of the AHP method (see Table S5). 

Table S5. Ranking system scale for pairwise comparisons (R. W. Saaty, 1987) 

Importance ranking Definition 

1 Equal importance. 

3 Moderate importance of one over another. 

5 Strong importance of one over another. 

7 Very strong importance of one over another. 

9 Extreme importance of one over another. 

2, 4, 6, 8 Intermediate values. 

Reciprocals If criteria i has a value A when compared to 

criteria j, then j will have the inverse value 1/A 

when compared to i. 

 

Criteria weights were computed according to the AHP methodology, and the consistency of the matrix 

was reviewed by calculating a Coherence Ratio (CR). Such ratio indicates the level of consistency the 

decision-maker had when assigning the pairwise rankings for the criteria. In principle, a CR < 0.1 

indicates a consistent matrix. The rankings, computed weights and CR value are presented in Table S6. 

Table S6. Pairwise comparison matrix, weights and CR for the selected criteria. 

 
Distance from 

rivers 

Cropland 

density 

Distance to 

dams 

Irrigated 

areas map 

Computed 

weight 

Distance from 

rivers 
1 1/2 3 1/4 0.14 

Cropland 

density 
2 1 1/4 1/9 0.055 

Distance to to 

dams 
1/3 4 1 1/3 0.22 

Irrigated areas 

map 
4 9 3 1 0.57 

Consistency Ratio (CR) = 0.0115 



 

 

A Weighted Linear Combination (WLC) approach was used to compute a suitability map based on the 

weights obtained with the AHP method for each criterion [14]. For this, all decision criteria layers were 

normalized to a 0 to 1 scale, making use of the Python scikit-learn MinMax scaler [15]. The normalized 

layers were then multiplied in a per cell basis by their respective weights, and summed up to obtain an 

overall cropland suitability map according to.  

𝐺𝑟𝑖𝑑𝑠𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑎𝑝 = ∑(𝐺𝑟𝑖𝑑𝑖 × 𝑤𝑒𝑖𝑔ℎ𝑡𝑖) 

Where; 𝐺𝑟𝑖𝑑𝑖 is criteria 𝑖 and 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 is the corresponding weight. 

 

The obtained suitability map consists of a GIS layer containing pixels ranging from 0 to 1, indicating the 

suitability of the area of having croplands irrigated by groundwater (see Figure S5).  

 

 

Figure S5. Map of suitable areas for cropland classification. Areas in red represent the most unsuitable 

ones for using groundwater for irrigation, as they are very close to surface resources, outside 

identified irrigated areas or in proximity to other water sources as dams. 

Using ESA CCI and the suitability map (Figure S5) the cropland area2 of each province was calibrated 

to match its national statistic, with a tolerance range of ±15% previously agreed with local stakeholders. 

For the provinces were the cropland area was lower than the national statistic and did not comply with 

the -15% tolerance, an additional layer from FROM-GLC version2 [16] global land cover was used. The 

new layer complements the ESA CCI layer, rising the cropland area to the tolerance range of ±15%. 

1.3 Estimation of the irrigation water requirement 

Estimation of the reference crop evapotranspiration (ETo) 

There are more than 50 mathematical models are currently available to estimate ETo, ranging from 

hydrologic or water balance models to analytical methods based on climate variables (primarily 

                                                             
2 In GIS using zonal statistics, the cropland count represents the area. 



 

 

temperature and radiation) and empirical estimates. The only factors affecting ETo are climatic 

parameters, so ETo can be computed from weather data without taking into account crop characteristics 

or soil factors. Several studies, however, have shown that the physically based Penman-Monteith 

formula (1965) [17], which considers both climatic factors and their interaction with surface vegetation 

characteristics, is the most accurate. Penman and Monteith combined the energy balance with the mass 

transfer method and derived multiple equations in order to compute the evaporation from an open 

water surface from standard climatological records of sunshine, temperature, humidity and wind 

speed. The FAO-56 Penman-Monteith method was adapted in 1990 by a consultation of FAO experts 

and researchers in collaboration with the International Commission for Irrigation and Drainage and the 

World Meteorological Organization [18]. This method overcomes shortcomings of the old Penman and 

Monteith equations and provides values more consistent with actual crop water use data worldwide. 

According to this method, ETo is defined as the “evapotranspiration of a hypothetical reference crop 

with a height of 0.12 m, a surface aerodynamic resistance of 70 s m-1 and an albedo of 0.23, closely 

resembling an extensive surface of green grass of uniform height, actively growing, completely shading 

the ground and with adequate water” [18]. The formula that describes this is: 

 

𝐸𝑇𝑜 =  
0.408∆ (𝑅𝑛 − 𝐺) + 𝛾 

900
𝑇 + 273

 𝑢2 (𝑒𝑠 − 𝑒𝑎) 

∆ + 𝛾 (1 + 0.34 𝑢2)
 

 

Where; ETo is the  reference evapotranspiration (mm day-1), Rn is the net radiation at the crop surface 

(MJ m-2 day-1), G is soil heat flux density (MJ m-2 day-1), T is the mean daily air temperature at 2m height 

(°C), u2 is the wind speed at 2m height (ms-1), es is the saturation vapour pressure (kPa), ea is the actual 

vapour pressure (kPa), es - ea is the saturation vapour pressure deficit (kPa), Δ is the slope vapour 

pressure curve (kPa °C-1) and    the psychrometric constant (kPa °C-1). 

To be able to automate this calculation for a large region like the NWSAS, “Pyeto” Python library was 

used to calculate meteorological parameters from climate data [19]. Furthermore, Pyeto provides 

numerous functions for estimating missing meteorological data such as net outgoing longwave 

radiation, psychometric constant, soil heat flux, saturated vapour pressure, solar angles, daylight hours 

etc based on the methods described by Allen et al. (1998).  

 
Crop evapotranspiration under standard conditions (ETc) and single crop coefficient (kc) 

The crop evapotranspiration under standard conditions (ETc) is the evapotranspiration from disease-

free, well-fertilized crops, grown in large fields under optimum soil water conditions, and achieving 

full production under the given climatic conditions. The crop coefficient (kc) depends on the type of 

crop, the growth stage of the crop and the climate. The values are extracted from literature as shown in 

Table 2 in the main manuscript) based on crop coefficient curve (Figure S6) which incorporates distinct 

growing periods [20]: 
1. The initial stage is the period from sowing or transplanting until the crop covers about 

10% of the ground. 

2. The crop development stage starts at the end of the initial stage and lasts until the full 

ground cover has been reached (ground cover 70-80%); it does not necessarily mean 

that the crop is at its maximum height.  

3. The mid-season stage starts at the end of the crop development stage and lasts until 

maturity; it includes flowering and grain-setting.  

4. The late-season stage lasts until the last day of the harvest and usually includes 

ripening.  
 



 

 

 

Figure S6. Variation in crop factor (Kc) in each growing season [18]. 

After extracting data for kc for each crop at each growing cycle, the ETc is calculated from ETo by simply 

multiplying with a crop-specific coefficient, 𝑘𝑐: 

𝐸𝑇𝑐 = 𝐸𝑇𝑜 ∗ 𝑘𝑐 
 

Modelling of water demand 

The water supply of the irrigation scheme must be equal to the demand throughout all the growing 

stages of the crop(s) planted. The water requirements to meet demand depend on the crop water 

requirements (expressed by ETc), climatic and land conditions, and the field application and distribution 

efficiencies. 

 

Monthly crop water needs 

To estimate the monthly aggregated crop water requirements (CWNi), the outputs obtained in the 

previous steps, are used as primary inputs. Along with the monthly ETc values, additional climatic and 

land variables are either calculated or introduced from the literature, allowing for a more inclusive and 

accurate parameterization and estimation of the actual crop water needs at a given location. There are 

several approaches taken in the literature, from simple water balance models to more complex 

hydrological analysis. The method followed in this study relies on a simplified, yet comprehensive, 

combination approach that takes into account mainly the effective rainfall (mm) and the crop water 

requirement. The leaching requirements (%) and the available water content in the root zone (mm) at a 

given point were assumed negligible in this arid climate. The following equation was used in this step 

[21]: 

𝐶𝑊𝑁𝑖 = 𝐸𝑇𝑐𝑖
+ 𝐸𝑇{𝑜𝑖} ∗ 𝐿𝑅 − 𝑒𝑓𝑓𝑖 − 𝑎𝑤𝑐𝑖 

where i is the month, CWNi is the monthly aggregated crop water need (mm), ETci is the product of the 

monthly EToi and kci from the previous sections (mm), LR is the percentage of leaching requirements 

(%), effi is the monthly effective rainfall (mm) and awci the monthly available water content (mm).  

When rain falls on the soil surface, some of it infiltrates into the soil, some stagnate on the surface, while 

some flows over the surface as runoff. Of the water that infiltrates into the soil, some percolates below 

the root zone, while the rest remains stored in the root zone. Effective rainfall is the amount of the 

rainwater which can be retained in the root zone and can be used by a plant, which means the total 

rainfall minus runoff, minus evaporation, minus deep percolation. The following empirical correlation 

was used to calculate effective rainfall on a monthly basis [22]: 
𝑒𝑓𝑓𝑖 = 𝑓 ∗ 1.253 ∗ 𝑃0.824 − 2.935 ∗ 100.001∗𝐸𝑇𝑝 

where effi is the effective rainfall per month (mm), P is the total precipitation per month (mm), ETp is 

the total crop evapotranspiration per month (mm) and f a correlation factor which depends on the depth 

of irrigation water application (dimensionless). Factor f is 1.0 if the irrigation water application depth 

(Da) is 75 mm, as will be assumed, and otherwise: 

𝑓 = 0.133 + 0.201 ∗ 𝑙𝑛𝐷𝑎 if Da < 75mm 

𝑓 = 0.946 + 7.3 ∗ 10−4 ∗ Da if Da >= 75mm 



 

 

Available water content (awc) or maximum soil water deficit is the maximum amount of water stored 

in the plant’s root zone that is readily available for use [23]. Since the NWSAS area is located in the arid 

bioclimatic stage (hyper-arid) where rainfall is very irregular and often exceptional causing floods. 

Therefore the available water content (awc) in the soil is assumed insignificant [24] and the Irrigation 

water need is dependent on crop evapotranspiration and effective rainfall.  

Peak crop water demand (PWD) is one of the most important design criteria of an irrigation scheme 

since it determines the size of the required pump and the distribution system and therefore the 

operational power demand for the irrigation scheme. The maximum discharge (in m3/d/ha or l/s/ha) is 

the rate at which water must flow to meet peak demand [21]. Pipes, canals or channels must be large 

enough to carry this discharge and the pump and power unit must be capable to deliver the discharge 

at the pressure required. Due to the high variation of the demand throughout the season, the peak 

requirement might be at least double the average daily water needs. The following equations were used 

for units conversion and preparing the data for the next steps [21]:  

𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑐𝑟𝑜𝑝 𝑤𝑎𝑡𝑒𝑟 𝑛𝑒𝑒𝑑𝑠 (𝑚3/ℎ𝑎) = 𝐶𝑊𝑁𝑖 (𝑚𝑚) ∗ 10 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑎𝑖𝑙𝑦 𝑐𝑟𝑜𝑝 𝑤𝑎𝑡𝑒𝑟 𝑛𝑒𝑒𝑑𝑠 (𝑚3/𝑑/ℎ𝑎)

= 𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑐𝑟𝑜𝑝 𝑤𝑎𝑡𝑒𝑟 𝑛𝑒𝑒𝑑𝑠 (𝑚3/ℎ𝑎) ∗ 30 
𝑃𝑒𝑎𝑘 𝑐𝑟𝑜𝑝 𝑤𝑎𝑡𝑒𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑚3/𝑑/ℎ𝑎)

= 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑𝑎𝑖𝑙𝑦 𝑐𝑟𝑜𝑝 𝑤𝑎𝑡𝑒𝑟 𝑛𝑒𝑒𝑑𝑠 (𝑚3/𝑑/ℎ𝑎) ∗ 2 

Since discharge in m3/d/ha is not a very convenient unit to use for design purposes, a more common 

unit is l/s/ha, calculated as follows: 

𝑃𝑒𝑎𝑘 𝑐𝑟𝑜𝑝 𝑤𝑎𝑡𝑒𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑙/𝑠/ℎ𝑎)
= 𝑝𝑒𝑎𝑘 𝑐𝑟𝑜𝑝 𝑤𝑎𝑡𝑒𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑚3/𝑑/ℎ𝑎) ∗ 0.012 

The peak scheme water demand is the discharge in litres per second (l/s) required to meet the peak crop 

water needs, plus the losses which occur in field application and the distribution system. The overall 

loss is called irrigation efficiency and can be calculated by: 
𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 %

= 𝑓𝑖𝑒𝑙𝑑 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ∗ 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ∗ 100 
Peak water demand (PWD) can be calculated as: 

𝑃𝑒𝑎𝑘 𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 (𝑙/𝑠/ℎ𝑎)
= 𝑝𝑒𝑎𝑘 𝑐𝑟𝑜𝑝 𝑤𝑎𝑡𝑒𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑚𝑒𝑛𝑡𝑠 (𝑙/𝑠/ℎ𝑎) ∗ 𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 

This discharge in l/s/ha is called duty and assumes that 1 ha of land is being irrigated and the system 

will be running 24 hours every day to meet the water demand. The irrigated area in each grid cell was 

used from the resulting calibration process and the pump operating time was assumed 10 hrs a day and 

the following equation was used: 

𝑃𝑒𝑎𝑘 𝑠𝑐ℎ𝑒𝑚𝑒 𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 (𝑙/𝑠) =   
𝑃𝑒𝑎𝑘 𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 (𝑙/𝑠/ℎ𝑎) ∗ 𝑐𝑟𝑜𝑝𝑝𝑒𝑑 𝑎𝑟𝑒𝑎 (ℎ𝑎) ∗ 24

ℎ𝑜𝑢𝑟𝑠 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (ℎ)
  

 

Seasonal scheme water demand (m3) refers to the amount/volume of water needed over a season, 

taking into account the water losses in the distribution system and in field application [21]. Furthermore, 

it is one of the key parameters for the estimation of the electricity demand required for pumping over a 

season as it will be explained in the following section. 
𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑠𝑐ℎ𝑒𝑚𝑒 𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 𝑚3

= 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑐𝑟𝑜𝑝 𝑤𝑎𝑡𝑒𝑟 𝑛𝑒𝑒𝑑𝑠 (
𝑚3

ℎ𝑎
) ∗ 𝑐𝑟𝑜𝑝𝑝𝑒𝑑 𝑎𝑟𝑒𝑎 (ℎ) ∗ 𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 

 

1.4 Estimation of the energy requirement for pumping 

Energy for pumping or energy for irrigation purposes can be expressed as the energy required to lift 

the water from the groundwater source and to overcome friction in pipes, pumps, and other elements 

of the distribution system used for conveyance of the water across the land surface Electrical energy or 

electricity (kWh) is expended when a unit volume (m3) of water passes through a pump during its 



 

 

operation [25]. Essentially a linear relationship exists between the electricity intensity value for 

groundwater pumping and the depth from which it is pumped at a specific pressure [26].  

As mentioned earlier, the electricity demand depends on the efficiency of the pump, the pipeline line 

and diameter, pipe material roughness or friction factor, and the volumetric demand for water. As 

shown in the following function for electricity demand, ED (kWh): 
𝐸𝐷 = 𝑓(𝑑, 𝑄, 𝑃, 𝑡, 𝑓𝑙)  

where d is the distance through which the water is to be lifted, Q is the required volumetric amount of 

water for pumping, P is the pressure required at the point of use, t is the time over which the water is 

pumped (assuming a constant head), and fl  is the friction loss along the distanced  within the distribution 

system. 
The calculation of the electricity demand (EDgw in kWh) for pumping water from groundwater 

resources, can be calculated as follows: 

 

𝐸𝐷𝑔𝑤𝑘𝑊ℎ1 =
𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑠𝑐ℎ𝑒𝑚𝑒 𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 𝑚3 ∗ 𝑇𝐷𝐻𝑔𝑤(𝑚) ∗ 0.00272

𝑃𝑃𝑒𝑓𝑓(%)
 

where Seasonal scheme water demand (m3) was defined in the previous section as the total volume of water 

required pumping over a selected season, the constant 0.00272 kWh/m3 per m of lifting, is simply water 

density times gravity. TDHgw (mm) represents the Total Dynamic Head and PPeff (%) accounts for the 

Pumping Plant efficiency. 
The calculation of the Total Dynamic Head is estimated using the following equation: 

 
𝑇𝐷𝐻𝑔𝑤 (𝑚) = 𝐸𝐿(𝑚) + 𝑆𝐿(𝑚) + 𝑂𝑃(𝑚) + 𝐹𝐿(𝑚) 

 

where EL (m) is the Elevation Lift, the sum of the depth to the groundwater level of water and of the 

water table or drawdown, SL (m) expresses the Suction Lift which is assumed to be zero in groundwater 

vertical pumping, OP (m) stands for Operating Pressure and accounts for the pressure needed based on 

the application and conveyance system, and FL (m) expresses the Friction Losses in the piping systems. 

In this indicative study and for the sake of simplicity the TDH is assumed to equal the water table depth 

(m) since other parameters were assumed zero as no data was available on the average conveyance 

system or the piping systems.  
The equation used for the estimation of the Pumping Plant efficiency is given below: 

 
𝑃𝑃𝑒𝑓𝑓(%) = 𝑓𝑢𝑒𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ∗ 𝑝𝑜𝑤𝑒𝑟 𝑢𝑛𝑖𝑡 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ∗ 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

∗ 𝑝𝑢𝑚𝑝 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ∗ 100% 
 

The above electricity demand is also validated and suggested, in a different form, by [21], where the 

overall electricity need over a period of time is given by the equation: 

 

𝐸𝐷𝑔𝑤𝑘𝑊ℎ =
𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑠𝑐ℎ𝑒𝑚𝑒 𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 𝑚3 ∗ 𝑇𝐷𝐻𝑔𝑤(𝑚)

367 ∗ 𝑃𝑃𝑒𝑓𝑓(%)
 

 

where the multiplier (1/367) is equal to 0.0027.  
Finally, the overall power demand for pumping water from the underground is determined using the 

equation adapted from the aforementioned FAO manual: 

 

𝑃𝐷𝑔𝑤 𝑘𝑊 = [9.81 ∗ 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 (
𝑚3

𝑠
) ∗ 𝑇𝐷𝐻𝑔𝑤(𝑚)] /𝑃𝑃𝑒𝑓𝑓(%) 

 

Where: discharge (m3/s) is the Peak scheme water demand (l/s) expressed in m3/s.  



 

 

1.5 Estimation of the least-cost electricity supply option 

After estimating the electricity requirement for water pumping and desalination, this section will focus 

on the supply side and will compare different supply options based on the Levelized Cost of Electricity 

(LCOE). This is done following a similar approach to [27]. In practice, this calculation maps the cheapest 

option available to the farmer at each location of the NWSAS basin to produce electricity for pumping. 

If the farm is far from the grid, this means what is the cheapest off-grid option (diesel or renewable?). If 

the farm is close and can connect to the grid, this means what is the cheapest supply option to power 

pumps (diesel, renewables or electricity from the gird)? 

The LCOE is a life-cycle cost concept that accounts for all the expenses (investment costs, operating and 

maintenance costs, fuel cost) with the revenues generated from electricity generation sales over the 

lifetime of the power plant or the small-scale installation. It accounts for all physical assets and resources 

required to deliver one unit of electricity output [28]. 

𝐿𝐶𝑂𝐸 =  
∑

𝐼𝑡+𝑂&𝑀𝑡+𝐹𝑡
(1+𝑟)𝑡

𝑛
𝑡=1

∑
𝐸𝑡

(1+𝑟)𝑡
𝑛
𝑡=1

     

Where It: Investment expenditure for a specific system in year t, O&Mt: the operation and maintenance 

costs, Ft: the fuel expenditures, Et: the generated electricity, r: the discount rate, n: the lifetime of the 

system.  

 

Different supply options are currently being used in each country. A mix of diesel and electric pumps 

are used in the three countries, however, due to lack of publicly available data, we assume that all 

pumps in Algeria and Tunisia are running with diesel generators3 and that in Libya all pumps are 

powered by the grid, because of consultation with local experts. These options were compared to stand-

alone PV and small-scale wind turbines, using the LCOE as a reference for comparison as shown in 

Table 6.  

  

                                                             
3 Medium and low voltage lines network maps for the three countries are not available publicly. Therefore, it 
was difficult to map the distribution of the electric pumps in Algeria and Tunisia where they use a mix of diesel 
and electric pumps.   



 

 

1. Additional results  

2.1 Cropland Calibration 

The original and calibrated cropland density maps are shown in Figure S7 and Figure S8: and a 

comparison between the original ESA CCI dataset, the national statistic and the calibrated cropland 

layer is presented in Figure 4 (in the main manuscript).  

 

 

Figure S7. ESA CCI uncalibrated cropland map.  

 
Figure S8. Calibrated cropland map 

 



 

 

2.2 Estimated water demand for different irrigation technique 

 

Table S7. Comparison of estimated water demand for each irrigation technique (scenario) and the 

water-saving due to improved efficiency, all values are in (m3/ha). 

   Province Scenario 1: 

Surface 

Irrigation – low 

efficiency 

Scenario 2: 

 Surface 

Irrigation – 

Medium 

efficiency 

Scenario 3: 

Drip Irrigation 

– High 

efficiency 

Savings 

(low-med) 

Savings 

(low-high) 

A
lg

er
ia

 

Adrar 15 794 10 934 8 361 4 860 7 432 

Biskra 10 034 6 946 5 312 3 087 4 722 

Djelfa 10 303 7 133 5 455 3 170 4 849 

El Oued 11 470 7 941 6 072 3 529 5 398 

Ghardaia 12 775 8 844 6 763 3 931 6 012 

Illizi 14 170 9 810 7 502 4 360 6 668 

Khenchela 10 831 7 498 5 734 3 332 5 097 

Laghouat 10 085 6 982 5 339 3 103 4 746 

Ouargla 12 379 8 570 6 554 3 809 5 825 

Tamanrasset 15 656 10 839 8 289 4 817 7 368 

Tebessa 10 927 7 565 5 785 3 362 5 142 

L
ib

y
a 

Ghadamis 10 515 7 280 5 567 3 236 4 948 

Gharyan 10 819 7 490 5 728 3 329 5 091 

Jufrah 15 113 10 463 8 001 4 650 7 112 

Musrata 8 891 6 155 4 707 2 736 4 184 

T
u

n
is

ia
 Gabes 10 074 6 974 5 333 3 100 4 741 

Kebili 11 207 7 759 5 933 3 448 5 274 

Tataouine 10 216 7 072 5 408 3 143 4 807 

Tozeur 10 794 7 473 5 715 3 321 5 080 
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