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Abstract: The global increasing food demand can be met by efficient energy utilization in mechanized
agricultural productions. In this study, input–output energy flow along with CO2 emissions for
different wheat production cases (C-I to C-V) were investigated to identify the one that is most
energy-efficient and environment-friendly case. Data and information about input and output sources
were collected from farmers through questionnaires and face-to-face interviews. Input and output
sources were converted into energy units by energy equivalents while CO2 emissions were calculated
by emission equivalents. Data envelopment analysis (DEA) was conducted to compare technical
efficiencies of the developed cases for optimization of inputs in inefficient cases. Results revealed
that case C-V (higher inputs, larger fields, the tendency of higher fertilizer application and tillage
operations) has the highest energy inputs and outputs than the rest of the cases. Moreover, it possesses
the lowest energy use efficiency and energy productivity. The highest CO2 emissions (1548 kg-CO2/ha)
referred to C-V while lowest emissions per ton of grain yield were determined in C-IV (higher
electricity water pumping, moderate energy input). The grain yield increases directly with input
energy in most of the cases, but it does not guarantee the highest values for energy indices. C-III
(moderate irrigations, educated farmers, various fertilizer applications) was found as an optimum
case because of higher energy indices like energy use efficiency of 4.4 and energy productivity of
153.94 kg/GJ. Optimum input and better management practices may enhance energy proficiency and
limit the traditionally uncontrolled CO2 emissions from wheat production. Therefore, the agricultural
practices performed in C-III are recommended for efficient cultivation of wheat in the studied area.
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1. Introduction

Wheat (Triticum aestivum) is a main cereal crop which provides staple food to 35% of the world
and 60% of Pakistan’s population [1,2]. It covers about 25% of world cultivable area devoted to cereal
crops to produce 771.7 million tons per annum [3,4]. The rise in global wheat demand is forecasted to
be about 60% by 2050 [5]. Thus, annual wheat production must increase by 1.6% [5]. Pakistan has
a share of 3.5% in global wheat production [6]. Agriculture is the largest economic sector of the
country contributing 24% to GDP [7]. There will be demand of 31 million tons of wheat until 2025 [8]
against current production of 24.3 million tons [6]. This necessitates a crucial increase in annual
wheat production. On the other hand, lack of storage facilities further aggravates the risk of food
shortage [9–14]. However, intensive energy input is required to increase wheat production which
highlights the importance of efficient energy use in agricultural production.

Energy plays a pivotal role in wheat cultivation. Wheat production mainly depends upon the
input energy. Input energy is the energy provided in the form of different sources (i.e., fertilizer, water,
machinery, labor, electricity, fuel, seed and pesticides) during various operations in wheat cultivation.
It is categorized as direct and indirect input energies. Direct energy is the energy used directly on
farm in the form of labor, electricity, water and fuel. Indirect energy is the off-farm energy used in
manufacturing processes, in the form of seed, fertilizer, pesticides and machinery [15]. Furthermore,
input energy can also be classified as renewable and non-renewable energies. Renewable energy
comprises of energy input from human labor and machine operations while non-renewable energy
covers fertilizers, irrigation water, pesticides and fuel. Input energy in agriculture depends on arable
land, population engaged in agriculture, farmers’ education, irrigation systems, tillage practices,
local weather climate, crop and soil types [16–18]. It is evident that there is a need to increase the
energy efficiency in agriculture to stabilize the relationship between energy input and crop production.
Agronomic modifications and conservative agriculture systems can play an important role to enhance
energy use efficiency in agriculture [19]. Agricultural productivity, energy use and Greenhouse
Gas (GHG) emissions have a strong interrelationship. Fertilizers, machinery, electricity and fossil
fuels are the primary energy sources for agricultural productions [20]. The production processes
of these industrial sources indirectly contribute to GHG emissions. GHG emissions have increased
exponentially in recent decades to 36.81 Gt. CO2 eq. in 2019 [21]. Agriculture, forestry and other land
uses constitute 24% of global GHG emissions [22]. This increasing trend of GHG emissions leads to
global warming [23]. United Nations Framework Convention on Climate Change proposed a target
of limiting global warming to two degrees Celsius in this century. Current decarbonization rates of
1.6% per year needs to be increase up to 6.4% per year to achieve this target. Otherwise, the present
trajectory will lead to four degrees Celsius increment in global temperature in the current century [24].
Increasing energy use efficiency is a key factor to reduce global environmental risks [25]. Pakistan is one
of the minor contributor to the global GHG emissions with only a share of 0.72% [26]. The energy and
agriculture sectors of the country are the major constituents of total GHG emissions comprising 46%
and 41%, respectively [26]. These emissions have increased from 178 Mt. CO2 eq. to 367 Mt. CO2 eq.
from 1994 to 2012 with an average increment of 4.1% per year [27]. Furthermore, Pakistan is ranked
among the top ten countries affected by climate change over the past two decades [28], though per
capita emissions are among the lowest in the world.

Many studies have quantified the energy use and GHG emissions in agriculture and specifically,
in wheat production, e.g., energy use and efficiency evaluation in wheat production in China [20],
energy auditing in different cropping systems in India [3,15,29–36], energy analyses and GHG emissions
from different crops in Iran [37–53], assessment of on-farm energy use and GHG emissions from wheat
in New Zealand [1,18,54,55], analyses of agricultural energy in Bangladesh [56], energy input–output
analysis in Turkey for production of cotton, vegetables, grapes, sugar beet and dry apricot [17,57–63],
effect of fertilizer management on GHG emissions in agriculture [64], energy and economic analyses for
different vegetables in Indonesia [65] and estimation of energy use and CO2 emissions in Thailand [66].
To the best of authors’ knowledge, no study of such type was found for Pakistan in the literature.
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The aim of this study was to compare energy inflow and outflow among different wheat production
cases to indicate the best practices for future energy efficient cultivation in the study area. The input
and output energy flow for wheat cultivation was ascertained in Tehsil Mailsi (Pakistan). The data
were collected using questionnaires and face-to-face interviews. The system boundaries for energy
evaluation of wheat production in the present study are defined in Figure 1. The energy indices like
energy use efficiency, energy productivity and net energy were calculated for different production
cases. The grain yield was predicted by multiple regression technique and further compared with
actual values. Moreover, CO2 emissions for all the production cases were also estimated. Finally,
the optimum production case was identified for wheat cultivation.
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Figure 1. Defining the system boundaries for investigation of input and output energy flow for wheat
cultivation in the present study.

2. Research Methodology

2.1. Input–Output Energy Analysis

The study was conducted in Tehsil Mailsi of District Vehari (30◦2′ N, 72◦21′ E), Pakistan.
Annual maximum and minimum mean temperatures of the study area are 33.35 ◦C and 18.77 ◦C,
respectively. The study area is comprised of loamy and clayey soil with an average annual rainfall
of 246.7 mm. Wheat is grown as a cash crop in the study area covering most of the arable land.
Moreover, it lies among the top ten wheat producing districts of the country covering 4% of the
total wheat cultivable area in Punjab [67]. The sample size was calculated by Cochran formula [50].
After preliminary evaluation from wheat growers/farmers of the area, twenty fields were selected,
and the data were collected using face-to-face questionnaires in the 2019 work season as shown in
Figure 2. The data on inputs for wheat production included the utilization of water, fuel, labor,
electricity, fertilizer, machinery, chemicals and seeds while output data derives from production of
wheat grain and straw.
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The data collection process revealed that variations existed in socioeconomic characteristics of the
studied farms. These discrepancies in collected data were sorted out by developing five cases (C-I to
C-V) in consultation with farmers and local agricultural experts. The details of each case are presented
as follows:

• C-I (Case 1) Lower energy input, smaller fields, poor management practices;
• C-II (Case 2) Conventional management practices, which represent 60–70% of farmers in the

study area;
• C-III (Case 3) Moderate irrigation, educated farmer, variable fertilizer applications;
• C-IV (Case 4) Higher electric water pumping, moderate energy inputs;
• C-V (Case 5) Higher energy input, tendency of higher fertilizer applications & tillage operations.

The developed five cases (C-I to C-V) were organized in ascending order of their energy use,
i.e., lower to higher energy inputs. Furthermore, farm management practices of the studied farms also
differentiate the developed cases. The variations in inputs among all the production cases is mainly
due to socio-economic characteristics such as farmer’s education and age, farm size, cultivated wheat
area and farm labor (etc.) as shown in Table 1. The highest and lowest farmer’s education was fourteen
(C-III) and five (C-I) years of schooling, respectively. It reflects the higher technical knowledge of
the farmers in C-III. Maximum farm size was 141.7 hectares (C-III) with 85% cultivated wheat area,
while minimum farm size was 3.64 hectares (C-I) with 3.24 hectares under wheat cultivation. However,
the maximum number of farmers (60–70%) and hence, wheat cultivated area belong to C-II with
conventional management practices. The greater planting area makes C-II more important for potential
improvements in inputs and management operations. These farms have lesser economic resources
and machinery availability. The number of farm tractors and laborers also varied correspondingly
with farm size. Thus, the largest farm size (C-III) holds four (04) farm tractors and thirty (30) laborers.
Irrigation source (canal/tube well) is one of the main energy consumers in agricultural production.
Water pumping by electric motors/diesel engines (tube well) is higher energy consuming operation
than canal irrigation. The primary source of irrigation was canal water in all the cases except in C-IV,
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where the electric tube well was solely used for irrigation. The use of tube well irrigation in C-IV was
primarily due the geographic location of these farms which do not have access to canal water supply.
Tube well was also used as a secondary/supplementary irrigation source in C-I, C-II and C-V.

Table 1. Socioeconomic characteristics of studied farms and farmers.

Property
Wheat Production Cases

C-I C-II C-III C-IV C-V

Farmer education (yrs.) 5 8 14 12 8
Farmer age (yrs.) 35 47 45 42 50

Farm size (ha) 3.64 7.29 141.7 60.73 70.85
Wheat cultivated area (ha) 3.24 6.07 121.46 20.25 68.83

Farm labor (No.) 1 2 30 8 10
Number of tractors 0 0 4 2 2
Source of Irrigation C+T C+T C Te C+T

Canal-to-tube-well ratio (2:1) (2:2) (4:0) (0:3) (2:3)

C, T and Te stands for Canal, Tube well and Electrical pumping, respectively.

The data about input and output sources obtained from the farmers were converted into energy
units using appropriate equivalents. These equivalents were taken from literature and presented in
Table 2 [20,34,48,57,68,69]. The variations in equivalents for input and output energy sources (Table 2) is
due to climatic, environmental and socioeconomic factors of the studied areas. Most of the equivalents
used in this study were selected from the literature [20,34,57,69] based on approximately similar input
conditions as presented in bold in Table 2. However, the energy equivalent (Ee) for tractor and farm
implements in MJ/h is determined using Equation (1) [69] given below:

Ee =
C W

L
(1)

ηe =
Eo

Ei
(2)

ηp =
Ga

Ei
(3)

ω = Eo − Ei (4)

where, C is the constant (MJ/Kg), W is the implement or tractor weight (kg), and L is the economic life
(h) of implements or tractor. The values of C for tractor and farm implements were taken from [69].
The corresponding values of W and L are given in literature [70,71]. There were no significant
differences in the type of farm implement or tractor in all the cases. Whereas ηe is energy use efficiency,
ηp is energy productivity (kg/GJ), ω is net energy (GJ/ha). Ei and Eo represent total input and output
energy in (GJ/ha), respectively. Ga is actual grain yield (kg/ha). Energy efficiency or proficiency is
the term used in this study to denote the measure of energy indices (i.e., ηe, ηp and ω). It reflects the
total performance of a specific case. The grain yield as a function of input energy is also predicted
by multiple regression technique (Equation (5)). This equation is developed using yield as response,
whereas machinery, water and fertilizer energies as continuous predictors. These energy input sources
were chosen because of strong correlation between said response and predictors.

Gp = 1060.025(W) + 148.589(F) − 1295.87(M) − 518.282 (5)

where, Gp represents predicted grain yield (kg/ha). W, F and M represent water, fertilizer and,
machine energy (GJ/ha), respectively.
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Table 2. Details of the equivalents used for input–output energy analyses.

Inputs
Equivalent (MJ/Unit)

A. A. Saad (2016) India [34] Yousefi M. (2014) Iran [48] Yuan S. (2018) China [20] Esengun K. (2007) Turkey [57] Saunders C. (2007) NZ [68] Kitani O. (1999) USA [69]

Seed (kg) – – 20.1 – – 13
Diesel (L) 56.31 51.33 56.31 56.31 43.6 47.8
Labor (hr.) 1.96 1.96 1.96 1.96 – –

Fertilizer (kg)

N 60.6 66.14 66.14 66.14 65 78.1
P2O5 11.1 12.44 12.44 12.44 15 17.4
K2O 6.7 – 11.15 11.15 10 13.7

Water (m3) 1.02 0.63 1.02 0.63 – –

Machinery (kg)

Tractor 64.8 – – – – 138
Farm implements 62.7 – – – – –

Plough – – – – – 180
Disc harrow – – – – – 149

Rotavator – – – – – 148
Combine harvester 83.5 – – – – 116

Chemicals (mL) 0.102 – – – – –
Insecticides (kg) – – 101.2 101.2 315 –
Fungicides (kg) – – 216 216 210 –
Herbicides (kg) – – 238 238 310 –

Electricity (kWh) – 3.6 11.93 11.96 8.14 –

Outputs

Grain (kg) 15.7 – 14.48 – – 13
Straw (kg) 12.5 – 9.25 – – –

Note: The bold values represent the equivalents used in this study for input-output energy analyses.
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Data envelopment analysis (DEA) based CCR (Charnes–Cooper–Rhodes) model [72] was used to
calculate technical efficiencies (TE) of different cases. DEA is a benchmarking technique used to rank
decision making units (DMUs) based on their comparative performance [73]. DMUs are the distinct
units that must be compared while five different cases (C-I to C-V) were considered as DMUs in the
present study. Technical efficiency (TE) is the ratio from weighted output to weighted inputs of a
specific DMU. It depends on the ability of a distinct DMU to convert inputs into outputs. Three major
inputs, i.e., fertilizer, water and fuel were considered as controlled inputs while yield as an output in
the CCR model. Moreover, technically efficient and inefficient cases were distinguished from each
other to analyze the potential improvements in inefficient cases. In this regard, an input oriented CCR
model was used to optimize inputs level in inefficient DMUs while efficient DMUs were considered as
the best possible production cases in the study area. The input oriented CCR model is a model in which
inputs are minimized to obtain the same level of outputs. The Frontier Analyst 4 software was used to
perform data envelopment analysis. However, TE can be written mathematically as follows [74]:

TE j =

∑n
r=1 uryrj∑m
s=1 vsxsj

(6)

Equation (6) can be solved by linear programming as follows [73]

Maximize TE =
∑n

r=1
uryrj

Subject to
∑n

r=1
uryrj −

∑m

s=1
vsxsj ≤ 0

Df
∑m

s=1
vsxsj = 1, ur ≥ 0, vs ≥ 0, j = 1, 2, 3, . . . . . . k

where, TEj refers to technical efficiency of jth DMU, ur is the weight assigned to output n, yr is the
quantity of output n, r is the number of outputs (r = 1, 2, 3, . . . . . . n), vs refers to weight assigned to
input m, xs is the quantity of input m, s is the number of inputs (s = 1, 2, 3, . . . . . . m) and j refers to jth

of DMUs (j = 1, 2, 3 . . . . . . k).

2.2. CO2 Emissions and Carbon Footprint

In this study, CO2 emissions from production sources were also calculated using emission
equivalents. The effects of N2O and CH4 were not considered because of lesser contribution (kilograms
per hectare) towards GHG emissions as compared to CO2. In this regard, CO2, N2O and CH4 emissions
are reported as 2668.35, 22.92 and 3.49 kg/ha, respectively [48]. The CO2 emissions (kg-CO2/ha) from
production sources like fertilizers, pesticides, electricity, fuel and machinery were determined using
CO2 equivalents. These equivalents (kg CO2/MJ) are given Table 3 [68,75]. Moreover, kg-CO2 emissions
per ton of grain yield were also calculated to compare yield response with respect to emissions.
Total electricity generation in Pakistan comprises of 64% from thermal power plants and 36% from
hydro power plants [76]. Therefore, only 64% of total input electricity energy in wheat production was
converted into GHG equivalents.

Table 3. CO2 equivalents used for the estimation of CO2 emissions [68].

Input Energy (MJ) Equivalent (kg CO2/MJ)

Fertilizers
N 0.05

P2O5 0.06
K2O 0.06

Herbicides 0.06
Machinery 0.1

Diesel 0.0687
Electricity 0.0192
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3. Results and Discussion

3.1. Input–Output Energy Consumption

Input energy is analyzed and discussed separately based on various energy sources (Table 4) and
production operations (Table 5). The direct and indirect input energies consumed by all the sources
in each predefined case (C-I to CV) are shown in Figure 3. It is evident from the figure that indirect
energy remains dominated in all cases except for C-IV. Fertilizer remained the top input energy source
among all other sources and in all the cases. In this regard, it is ascertained that fertilizer constitutes
about 31%, 40% and 39% of total input energy in C-III, C-IV and C-V, respectively which are higher
energy consuming cases. The highest fertilizer energy input belongs to C-V which is almost twice the
fertilizer energy consumed in C-I (the lowest energy consuming case). Therefore, fertilizer represented
the highest energy input with mean value of 9.94 GJ/ha in all wheat production cases (Figure 3),
in accordance with the literature [3,20,35,45,54,55,77]. Singh et al. [3] investigated energy use pattern
for wheat cultivation in India and found a similar trend in fertilizer energy use in Punjab province.
The present study was also conducted in Punjab occupied by Pakistan. Therefore, there are no
significant differences in the farm characteristics of these two studies. Moreover, Mani et al. [35] studied
energy consumption in wheat and maize production and found similar trends for wheat cultivations.
Soltani et al. [45], Yuan et al. [20] and Safa et al. [55] also found similar energy use pattern in their
studies. However, Erdemir and Zeki [58] conducted a study on organic farming and reported fuel
as the highest energy input source. The contradiction in the results of present study to their study
was due to difference in management practices by the farmers. Thus, input energy can be optimized
by prudent fertilizer application, e.g., use of potassium fertilizer along with urea and diammonium
phosphate (DAP) makes C-III unique from others. This combination of fertilizers enhanced the energy
efficiency of this case. Furthermore, the total indirect energy can be minimized by controlling single
source applications (i.e., fertilizer).

Table 4. Description of the input and output energy sources used for the wheat cultivation.

Inputs Units
Wheat Production Cases

C–I C–II C–III C–IV C–V

Direct

Labor h 135.85 107.445 77.1875 106.21 77.5827
Electricity kWh 154.375 154.375 0 617.5 154.375

Water m3 2540.65 3302.846 4065.041 3302.846 4065.031
Fuel L 91.39 111.15 158.08 98.8 190.19

Indirect

Chemicals in kg mL 1235 2470 2470 2470 0
Chemicals in mL kg 0 0 0.741 0 0.247

Machinery h
Tractor – 7.41 14.2025 21.6125 9.2625 23.2427
Plough – 1.235 1.235 1.8525 1.8525 2.47

Disc harrow – 0 0 0 0 1.6302
Rotary hoe – 1.235 1.235 1.235 1.235 1.235

Combine harvester – 0 0 0.6175 0 0.6175
Stationary thresher – 4.94 4.94 0 4.94 0

Seed kg 123.5 123.5 123.5 123.5 148.2
Fertilizer kg

N – 101.27 135.85 158.08 135.85 203.775
P2O5 – 113.62 56.81 113.62 56.81 87.685
K2O – 0 0 61.75 0 0

Outputs

Grain kg 2964 3655.6 4149.6 3952 4446
Straw kg 2964 3655.6 4149.6 3952 4446



Sustainability 2020, 12, 6884 9 of 21

Table 5. Operational energy consumption (GJ/ha) resulting from different field operations, divided
into sources and shown by each case.

Operation Source
Wheat Production Cases

C-I C-II C-III C-IV C-V

Tillage

Labor 0.005 0.005 0.016 0.006 0.020
Machinery 0.181 0.181 0.387 0.245 0.619

Fuel 2.364 2.364 4.033 3.060 6.120
Total 2.551 2.551 4.436 3.311 6.759

Irrigation

Labor 0.073 0.097 0.121 0.073 0.121
Machinery 0.001 0.178 0.355 0.001 0.355

Fuel 0.001 1.669 3.338 0.001 3.338
Electricity 1.840 1.840 0.000 7.370 1.840

Total 1.915 3.783 3.814 7.445 5.654

Sowing * 0.001 0.001 0.001 0.001 0.001

Spraying and fertilizing

Labor 0.008 0.008 0.011 0.006 0.007
Machinery 0.001 0.001 0.071 0.018 0.018

Fuel 0.001 0.001 0.556 0.278 0.278
Total 0.010 0.010 0.638 0.302 0.303

Harvesting and
fhreshing

Labor 0.213 0.098 0.002 0.098 0.002
Machinery 0.142 0.160 0.107 0.160 0.107

Fuel 1.808 2.225 0.974 2.225 0.974
Total 2.163 2.483 1.083 2.483 1.083

Grand Total 6.640 a 8.829 ac 9.973 bc 13.542 b 13.801 b

* Manual seed broadcasting sowing in all cases. a, b, ac, bc Letters indicate the significant differences by ANOVA test.

Fuel is the second highest energy input source after fertilizer in all the cases except C-IV where
electricity was the second highest energy input source. The higher electricity consumption in C-IV
was due to higher electrical water pumping for irrigation. The highest fuel consumption belongs to
C-V comprising 31% of total input energy while the lowest corresponds to C-I. Fuel consumption
is the measure of machining practices in different production operations. Furthermore, higher fuel
consumption results from extensive tillage practices and vice versa. Therefore, judicious fuel energy
use is important to optimize direct energy usage in wheat production.

Water was the third highest energy input source in all the cases except C-IV. Highest water
consumption was observed in C-III and C-V accounting for 14.7% and 12%, respectively of total input
energies in these cases. On the other hand, the lowest water energy input was noted in C-I due to
lesser availability of costly tractor operated tube well for economically poor farmers in this class.
Therefore, socioeconomic status of farmers also effects the farming practices for wheat cultivation.
Electricity is also a major energy input for some cases like C-IV, but not very important for other cases.
The reason for this difference is the use of alternatives, e.g., use of diesel engines/tractors instead of
electric powered motors for water pumping. There are no significant differences among other input
sources (labor, seed, herbicides and machinery) in all the cases. These sources are considered as minor
energy input sources for wheat cultivation due to their lesser input values as depicted in Figure 3.
Finally, C-V utilized the highest energy inputs in the form of fertilizers, fuel and machinery among all
the cases (Table 4) due to extensive tillage and fertilization. However, the lowest amount of energy in
fuel, machinery and fertilizer sources highlights the lesser machine operations due to poor economic
status of farmers in C-I. Thus, socioeconomic characteristics of farms and farmers play an important
role in energy use and energy proficiency. It is difficult for economically poor farmers (C-I) to improve
management practices for energy efficient wheat cultivation. However, another low input case C-II
has potential to improve its inputs and hence, energy efficiency by increasing energy inputs up to
optimum level.



Sustainability 2020, 12, 6884 10 of 21Sustainability 2020, 12, x FOR PEER REVIEW 11 of 22 

 

Figure 3. Distribution of the energy input (GJ/ha) from different sources for wheat production for the production cases of C-I to C-V. Fertilizer energy input is further 
classified based on type, i.e., N, P2O5 and K2O. 

  

C-Ⅰ
20.2 GJ/ha

C-Ⅱ
23.8 GJ/ha

C-Ⅲ
28.2 GJ/ha

C-Ⅳ
28.5 GJ/ha

C-Ⅴ
34.5 GJ/ha

Water

Fuel

Labor

Electricity

Fertilizers

Machinery

Chemicals

Seed

2.6
5.1
1.8
7.4
2.5

3.4
6.3
1.8
8.9

2.5

4.1

8.9

11.3

2.5

3.4
5.6

7.4

8.9

2.5

4.1

10.7

1.8

13.3

3

C-Ⅰ: 7.4 GJ/ha
C-Ⅱ: 8.86 GJ/ha
C-Ⅲ: 11.25 GJ/ha
C-Ⅳ: 8.86 GJ/ha
C-Ⅴ: 13.32 GJ/ha

N
90%

P2O5
10%

K2O
1%

0.41

0.97

0.63

1.26

0.63

1.26

12.35

8.23

9.58

8.23

6.14

Indirect Energy Sources

Direct Energy Sources

Figure 3. Distribution of the energy input (GJ/ha) from different sources for wheat production for the production cases of C-I to C-V. Fertilizer energy input is further
classified based on type, i.e., N, P2O5 and K2O.



Sustainability 2020, 12, 6884 11 of 21

Energy from pre-described input sources is utilized in different production operations i.e.,
irrigation, tillage, sowing, spraying & fertilizing and harvesting & threshing. Labor, fuel and machinery
are main energy sources employed in every operation. The operational energy with respect to these
sources was calculated and presented in Table 5. Irrigation is the energy consuming operation in
which water is pumped and delivered to the field through a watercourse. The energy consumed in
this operation is known as irrigation energy. On an average of all the cases, it was the highest energy
consuming operation comprising 42.8% of average total operational energy, which is in accordance
with previous literature Safa et al. [55]. However, irrigation energy was ranked second after tillage
energy in some cases i.e., C-III and C-V, where low energy irrigation water was available. Safa et al. [55]
investigated input and output energy flow for dry and irrigated lands. Results of the present study
match with their results for irrigated lands which have similar farm properties to studied farms in the
present study area. However, their results for dry lands differ due to lesser availability of irrigation
water and complete dependence on rainfall in the studied area. The maximum (7.44 GJ/ha) and
minimum (1.92 GJ/ha) irrigation energies were calculated in C-IV and C-I, respectively. Irrigation was
performed by different sources (i.e., canal, electric/diesel tube well) in the studied area. In this regard,
the source of irrigation is a key driver to control input energy. Canal water and diesel engine operated
tube wells water pumping consume less energy than electrical motors driven pumps. It is due to
higher electrical energy (kWh) expenditure than diesel (liter) expenditure for pumping equal amounts
of water as exhibited in Table 4. Therefore, electricity consumption is an important energy input source
in irrigation constituting 57% of average total irrigation energy among all the cases. However, fuel is
more important in some cases like C-III and C-V, where fuel driven engines/tractors were used for
water pumping. Moreover, low irrigation-energy usage (C-I) reflects the poor economic status of
farmers leading to a fewer number of irrigations.

Tillage energy is the energy consumed in soil pulverization and land preparation for wheat
sowing. It was the second highest energy consuming operation when considering average of all the
cases. However, tillage is the top energy consuming operation in much of the cases as described earlier.
It constitutes an average of 37% of mean total operational energy in all the cases. The maximum and
minimum tillage energy consumption were 6.76 GJ/ha and 2.55 GJ/ha in C-V and C-I/C-II, respectively.
Higher tillage energy consumption represented the higher availability of farm implements in C-V.
Fuel energy is crucial in tillage operation comprising an average of 91.5% of mean total energy
consumed in this operation.

Harvesting and threshing is carried out by combine harvester in C-III and C-V. A tractor
mounted/operated reaper and thresher is used by C-IV and C-II. However, harvesting is done by
hand-held sickle in C-I, while threshing was conducted with same machinery as of C-IV and C-II.
The maximum harvesting and threshing energy was 2.48 GJ/ha in C-IV and C-II, while the minimum
was 1.08 GJ/ha in C-III and C-V. The average harvesting and threshing energy expenditure represent
18.42% (1.86 GJ/ha) of the total operational energy. Fertilizing and spraying of the crop were performed
by broadcasting (manual) and sprayer, respectively. Pesticides are sprayed by boom and knapsack
sprayers in C-III, C-IV, C-V and C-I, C-II, respectively. The higher pesticides application in C-II results
in consumption of 6.4% (0.64 GJ/ha) of total operational energy. The average fertilizing and spraying
energy were about 0.25 GJ/ha (i.e., 2.5% of total energy consumption). On the other hand, broadcasting
was used for sowing in all cases. Thus, lowest labor energy (Table 5) is used in sowing among all
the operations and cases (C-I to CV)—amounting to 0.012% of the total energy consumption. Finally,
the total average operational energy is determined as 10.19 GJ/ha in consistence with results of [55].
Overall, ANOVA test in the last row of Table 5, shows that operational energy in C-I and C-II was the
lowest among all cases. Furthermore, the highest operational energy is observed for C-IV and C-V.

The total energy use by input and output sources is illustrated in Figure 4. The input energy use
in C-I. C-II, C-III, C-IV and C-V was 20.18 GJ/ha, 23.8 GJ/ha, 28.25 GJ/ha, 28.53 GJ/ha and 34.54 GJ/ha,
respectively. The corresponding output energy use in all cases was 83.58 GJ/ha, 97.52 GJ/ha, 117.02 GJ/ha,
111.45 GJ/ha and 125.38 GJ/ha, respectively. The highest input energy is consumed in C-V which leads
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to highest output energy as shown in Figure 4. However, lowest input and output energy is found in
C-I due to poor management practices. Thus, average input and output energy consumed in wheat
production is determined as 27.06 GJ/ha and 108.1 GJ/ha, respectively. These energy consumptions are
found in agreement with results from references [45,55]. Soltani et al. [45] conducted their study in a
similar way by developing six different classes of farms on the basis of energy use pattern and found
similar results.
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Figure 4. Observed energy inputs and outputs for wheat production in Mailsi (Pakistan) for five
studied cases. Red diamond line indicates energy use efficiency referring to the secondary vertical axis.

The ηe is considered one of best indicators for efficient energy usage [20]. The highest energy use
efficiency was found in C-III while the lowest corresponds to C-V as shown in Figure 4. The figure
shows a trend in energy use efficiency with respect to energy inputs. Energy use efficiency increases
with the increase in input energy up to a moderate energy input (C-III) and then decreases with further
increases in energy input (C-IV & C-V). It necessitates the use of optimum energy input to ensure
highest energy use efficiency. Energy productivity and net energy (ω) for each case are shown in
Figure 5. The figure shows the highest energy productivity and net energy in C-III while the lowest
energy productivity in C-V and net energy in C-I. The lower energy input cases (C-I and C-II) have
comparatively good energy proficiency as compared to higher energy input cases (C-IV and C-V).
Thus, C-III is an optimum case because of higher energy indices such as ηe = 4.4, ηp = 153.94 kg/GJ
and ω = 91.13 GJ/ha when compared to the other cases (Figures 4 and 5). Therefore, the agricultural
practices performed in C-III are recommended for efficient cultivation of wheat in the studied area.
An equation (Equation (5)) was developed, based on all cases (C-I to C-V), using multiple regression to
predict grain yield. Now, only the data of three input sources (i.e., machinery, water and fertilizers)
was used to predict yield rather than all other inputs as presented in Tables 4 and 5. The negative
sign with machinery (Equation (5)) shows a decrease in yield with increase in machine operations.
The reason behind such inverse relationship may be the effect of tillage on water retention capacity
in the root zone. Higher tillage practices (which reflects higher machining operations) decrease the
water retention time in the root zone and hence, there will be lesser water availability for the crop.
This water shortage in the root zone leads to decreased crop yield. Thus, higher machine operations
have adverse effects on grain yield as depicted in Equation (5). The actual and predicted grains yield is
compared as shown in Figure 6. The yield was predicted well in C-I, C-IV and C-V but is overestimated
in C-II and C-III. The reason behind such over estimation (C-II & C-III) may be the higher difference
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between water and machinery energy inputs than in the other cases. The coefficient of determination
between actual and predicted yields was acceptable, i.e., 0.92 (Figure 6). Therefore, grain yield in the
study area can be predicted (Equation (5)) before cultivation by assuming three input sources (water,
fertilizer, machinery). This equation may be helpful for farmers to optimize inputs for energy efficient
cultivation of wheat in the study area.
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Data envelopment analysis (DEA) was also conducted in this study and the results revealed that
moderate energy input and slightly higher input cases i.e., C-III and C-IV were technically efficient
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while low and high energy input cases i.e., C-I, C-II and C-III were technically inefficient as shown
in Figure 7. The 100% technical efficiency of C-IV and C-V shows that these cases lie on the frontier
line and are the best production cases in converting their input sources (i.e., fertilizer, water and fuel)
into output sources (i.e., yield). On the other hand, technically inefficient cases (i.e., C-I, C-II and C-V)
lie in the envelopment region developed by the frontier line and their inputs can be optimized to
get the same level of outputs. The optimization of energy input sources in these cases is shown in
Figure 7. The figure shows highest improvement potential in the high energy input case i.e., C-V with
25.2%, 41.6% and 8.6% reduction in fertilizer, fuel and water, respectively. There is also considerable
amount of reduction potential in the two other inefficient cases to achieve the same level of output.
Thus, such improvements in inputs can make these cases more efficient and should be adopted by the
farmers in the study area. Furthermore, actual energy inputs and output (i.e., yield) for all the five
cases was also compared by DEA and exhibited in Figure 8. Figure shows comparative energy use
behavior of each farm class. Higher values of inputs and outputs tend to move the curve towards the
origin while lower values away from the origin. The high energy inputs and output case, i.e., C-V
lies exactly in origin while other cases show the comparative behavior of energy use with respect to
this case. In this figure, an important point to note is the energy use and output producing behavior
on C-II and IV. Both cases consumed the same amount of water and fertilizer energies while C-IV
produced higher yield than C-II. The reason behind this is the higher electrical energy input in C-IV
that increased the total input energy and hence, enhanced outputs. Moreover, other reason may be
the higher available nutrient contents in the soils of C-IV than C-II before application of fertilizers.
Thus, it is important to measure the available soil NPK before fertilizing the field in wheat cultivation.
This highlights the potential value of precision agriculture for efficient cultivation of wheat crop in the
study area.
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3.2. CO2 Emissions

In this study, CO2 emissions (kg-CO2/ha) from the production sources including fertilizers,
pesticides, electricity, fuel, and machinery was calculated using CO2 equivalents (Table 3). The total
average CO2 emissions from the studied production sources was determined as 1120 kg-CO2/ha and
283.7 kg-CO2/ton, which was consistent with the results of Safa et al. [1]. The highest share of CO2

emissions comes from fertilizer and fuel energy in all cases as shown in Figure 9. On an average of all
the cases, fertilizer and fuel comprises 44.7% and 45% of total CO2 emissions, respectively. Safa et
al. [1] in a study with irrigated and rainfed wheat found fertilizer and fuel as the top contributor to
carbon emissions. However, their study revealed fuel as the second highest contributor after fertilizer
while fuel was the highest contributor in the present study, though the difference among both studies
is not significant. Moreover, Soltani et al. [45] and Moghimi et al. [41] found a similar pattern for
carbon emissions in wheat production. It necessitates the judicious use of these sources to minimize
the CO2 emissions. Other energy input sources (i.e., machinery, chemicals and electricity) are minor
contributors to carbon emissions. The highest CO2 emissions were found in the higher energy input
case, i.e., C-V as 1548 kg-CO2/ha while lowest emissions were calculated as 798.6 kg-CO2/ha in the
low energy input case, i.e., C-I. The data thus shows a relationship between energy use and CO2

emissions. Both CO2 emissions and grain yield increased by increasing the input energy as evident
from Figure 10 for C-I, C-II and C-V. In contrast, C-IV consumed higher input energy than C-III but
produced lower grain yield and CO2 emissions. The greater energy input in relation to yield observed
in C-IV occurred because electric water pumps in C-IV consume higher input energy, but emit less
CO2 than the gasoline operated pumps and/or canal used water in C-III. It is important to mention
that higher grain yield does not guarantee a higher energy use efficiency due to corresponding input
energy (Figure 4). However, it may result in greater emissions of greenhouse gases particularly CO2 as
depicted in C-V.
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Figure 9. Comparison of CO2 emissions from various sources for wheat production in Mailsi (Pakistan)
for five studied cases. Blue columns refer to the secondary vertical axis depicting emissions per ton of
grain yield.

Sustainability 2020, 12, x FOR PEER REVIEW 17 of 22 

that higher grain yield does not guarantee a higher energy use efficiency due to corresponding input 
energy (Figure 4). However, it may result in greater emissions of greenhouse gases particularly CO2 
as depicted in C-Ⅴ. 

 
Figure 9. Comparison of CO2 emissions from various sources for wheat production in Mailsi 
(Pakistan) for five studied cases. Blue columns refer to the secondary vertical axis depicting emissions 
per ton of grain yield. 

 
Figure 10. Defining the relationship between CO2 emissions in kg-CO2 per hectare and actual grain 
yield in kg per hectare against the input energy employed for studied five cased of wheat production 
in Mailsi (Pakistan). Black diamonds refer to primary vertical axis while red triangles refer to the 
secondary vertical axis. 

  

0

200

400

600

800

0

500

1000

1500

2000

C-Ⅰ C-Ⅱ C-Ⅲ C-Ⅳ C-Ⅴ

CO
2

em
iss

io
ns

 (k
g-

CO
2/h

a)

Cases

Fertilizers Chemicals Machinery
Fuel Electricity

CO
2

em
iss

io
ns

 (k
g-

CO
2/t

on
ne

)

2000

3000

4000

5000

600

1000

1400

1800

18 24 30 36

A
ct

ua
l g

ra
in

 y
ie

ld
, G

a
(k

g/
ha

)

CO
2

em
iss

io
n 

(k
g-

CO
2/h

a)

Input energy (GJ/ha)

C-Ⅳ

C-Ⅲ

C-Ⅴ

C-Ⅰ

C-Ⅱ

C-Ⅴ

C-Ⅲ

C-Ⅳ
C-Ⅱ

C-Ⅰ

Figure 10. Defining the relationship between CO2 emissions in kg-CO2 per hectare and actual grain
yield in kg per hectare against the input energy employed for studied five cased of wheat production
in Mailsi (Pakistan). Black diamonds refer to primary vertical axis while red triangles refer to the
secondary vertical axis.

4. Conclusions

This study projected input–output energy analyses and estimations of CO2 emissions for wheat
production in five different cases (C-I to C-V) in Pakistan. The study analyzed one high energy input
case (C-V), two low energy input cases (C-I and C-II) and two moderate energy input cases, i.e., C-III.
C-IV. However, C-IV was found to be the highest energy consumer in terms of operational energy due
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higher electrical water pumping for irrigation. It was concluded that high energy input tends to result
in higher energy output and grain yield, but it did not confirm higher energy proficiency. In this regard,
highest values of energy indices belonged to the moderate energy input case, i.e., C-III. Moreover,
the low energy input cases (C-I and C-II) were better in energy efficiency than high energy input cases,
i.e., C-V. Primary factors found by the study to affect energy efficiency include fertilizers type and
combination, source of irrigation, farmer’s education and proper management practices. Therefore, it is
important to use proper fertilizer combinations, educating farmers and use of high efficiency irrigation
systems to achieve higher energy efficiencies. Most farmers follow the conventional management
system; therefore, it is crucial to raise awareness about the latest techniques to increase energy use
efficiency. In this regard, local government may play a role by conducting seminars and providing
guidance for farmers.

This study found that the moderate energy input case (C-III) showed the best production scenario
in terms of energy efficiencies and CO2 emissions per ton of grain yield. The management practices in
this case were found to be best in converting input sources into output energy and are recommended
for future energy efficient and environment friendly wheat cultivation in the study area.
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Nomenclature

GHG greenhouse gas
CO2 carbon dioxide
Ee energy equivalent for machinery (MJ/h)
C energy constant for machinery (MJ/kg)
W weight of machinery (kg)
L economic life of machinery (h)
ηe energy use efficiency
Eo output energy (GJ/ha)
Ei input energy (GJ/ha)
ηp energy productivity (kg/GJ)
ω net energy gain (GJ/ha)
Ga actual grain yield (kg/ha)
Gp predicted grain yield (kg/ha)
W water energy input (GJ/ha)
F fertilizer energy input (GJ/ha)
M machinery energy input (GJ/ha)
DEA data envelopment analysis
TE technical efficiency
DMU decision-making unit
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