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Abstract: This paper studies travelers’ context-dependent route choice behavior in a risky
trafficnetwork from a long-term perspective, focusing on the effect of travelers’ salience characteristics.
In particular, a flow-dependent salience theory is proposed for this analysis, where the flow denotes
the traffic flow on the risky route. In the proposed model, travelers’ attention is drawn to the salient
travel utility, and the objective probabilities of the state of the world are replaced by the decision
weights distorted in favor of this salient travel utility. A long-run user equilibrium will be achieved
when no traveler can improve his or her salient travel utility by unilaterally changing routes, termed
salient user equilibrium, which extends the scope of the Wardropian user equilibrium. Furthermore,
we prove the existence and uniqueness of this salient user equilibrium. Finally, numerical studies
demonstrate our theoretical findings. The equilibrium results show non-intuitive insights into
travelers’ route choice behavior. (1) Travelers can be risk-seeking (the travel utility of a risky route is
small with a relatively high probability), risk-neutral (in special situations), or risk-averse (the travel
utility of a risky route is large with a relatively high probability), which depends on the salient state.
(2) The extent of travelers’ risk-seeking or risk-averse behavior depends on their extent of salience
bias, while the risk-neutral behavior is irrelative to this salience bias.

Keywords: context-dependent route choice behavior; flow-dependent salience theory; salient travel
utility; salient user equilibrium; risk attitude

1. Introduction

Travelers’ route choice behavior modeling plays a fundamental role in the traffic assignment of a
conventional four-stage transportation planning method. The behavioral assumptions on the choice
model determine whether a traffic assignment model can represent travelers’ behavior realistically.
The classical principle of the traffic assignment models in the literature is user equilibrium, which is
firstly defined by [1] as follows: no one can decrease his or her travel time by unilaterally changing
his or her route choice decisions. Later on, ref. [2] formulated the traffic assignment as a nonlinear
programming problem, and established the equivalence between the user equilibrium principle and
the Karush–Kuhn–Tucker conditions of the formulated nonlinear programming problem. The principle
of user equilibrium has been widely used for urban transportation planning and management—e.g.,
congestion pricing [3], transportation network design [4], and emission modeling [5,6].

One key assumption of Wardrop’s user equilibrium principle is that there is no uncertainty in
travelers’ decision-making in a traffic network. However, uncertainty is unavoidable due to the
uncertain demand (e.g., travel demand fluctuation) and (or) the uncertain supply (e.g., road capacity
degradation). The readers can refer to [7,8] for more discussions on this. In decision-making, ref. [9]
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first proposed the dichotomization of general uncertainty to risk and ambiguity. Accordingly, risk is
present when the decision makers can completely assign probabilities to outcomes and, consequently,
are able to optimize their actions under full distributional information. On the other hand, ambiguity
refers to cases where the decision makers have no sufficient knowledge of these probabilities and,
instead, can make the decision according to a family of probability distributions, also known as
ambiguity set—e.g., [10]. Our study belongs to the scope of decision-making under risk.

Another key assumption in Wardrop’s user equilibrium principle is that travelers are rational
decision makers. They have no cognitive limitation regarding information on the traffic network,
and can formulate some mathematical formulations and optimize them, e.g., to minimize the travel
time or to maximize the travel utility. Although theoretically sound, this behavioral assumption is
not realistic. Scholars have made significant efforts from several aspects to improve the realism of
behavioral assumptions. One of the research streams is to study travelers’ attitudes towards risks on
stochastic traffic networks—e.g., ref. [11] classified travelers into three different classes: risk-seeking,
risk-neutral, and risk-averse. In the past several decades, researchers have conducted several studies
focusing on travelers’ risk neutral behavior—i.e., following the principle of expected utility theory [12].
For example, ref. [13] studied the risk-neutral congestion pricing on the stochastic traffic network.
Comparatively, more studies focus on risk-averse behavior—e.g., the travel time budget model [14],
the late arrival penalty model [15], the mean-excess travel time model [7], the non-expected route
choice model [16], and the subjective-utility travel time budget model [17].

Another stream of research has focused on adopting the behavioral decision theory—e.g., prospect
theory [18], cumulative prospect theory [19], and regret theory [20]—in the analysis of the choice
behavior and network equilibrium under risk. Ref. [21] studied the user equilibrium with cumulative
prospect theory and further used their model to study the optimal congestion pricing design. Ref. [22]
developed a day-to-day route-choice learning model with friends’ travel information based on
the cumulative prospect theory. Ref. [23] discussed the travel demand analysis with the random
regret-minimization model derived from the regret theory.

Some other studies are also related to our study which improve the realism of behavioral
assumptions. Ref. [24] proposed the stochastic user equilibrium, where they consider travelers’
perception error of the travel times. Ref. [25] proposed a boundedly rational user equilibrium model
that can capture travelers’ cognitive limits—e.g., they are incapable of getting the perfect traffic
conditions and choosing the best available routes. Many studies have been conducted based on the
stochastic user equilibrium (e.g., [26–28]) and boundedly rational user equilibrium (e.g., [29–31]).
Recently, ref. [32] proposed a status-quo-dependent route choice model with a context-dependent value
of time which can handle the route choice inertia from different sources—e.g., travelers’ misperceptions,
satisficing behavior, and asymmetric preference. Although [32] and our paper both involve travelers’
context-dependent characteristics, ours has the following differences from their work. They focus
on the context-dependent value of time, while we study travelers’ context-dependent route choice
behavior. That is, the context-dependent value of time is only one component of the model in [32],
and we propose a completely different methodology from theirs to model travelers’ context-dependent
characteristics in their route choice, termed flow-dependent salience theory.

In recent years, a few scholars have focused on policy studies considering travelers’ salience
characteristics—e.g., [33,34], which do not attract much attention in traffic and transportation study, to
the best of our knowledge, and motivate our study in this paper. Ref. [33] investigated the effect of
salience on the equilibrium tax rates for the toll, and [34] introduced the behavioral economics into the
transportation policy evaluation, discussing the role of tax salience. In this paper, we also focus on
the salience characteristic and, particularly, we adopt the salience theory proposed in [35] to study
travelers’ salient route choice behavior. Salience theory is a new psychologically founded model of
choice under risk, which assumes that decision makers’ attention is drawn to the salient payoffs (in
our language, the salient travel utility), and objective probabilities are replaced by decision weights
distorted in favor of the salient payoffs. Informally speaking, the salient payoff is the one whose
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difference is the most. It can be seen that the salience theory and prospect theory [18] both assume
that decision makers’ probability weights are different from the objective probabilities, but how the
weights are obtained—i.e., the psychological foundation—is different for these two theories. Another
difference between these two methodologies is that S-shape value function used in prospect theory is
not needed in salience theory. After the first appearance of the salience theory, it has attracted much
attention from scholars of several different domains—e.g., [36–41].

Based on the salience theory, we propose a new method to study travelers’ route choice behavior
in a risky traffic network. To the best of our knowledge, this is the first time that salience theory is used
in travelers’ route choice modeling. Because the research on travelers’ salience characteristics is in
its infancy, we study a relatively stylized situation in this paper, where we consider two routes for
travelers’ choice, and assume that there are two states of the world. Discussion on the choice between
two routes is due to the original salience theory, which focuses on the choice between two alternatives,
while the reasons for the two-state assumption is relegated to Section 2.2. The main contributions of
this paper are summarized as follows.

1. We study travelers’ context-dependent route choice behavior in a risky traffic network. Particularly,
we extend the salience theory to propose a flow-dependent salience theory for this study, where the
flow denotes the traffic flows on the risky route. Three significant properties of the flow-dependent
salience theory are ordering, diminishing sensitivity, and symmetry.

2. Following the convention in [35], we propose a salient travel utility model with a discrete salience
ranking, and further propose the salient user equilibrium based on this model. An analysis
procedure is proposed to prove the existence and uniqueness of the salient user equilibrium,
which consists of two parts, the flow-dependent salience ranking analysis and flow-dependent
route preference analysis. The sufficient conditions for the existence and uniqueness of the salient
user equilibrium are identified based on this analysis procedure.

3. Finally, numerical studies demonstrate our theoretical findings. The equilibrium results show
non-intuitive insights into travelers’ route choice behavior. (a) Travelers can be risk-seeking
(the travel utility of a risky route is small with a relatively high probability), risk-neutral (in
special situations), or risk-averse (the travel utility of a risky route is large with a relatively high
probability), which depends on the salient state. (b) The extent of travelers’ risk-seeking or
risk-averse behavior depends on their extent of salience bias, while the risk-neutral behavior is
irrelative to this salience bias. Our findings here can provide some new evidence about travelers’
risk attitudes to a risky traffic network (e.g., [7,11]).

The remainder of this paper is structured as follows. In Section 2, we propose a general salient
travel utility model after the development of the flow-dependent salience theory. In Section 3, we
extend the scope of the Wardropian user equilibrium and propose the salient user equilibrium based
on the salient travel utility model. After more discussions on the salient user equilibrium in Section 4,
we conduct numerical tests to demonstrate our theoretical findings in Section 5. Finally, Section 6
concludes the paper.

2. Development of a General Salient Travel Utility Model

In this section, we develop a general salient travel utility model. Enroute to this new route choice
model, a flow-dependent salience theory is developed after reviewing the original salience theory
proposed in [35].

2.1. Review of Original Salience Theory

Suppose there are two routes, A and B, for travelers; they need to choose one to go to work.
The travel times on the two routes are 10 min and 20 min, respectively. However, the scenery on route
B is better—e.g., along the coastline. Say it is 50 percent better than that on route A, yet its travel time
is twice as much. After some thought, the travelers decide to choose route A.
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Let us consider another situation, where the travelers still need to choose one route from routes
A and B. Suppose there is regular maintenance, and the travel times on these two routes increase to
50 min and 60 min, respectively. Again, the scenery on route B is 50 percent better, but now its travel
time is only 20 percent more. In this case, the travelers decide to choose route B.

This example can be an illustration of what can happen to many of us possibly—i.e., making the
choice decision in context or making a better choice according to the options we have. Here, we could
present an intuition which we believe goes through the travelers’ mind in the route choice example:
in the first case, the travel time difference between routes A and B is more salient than the scenery
difference, encouraging the travelers to choose route A, whereas in the second case, after the increase
in the travel times, the scenery difference is more salient, encouraging the travelers to choose route
B. Actually, salience theory formalizes the intuition behind this choice, where travelers’ attention is
drawn to the most salient aspects in the choice context they face. For more examples about the salience
theory, one can refer to [42]. Next, we present the formal formulations of salience theory.

Salience theory represents a model of choice under risk with psychological foundation. In this
model, the decision maker’s attention is drawn to the most salient aspects in the choice context he (she)
faces. Salience detection is considered as a significant attentional mechanism by psychologists which
can enable a decision maker to put their limited cognitive resources into a subset of the available data
they have. To quote [43], “Salience refers to the phenomenon that when one’s attention is differentially
directed to one portion of the environment rather than to others, the information contained in that
portion will receive disproportionate weighting in subsequent judgments.” That is, decision makers’
minds can be capable of focusing on whatever is different, odd, or unusual.

We describe the choice problem as follows. Assume the states of the world is denoted by a set S,
and each state s ∈ S occurs with probability πs, which is objective and known (

∑
s∈S πs = 1). There are

two options for the decision maker to choose, denoted by {L1, L2}. For each state s, option Li(i = 1, 2)
yield payoffs xi

s. Here, we use the choice between two options as an example to convey the essential
ideas of salience theory.

Options’ payoffs are evaluated by the value function v(·) specified by the decision maker, and we
assume that v(xi

s) = xi
s. According to the expected utility theory, the decision maker evaluates Li as:

ULi =
∑
s∈S

πsxi
s. (1)

The decision maker, who is salient, departs from Equation (1) by putting more weight on the
option’s most salient states in S—i.e., a salience ranking among the states in S is constructed. Based on
this ranking, the objective probability πs in Equation (1) is replaced with a subjective probability πi

s,
which is a transformed, option-specific decision weight. That is, the salience distortions work in two
steps, and based on them a decision maker evaluates an option by assigning the outcome in each state
s a subjective probability that depends on the state’s true probability and its salience.

To formally define salience, let xs = (xi
s)i=1,2 be the vector for the options’ payoffs in state s and

denote by x−i
s the payoff in the s of option L j, j , 1. Let xmin

s , xmax
s denote the smallest and largest

utilities in xs, respectively.

Definition 1. (Original salience theory) The salience of state s for option Li, i = 1, 2 is a continuous and
bounded function σ(xi

s, x−i
s ) that satisfies three conditions:

1. Ordering. If for states s, s̃ ∈ S, we have that
[
xmin

s , xmax
s

]
is a subset of

[
xmin

s̃
, xmax

s̃

]
. Then:

σ(xi
s, x−i

s )<σ(xi
s̃, x−i

s̃ ). (2)

2. Diminishing sensitivity. If xi
s > 0 for j = 1, 2, then for any ε > 0:

σ(xi
s + ε, x−i

s + ε)<σ(xi
s, x−i

s ). (3)
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3. Reflection. For any two states s, s̃ ∈ S, such that xi
s, x j

s̃
> 0. For j = 1, 2, we have:

σ(xi
s, x−i

s )<σ(xi
s̃, x−i

s̃ ) if and only if σ(−xi
s,−x−i

s ) < σ(−xi
s̃,−x−i

s̃ ). (4)

The reflection property only plays a role in the situation where we consider options that yield
negative utilities, which is not needed in our study. To illustrate Definition 1, ref. [35] considered the
salience function:

σ(xi
s, x−i

s ) =

∣∣∣xi
s − x−i

s

∣∣∣∣∣∣xi
s

∣∣∣+ ∣∣∣x−i
s

∣∣∣+ θ
, (5)

where θ > 0. According to the ordering property, if the difference between the payoff xi
s and the payoff

x−i
s of the other option increases, the salience of the state s for Li will increase, which is captured by the

numerator
∣∣∣xi

s − x−i
s

∣∣∣ in (5). Diminishing sensitivity implies that if a state’s absolute payoff becomes
larger, the salience will decrease, as captured by the denominator term

∣∣∣xi
s

∣∣∣+ ∣∣∣x−i
s

∣∣∣ in (5).

2.2. Salient Travel Utility Model

In this section, we extend the original salience theory and propose the flow-dependent salience
theory to study travelers’ choice behavior between two routes connecting one origin (e.g., the suburb
area) and one destination (e.g., the core area). Suppose N travelers go from the common origin to the
common destination, and the choice set is denoted by C = {L1, L2}. Meanwhile, it is assumed that each
traveler chooses a route from the set C, and there is no outside option—e.g., staying at home.

In the next section, we only study travelers’ choice between one risky route and one non-risky
route with two states of the world. The two-state assumption is motivated by the study in [44], where
the authors point out two flaws in the original salience theory. The first one is that the certainty
equivalent is not defined for some ranges of probabilities, and the second one is that monotonicity is
violated by the model when they discuss three states. We conjecture that these two flaws also exist in
the proposed flow-dependent salience theory, and the detailed relationship between the study in [44]
and our study here is left for the future work. However, we still consider several states in the salient
travel utility model, which can be seen as a general framework, and only present thorough discussions
on the two-state world in the equilibrium analysis.

Assume there is a set of states of the world which is denoted by S. Each state s ∈ S occurs with the
objective and known probability πs, and

∑
s∈S πs = 1. For each state, s ∈ S, the travel utility function is

denoted as u1
s on route L1 and u2

s on route L2. Let n1 and n2 denote the travel flows on routes L1 and L2,
respectively, and n1 + n2 = N. With the above notations, we can write u1

s = u1
s (n1) and u2

s = u2
s (n2).

Because n2 = N − n1, hereinafter we always formulate u1
s and u2

s as a function of n1, and call n1 the
flow variable. Here, in the so-called general framework, we denote the traffic flow on route L1 as the
flow variable, while in the study of next section, the flow variable denotes the traffic flow on a risky
route, as discussed before. Meanwhile, all the utility functions are assumed to be continuous of the
flow variable n1. u1

s is assumed to be a strictly decrease in n1, and thus u2
s is a strict increase in n1.

According to expected utility theory, route Li‘s expected travel utility ULi(n1) equals:

ULi(n1) =
∑
s∈S

πsui
s(n1). (6)

Comparing Equation (6) with Equation (1), we see that expected travel utility here is not fixed,
which is a function of n1. Therefore, Equation (6) is called the flow-dependent expected travel utility.

According to salience theory, travelers could over-weight the route’s most salient states in S. Next,
we extend the salience theory, and propose the following flow-dependent salience theory in Definition
2, where the salience function is a function of the flow variable n1 to study travelers’ behavior around
this kind of choice. To formally define flow-dependent salience theory, let us = (ui

s(n1))i=1,2 be the
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vector listing the routes’ utilities in state s for a given flow n1, and denote by u−i
s (n1) the utility in s of

route L j, j , i. Let umin
s and umax

s denote the smallest and largest utilities in us, respectively.

Definition 2. (Flow-dependent salience theory) The salience of state s for route Li, i = 1, 2 is a continuous and
bounded function σ(ui

s(n1), u−i
s (n1)) for a given flow n1 that satisfies two conditions:

1. Ordering. If for states s, s̃ ∈ S, we have that [umin
s (n1), umax

s (n1)] is a subset of [umin
s̃

(n1), umax
s̃

(n1)], then:

σ(ui
s(n1), u−i

s (n1)) < σ(ui
s̃(n1), u−i

s̃ (n1)). (7)

2. Diminishing sensitivity. If u j
s(n1) > 0, j = 1, 2, then for any ε > 0:

σ(ui
s(n1) + ε, u−i

s (n1) + ε) < σ(ui
s(n1), u−i

s (n1)). (8)

To illustrate Definition 2, we propose the flow-dependent salience function:

σ(ui
s(n1), u−i

s (n1)) =

∣∣∣ui
s(n1) − u−i

s (n1)
∣∣∣

ui
s(n1) + u−i

s (n1)
. (9)

Properties’ ordering and diminishing sensitivity are also captured by the numerator and
denominator, respectively. In addition to these two properties, the salience function (9) satisfies
the symmetry property—i.e., σ(u1

s (n1), u2
s (n1)) = σ(u2

s (n1), u1
s (n1)), which is a natural property in the

case of two routes.
If the original salience function of [35], shown in Equation (5), is used here, its natural

flow-dependent extension is σ(ui
s(n1), u−i

s (n1)) =
|ui

s(n1)−u−i
s (n1)|

|ui
s(n1)|+|u−i

s (nx)|+θ
. Because our model is defined for

nonnegative travel utility (See Assumption 1 for more details), the specification of the salience function
is slightly different from the original one.

Given states s, s̃ ∈ S, we say that for route Li(i = 1, 2), state s is more salient than s̃ if
σ(ui

s(n1), u−i
s (n1)) > σ(ui

s̃
(n1), u−i

s̃
(n1)). The travelers transform the odds πs̃

πs
of s̃ relative to s into

the odds
πi

s̃
πi

s
, given by:

πi
s̃

πi
s
= δσ(u

i
s̃
(n1),u−i

s̃
(n1))−σ(ui

s(n1),u−i
s (n1)) ·

πs̃
πs

, (10)

where δ ∈ (0, 1]. By normalizing
∑

s π
i
s = 1 and defining ωi

s =
δ−σ(u

i
s(n1),u

−i
s (n1))∑

r∈S δ
−σ(ui

r(n1),u
−i
r (n1))·πr

, the decision weight

attached by the travelers to a generic state s in the evaluation of Li is:

πi
s = πs ·ω

i
s. (11)

Constant δ ∈ (0, 1] captures travelers’ susceptibility to the salience—i.e., it can reflect the distortion
extent of the decision weights by the salience, i.e., the salience bias. When δ = 1, travelers become
rational, and there is no distortion of the objective probabilities. Hereinafter, we call the travelers with
δ < 1 the salient travelers. The smaller the value of δ is, the stronger the salience bias is. In an extreme
case where δ→ 0 , the salient travelers will only focus on the route’s most salient utility.

Following the convention in [35], we introduce the following ranking method based on salience
function. Let ki

s ∈ {1, 2, . . . , |S|} be the salience ranking of state s for route Li, with a lower ki
s indicating a

higher salience. All the states with the same salience obtain the same ranking, and meanwhile the
ranking has no jumps. Adopting this ranking method, the salient travel utility is defined as follows.
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Definition 3. A salient traveler’s flow-dependent travel utility on route Li ∈ C(i = 1, 2), denoted by ULi(n1),
is formulated as:

ULi(n1) =
∑
s∈S

πsui
s(n1) ·

δki
s∑

r∈S πrδki
r
. (12)

Compared to Equation (6), we see that the objective probability πs is replaced with the distorted

probability πsδ
ki
s∑

r∈S πrδ
ki
r

for each state s, and the similar replacement is always valid in the following study.

Hereinafter, we call the choice model in Definition 3 the salient travel utility model with discrete
ranking. According to the above discussion, the normalization factor in the denominator ensures that
the distorted probabilities sum up to one. Therefore, for a non-risky route, denoted as NR, on which the
utility functions are all the same for any state s ∈ S, denoted as uNR(n1), we have UNR(n1) = uNR(n1).
Hence, the normalization ensures that the salient travelers’ valuation for a non-risky route NR is
undistorted, irrespective of the composition of the choice set C.

In a case where the salient traveler makes a choice decision between two risky routes, we obtain
the route preference condition in Proposition 1, which is the basis of our equilibrium analysis.

Proposition 1. For a given flow variable n1, in the case of discrete ranking, the salient travelers prefer L1 to L2

if and only if: ∑
s∈S

δksπs
[
u1

s (n1) − u2
s (n1)

]
> 0. (13)

Proof. For a given flow variable n1, in the case of discrete ranking, the salient travelers prefer L1 to L2

if and only if UL1(n1) > UL2(n1)—i.e.:

∑
s∈S

πsu1
s (n1) ·

δk1
s∑

r∈S πrδk1
r
>

∑
s∈S

πsu2
s (n1) ·

δk2
s∑

r∈S πrδk2
r

. (14)

By the aforementioned symmetry property, we have k1
s = k2

s , and denote it as ks. Then, Equation (14)
is equivalent to: ∑

s∈S

πsδ
ksu1

s (n1) >
∑
s∈S

πsδ
ksu2

s (n1). (15)

By rearrangement, we have
∑
s∈S
δksπs[u1

s (n1) − u2
s (n1)] > 0, which completes the proof. �

3. User Equilibrium Analysis with Salient Travel Utility Model

In this section, we analyze the long-term effect of the salient travel utility model in a two-state world,
and propose the salient user equilibrium, which extends the scope of Wardrop’s user equilibrium [1].
The salient user equilibrium condition can be stated as:

No traveler can improve his (her) salient travel utility by unilaterally changing his (her) route
choice decision.

3.1. Definitions and Notations

We modify the definitions and notations in last section for this specific case. One of the these two
routes is non-risky, denoted by NR, with a deterministic utility function uNR (as in the aforementioned
discussions, the utility functions on the non-risky route are the same for the two states of the world),
and the other route is risky, denoted by R, with a utility function uR, which depends on the state of the
world. The choice set is denoted as C—i.e., C = {NR, R}.
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Next, we use the traffic flows on the risky route, denoted by nR, as the flow variable, and N − nR

indicates the traffic flows on the non-risky route. The two states of world are assumed to be “good”
and “bad”. For example, the road capacity could be high in a good state or low in a bad state due to
road accidents or maintenance. The objective probability of the bad state of the world, denoted by
p ∈ [0, 1], is assumed to be exogenously given, and we further assume that all the travelers know the
objective probability. We use the upper script “+” to denote a good state and “-” to denote a bad state.
Then, we have:

P(uR = u+) = 1− p and P(uR = u−) = p, (16)

where u+(u−) denotes the travel utility on the risky route in a good (bad) state of the world.
Hereinafter, we use the following travel utility function for different cases, as shown in

Equation (17).
u+(nR) = c,u−(nR) = c− a1nR,uNR(nR) = c− a2(N − nR), (17)

where c denotes the intrinsic value when a salient traveler arrives at his (her) destination, while a1

and a2 are parameters of the utility function which are positive. The travel utility consists of two
parts, the intrinsic value and the flow-dependent travel times, where the travel time on the risky route
in a good state is normalized to be zero. The hypothesis that u+(nR) is constant can simplify our
computations, but it is by no means essential for our analysis. Here, we only study the simple form of
the travel time function. The benefit of these linear forms of the travel utility function is that we can
find as many closed-form values as possible. However, our analysis can be extended accordingly to
the nonlinear utility functions with proper modifications. From Equation (17), we also see that travel
utility uNR(nR) is continuous and strictly increases with the traffic flow nR, travel utility u+(nR) is
a constant in the good state, and travel utility u−(nR) is continuous and strictly decreasing with the
traffic flow nR.

Note here that the relationship between a1 and a2—i.e., a1 < (=,>)a2—has no impact on the
existence and uniqueness of the salient user equilibrium. However, it can indeed change the final
equilibrium traffic flow distribution. See Section 4.2 for more discussions on this relationship.

Before we present the formal results, the following assumption is made on Equation (17), where
amax = max{a1, a2}.

Assumption 1.
c− amaxN = 0. (18)

The meaning of this assumption is that the utility in the worst-case situation is normalized to be
zero. The worst-case situation means that all the travelers choose the route whose utility decreases
fastest and the world is in bad state only. We believe thay Assumption 1 is mild, and with it all the
travel utilities are non-negative, as in [45,46]. In addition, the benefit of this assumption is that the
salience function (5) can be simplified as (9), which can further simplify the following discussions.
If Assumption 1 is relaxed—i.e., the travel utilities can be negative—the analysis procedure proposed
in this paper is still applicable with some modifications. In this case, the original salience function
shown in Equation (5) needs to be used.

3.2. Trivial Equilibrium Analysis

Here, we start from the trivial case of the equilibrium, and then focus on the analysis of general
salient user equilibrium. In the following discussions, the equilibrium traffic flow on the risky route is
always denoted as ne

R with a bit of notation abuse.
From the above discussions, it can be seen that the two significant parameters in the proposed

methodology are δ and p. By setting some special values for these two parameters, we study the trivial
cases for the equilibrium analysis, where the flow-dependent salience theory does not apply.

1. The case where p = 0 or p = 1:
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When p = 0 (or p = 1), there is no bad (or good) state in the world—i.e., the risky route becomes a
non-risky route. In this case, the flow-dependent salience theory is no longer applicable, and thus the
value of δ has no impact on the final equilibrium.

(1) p = 0. In this case, one corner equilibrium solution can be obtained by solving
u+(nR) = uNR(nR)—i.e., ne

R = N;
(2) p = 1. In this case, one equilibrium solution can be obtained by solving u−(nR) = uNR(nR)—i.e.,

ne
R = a2N

a1+a2
.

2. The case where p ∈ (0, 1):

(1) When δ = 1, the salient travelers become the rational travelers as discussed before, and they
make the route choice decision based on the expected utility theory. In this case, one equilibrium
solution, termed the expected flow, can be obtained by solving:

uNR(nR) = pu−(nR) + (1− p)u+(nR). (19)

(2) When δ < 1, we analyze the salient user equilibrium based on the salient travel utility model,
which will be studied in the next section.

3.3. Salient User Equilibrium Analysis

In this section, we study the salient user equilibrium analysis with discrete ranking. That is,
we follow the convention in [35] to perform the analysis. The equilibrium can be analyzed with
the following procedures—a flow-dependent salience ranking analysis and a flow-dependent route
preference analysis.

3.3.1. Salience Ranking Analysis

In this section, we analyze the salience ranking to identify which state is salient. We define
σ1 as σ(u+(nR), uNR(nR)) and σ2 as σ(u−(nR), uNR(nR)) for convenience. According to the previous
definitions and notations, we assume that u+(nR) is constant, and u−(nR) and uNR(nR) are functions
of nR.

With the utility functions shown in Equation (17), we see that u+(nR) ≥ uNR(nR), ∀nR ∈ [0, N].
Therefore, the symbol of absolute value on the numerator of σ1 can be removed directly, which is
written as:

σ1 = σ(u+(nR), uNR(nR)) =
u+(nR) − uNR(nR)

u+(nR) + uNR(nR)
=

a2(N − nR)

2c− a2(N − nR)
. (20)

For σ2, we have:

σ2 = σ(u−(nR), uNR(nR)) =

∣∣∣u−(nR) − uNR(nR)
∣∣∣

u−(nR) + uNR(nR)
=

∣∣∣a2(N − nR) − a1nR
∣∣∣

2c− a1nR − a2(N − nR)
, (21)

where the symbol of absolute value cannot be removed directly.
a2(N − nR) − a1nR = 0 implies nR0 = a2N

a1+a2
. Because a2

a1+a2
< 1, nR0 < N, which exists.

Therefore, Equation (21) is rewritten as:

σ2 =


a1nR−a2(N−nR)

2c−a1nR−a2(N−nR)
if 0 ≤ nR ≤ nR0 ,

a2(N−nR)−a1nR
2c−a1nR−a2(N−nR)

if nR0 < nR ≤ N.
(22)

Based on the above derivations, the following proposition can be obtained on the salience ranking,
where nRsplit denotes the point where the salience ranking changes—i.e., the order of σ1 and σ2 changes.
See Figure 1 for graphical information.
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Proposition 2. When nR ∈ (0, nRsplit), σ1 > σ2—i.e., the good state is salient; when nR ∈ (nRsplit , N],
σ1 < σ2—i.e., the bad state is salient; when nR = 0 and nR = nRsplit , σ1 = σ2—i.e., no state is salient, where

nRsplit =
2Na2

2−2a2c−a1c+Γ
1
2

2a2
2

, with Γ being c(a2
1c + 4a2

2c + 4a1a2c− 4Na1a2
2).

Proof. We proceed the proof in three steps, which are the examination of monotonicity, the examination
of salience ranking for special points, and the examination of salience equivalence.

(1) Examination of monotonicity

As we see from the above discussions, both σ1 and σ2 are functions of nR. First, we examine the
monotonicity of σ1 and σ2 on nR.

dσ1

dnR
=
−a2(2c− a2(N − nR)) − a2(a2(N − nR))

(2c− a2(N − nR))
2 = −

2a2c

(u−(nR) + uNR(nR))
2 . (23)

Because a2 > 0 and c > 0, as shown in Equation (17), dσ1
dnR

< 0 can be obtained—i.e., σ1 is strictly
decreasing as nR increases in the interval [0, N].

When 0 ≤ nR ≤ nR0 , we obtain:

dσ2
dnR

=
−(a1+a2)(2c−a1nR−a2(N−nR))−(a2−a1)(a2(N−nR)−a1nR)

(2c−a1nR−a2(N−nR))
2

= −
2a1(c−a2(N−nR))+2a2(c−a1nR)

(2c−a1nR−a2(N−nR))
2

= −
2a1uNR(nR)+2a2u+(nR)

(u+(nR)+uNR(nR))
2 .

(24)

Because all the utility functions are non-negative, as shown in Assumption 1, and a1 > 0 and
a2 > 0, as shown in Equation (17), dσ2

dnR
< 0 can be obtained—i.e., σ2 is strictly decreasing as nR increases

in the interval [0, nR0 ]. By similar derivation, we obtain that σ2 is strictly increasing as nR increases in
the interval (nR0, N].

(2) Examination of salience ranking for special points

Next, we examine the salience relationship between σ1 and σ2 at several special points.

1. When nR = 0, we have that u+(nR) = c, u−(nR) = c, and uNR(nR) = c − a2N. Furthermore,
σ1 = σ(c, c− a2N) and σ2 = σ(c, c− a2N). By ordering the property, we obtain σ1 = σ2.
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2. When nR = nR0 , we have σ1 = σ(u+(nR0), uNR(nR0)), and σ2 = σ(u−(nR0), uNR(nR0)).
By ordering the property, we obtain σ1 > σ2.

3. When nR = N, we have u+(nR) = c, u−(nR) = c − a1N, and uNR(nR) = c. Furthermore,
σ1 = σ(c, c) and σ2 = σ(c− a1N, c). By ordering the property, we obtain σ2 > σ1.

The combination of the examination of monotonicity and the examination of salience ranking for
special points indicates that (1) there must be at least one point in the interval [0, nR0) that makes the
salience equivalent between σ1 and σ2, and (2) there must be one point in the interval (nR0 , N) that
makes the salience equivalent between σ1 and σ2. Next, we examine the salience equivalence in these
two intervals.

(3) Examination of salience equivalence:

1. Considering the interval [0, nR0), let σ1 = σ2, and we obtain:

a2(N − nR)

2c− a2(N − nR)
=

a2(N − nR) − a1nR

2c− a2(N − nR) − a1nR
. (25)

Solving Equation (25), we have nR1 = 0 and nR2 = − c−a2N
a2

. Because c− a2N ≥ 0, nR2 ≤ 0. Therefore,
if nR2 < 0, nR2 is not within the considered interval, it does not meet the requirement. Therefore, nR = 0
is the only solution that makes σ1 equal to σ2 in the considered interval.

2. Considering the interval (nR0 , N), let σ1 = σ2, and we obtain:

a2(N − nR)

2c− a2(N − nR)
=

a1nR − a2(N − nR) − a1nR

2c− a2(N − nR) − a1nR
. (26)

Solving Equation (26), we obtain nR3 =
2Na2

2−2a2c−a1c−Γ
1
2

2a2
2

and nR4 =
2Na2

2−2a2c−a1c+Γ
1
2

2a2
2

(i.e., nRsplit),

where Γ = c(a2
1c + 4a2

2c + 4a1a2c− 4Na1a2
2).

nR3 can be rewritten as nR3 =
−a1c−2a2(c−a2N)−Γ

1
2

2a2
2

, and combining that c > 0, c− a2N ≥ 0, we obtain

nR3 < 0. Therefore, nR3 is not within the feasible domain (nR0 , N)—i.e., it does not meet the requirements.
That is, nR4 is the only solution that makes σ1 equal to σ2 in the considered interval.

Combining all the results and renaming nR4 as nsplit, we complete the proof. �

According to Proposition 2, the relationship between σ1 and σ2 can be schematically shown in
Figure 1. Here, we take N = 1000 as an example. a1 = 0.2, a2 = 0.3, and c = 300. Therefore,nR0 = 600.

In particular, σ1 is a convex function by verifying that d2σ1
d2nR

= 4a2
2c[2c− a2(N − nR)]

−3 > 0; σ2 is a convex

function in the interval [0, nR0 ] by verifying d2σ2
d2nR

= 4[a1(c− a2N) + a2c][2c− a1nR − a2(N − nR)]
−3(a2 −

a1) > 0, and is a concave function on the interval (nR0 , N] by symmetry.

Remark 1. From Proposition 2, we see that, given the total travel demand and travelers’ utility functions, the
salience ranking is fixed, which is irrelevant to the objective probabilities and travelers’ salience bias.

3.3.2. Equilibrium Analysis

According to Definition 3, the salient travel utility for the risky route with discrete ranking in a
two-state world is written as

UR(nR) =
pδkp u−(nR) + (1− p)δk1−pu+(nR)

pδkp + (1− p)δk1−p
,∀nR, (27)
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and the salient travel utility for the non-risky route is written as UNR(nR) = uNR(nR),∀nR due to the
normalization.

Before we start the formal analysis of the salient user equilibrium in the discrete case, we present
the following results based on Proposition 1.

The salient travelers prefer the risky route R to the non-risky route NR if and only if:∑
s∈S

δksπs
[
uR

s (nR) − uNR
s (nR)

]
> 0. (28)

Here, S =
{
good, bad

}
. Therefore, at the salient user equilibrium, we have the equation:∑

s∈S

δksπs
[
uR

s (nR) − uNR
s (nR)

]
= 0. (29)

Motivated by Equation (29), we propose the following flow-dependent route preference function.

Definition 4. The flow-dependent route preference function is formulated as:

VR→NR(nR) =


V1eq2(nR), if nR = 0;
V12(nR), if nR ∈ (0, nRsplit);
V1eq2(nR), if nR = nRsplit ;

V21(nR), if nR ∈
(
nRsplit , N

] , (30)

where V12(nR) corresponds to the situations in which σ1 > σ2—i.e., nR ∈ (0, nRsplit); V21(nR) corresponds
to the situations in which σ2 > σ1—i.e., nR ∈ (nRsplit , N]; V1eq2(nR) corresponds to the situations in which
σ1 = σ2—i.e., nR = 0 and nR = nRsplit .

Here, we have:

V12(nR) = δ(1− p)
[
u+(nR) − uNR(nR)

]
+ δ2p

[
u−(nR) − uNR(nR)

]
, (31)

V21(nR) = δp
[
u−(nR) − uNR(nR)

]
+ δ2(1− p)

[
u+(nR) − uNR(nR)

]
, (32)

V1eq2(nR) = δp
[
u−(nR) − uNR(nR)

]
+ δ(1− p)

[
u+(nR) − uNR(nR)

]
. (33)

Based on the flow-dependence route preference function, we obtain that when VR→NR > 0,
the salient travelers prefer the risky route to the non-risky route; when VR→NR < 0, the salient travelers
prefer the non-risky route to the risky route; when VR→NR = 0, a salient user equilibrium is obtained.
Next, we present the formal results on the salient user equilibrium.

Proposition 3. When p , 1, nR ∈ [0, nR0 ], there is no salient user equilibrium.

Proof. We proceed with the proof in two steps.

(1) When nR = 0, we obtain VR→NR = V1eq2 = δa2N > 0—i.e., the salient travelers prefer the risky
route to the non-risky route. Therefore, nR = 0 is not a salient user equilibrium.

(2) Considering the interval (0, nR0 ], we have dV12
dnR

= −(δ(1 − p)a2 + δ2p(a1 + a2)) < 0 when p , 1.

Besides this,VR→NR(nR0) = V12(nR0) =
δ(1−p)a1a2N

a1+a2
> 0. Therefore, we obtain V12(nR) > 0,∀nR ∈

(0, nR0 ]—i.e., the salient travelers prefer the risky route to the non-risky route, and thus there is
no salient user equilibrium in the considered interval. �
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The intuitive explanation to Proposition 3 is that when nR ∈ [0, nR0 ], the travel utility of the risky
route is larger than that of the non-risky route, no matter which state is salient. In this case, the salient
travelers prefer the risky route.

Lemma 1. Both V12(nR) and V21(nR) are strictly decreasing in the flow variable nR. Moreover, at point
nR = 0, V1eq2(0) > V−12(0); at point nR = nsplit, V+

12(nRsplit) > V1eq2(nRsplit) > V−21(nRsplit).

Proof. We have dV12
dnR

= −(δ(1− p)a2 + δ2p(a1 + a2)) < 0 and dV21
dnR

= −(δ2(1− p)a2 + δp(a1 + a2)) < 0
with all the parameters being positive, and thus both V12 and V21 are strictly decreasing in nR in their
corresponding domains.

At point nR = 0, we have V1eq2(0) = δ(1 − p)a2N + δpa2N > 0 and V−12(0) = δ(1 − p)a2N +

δ2pa2N > 0. For a salient traveler, δ ∈ (0, 1), and thus V1eq2(0) > V−12(0) by directly comparing V1eq2(0)
with V−12(0).

At point nR = nsplit, we have:

V+
12(nRsplit) = δ(1− p)[a2(N − nRsplit)] + δ2p[a2(N − nRsplit) − a1nRsplit ]

V1eq2(nRsplit) = δ(1− p)[a2(N − nR4)] + δp[a2(N − nRsplit) − a1nRsplit ],

V−21(nRsplit) = δ2(1− p)[a2(N − nRsplit)] + δp[a2(N − nRsplit) − a1nRsplit ].

Because nRsplit > nR0 , we have a2(N − nRsplit) − a1nRsplit < 0. For a salience traveler, δ ∈ (0, 1),
and thus V+

12(nRsplit) > V1eq2(nRsplit) > V−21(nRsplit) by directly comparing V+
12(nRsplit) with V1eq2(nRsplit),

and comparing V1eq2(nRsplit) and V−21(nRsplit). �

Here, − denotes the left limit, and + denotes the right limit. − and + also denote the bad state and
good state, respectively. We assume this is clear from the context. The results of Lemma 1 are shown in
Figures 2–4. Proposition 3 shows that VR→NR(nR) > 0, ∀nR ∈ [0, nR0 ], and Lemma 1 shows the special
value at nRsplit , which motivates the following logic for the analysis. For example, if VR→NR(nRsplit) < 0,
combining that V12(nR) is strictly decreasing within (nR0 , nRsplit), we can show that there exists a unique
salient user equilibrium in this interval. All the following formal results are obtained based on the
similar logic. Moreover, we find the common factor to shed light on the structure property, which is
used for the sensitivity analysis in numerical experiments. This common factor is called discriminant,

defined as η =
a2(N−nRsplit )

a1nRsplit−a2(N−nRsplit )
, which is motivated by the discussions in Remark 1.

Proposition 4. When δp
1−p ≤ η <

p
1−p , or p

1−p < η ≤
p

δ(1−p) , nsplit is not a salient user equilibrium—i.e., there
is no salient user equilibrium.

Proof. Substituting η into δp
1−p ≤ η <

p
1−p , we have:

δp
1−p ≤

a2(N−nRsplit )

a1nRsplit−a2(N−nRsplit )
<

p
1−p

⇔

 δp(a1nRsplit − a2(N − nRsplit)) ≤ (1− p)a2(N − nRsplit)

a2(N − nRsplit)(1− p) < p(a1nRsplit − a2(N − nRsplit))

⇔

 (1− p)δ(c− (c− a2(N − nRsplit))) − δ
2p(c− a1nRsplit − (c− a2(N − nRsplit))) ≤ 0

(1− p)δ(c− (c− a2(N − nRsplit))) − pδ(c− a1nRsplit − (c− a2(N − nRsplit))) > 0

⇔

 (1− p)δ(u+(nRsplit) − uNR(nRsplit)) − δ
2p(u−(nRsplit) − uNR(nRsplit)) ≤ 0

(1− p)δ(u+(nRsplit) − uNR(nRsplit)) − pδ(u−(nRsplit) − uNR(nRsplit)) > 0
.

(34)

�
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That is, we obtain V1eq2(nRsplit) < 0 ≤ V12(nRsplit) from the flow-dependent route preference

function. When p
1−p < η ≤

p
δ(1−p) , we obtain V21(nRsplit) ≤ 0 < V1eq2(nRsplit) from the flow-dependent

route preference function following a similar procedure as before.
Therefore, in both cases, ∀nR ∈ [0, nRsplit), VR→NR > 0—i.e., the salient travelers prefer the

risky route—and in ∀nR ∈ (nRsplit , N], VR→NR < 0, the salient travelers prefer the non-risky route.
When nR = nsplit, VR→NR < 0 for the first case, the salient travelers prefer the non-risky route,
and VR→NR > 0 for the second case, the salient travelers prefer the risky route. In summary, there is no
salient user equilibrium for this situation.

Proposition 4 and its corresponding proof is schematically shown in Figure 2.
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Figure 2. Schematic diagram of the proof in Proposition 4. (a) δp
1−p ≤ η <

p
1−p ; (b) p

1−p < η ≤
p

δ(1−p) .

Proposition 5. When η < δp
1−p or η > p

δ(1−p) , there is a unique salient user equilibrium, and the final equilibrium

traffic flows on risky route are ne
R =

(1−p+δp)a2N
δp(a1+a2)+(1−p)a2

and ne
R =

(δ(1−p)+p)a2N
δp(a1+a2)+δ(1−p)a2

, respectively.

Proof. When η < δp
1−p , we obtain V12(nRsplit) < 0 < V12(nR0) as the aforementioned procedure. Solving

V12(nR) = 0, we obtain ne
R =

(1−p+δp)a2N
δp(a1+a2)+(1−p)a2

. When η > p
δ(1−p) , we obtain V21(N) < 0 < V21(nRsplit) as

the aforementioned procedure. Solving V21(nR) = 0, we obtain ne
R =

(δ(1−p)+p)a2N
δp(a1+a2)+δ(1−p)a2

.
Therefore, in both cases we have VR→NR > 0,∀nR ∈ [0, ne

R), where the salient travelers prefer the
risky route, and we have VR→NR < 0,∀nR ∈ (ne

R, N], where the salient travelers prefer the non-risky
route. VR→NR(ne

R) = 0, ne
R ∈ (nR0 , nRsplit) is an equilibrium solution. �

Proposition 5 and its corresponding proof are schematically shown in Figure 3.
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Figure 3. Schematic diagram of the proof in Proposition 5. (a) η < δp
1−p ; (b) η > p

δ(1−p) .

Proposition 6. When η = p
1−p , there is a unique salient user equilibrium, and the final equilibrium traffic flows

on the risky route is nsplit.

Proof. When η =
p

1−p , we obtain V1eq2(nsplit) = 0 as the aforementioned procedure. Therefore, we
have VR→NR > 0,∀nR ∈ [0, nsplit), where the salient travelers prefer the risky route, and we have
VR→NR < 0,∀nR ∈ (nRsplit , N], where the salient travelers prefer the non-risky route. VR→NR(nsplit) = 0,
nsplit is an equilibrium solution. �

Proposition 6 and its corresponding proof are schematically shown in Figure 4.
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From the above propositions, we see that the interval (0,∞) is divided into five parts—i.e.,
0 < η < δp

1−p , δp
1−p ≤ η <

p
1−p , η =

p
1−p , p

1−p < η ≤
p

δ(1−p) , and η > p
δ(1−p) . Each part corresponds to a

different sufficient condition for the existence (or non-existence) of the salient user equilibrium. Next,
we present our formal results about the travelers’ risk attitudes in a risky route choice based on the
equilibrium results.

Proposition 7. When η = p
1−p , no state is salient, and the travelers are risk-neutral; when η < δp

1−p , the good

state is salient, and the travelers are risk-seeking; when η > p
δ(1−p) , the bad state is salient, and the travelers are

risk-averse.

Proof. When η =
p

1−p , no state is salient; combing the results in Proposition 6, we obtain that

Equation (33) becomes δp[u−(nR) − uNR(nR)] + δ(1 − p)[u+(nR) − uNR(nR)] = 0. Rearranging this,
we obtain the results with the expected utility theory—i.e., Equation (19), which indicates that travelers
are risk-neutral.

When the good state is salient, its distorted probability will become larger, and thus the
right-hand-side value of Equation (19) will become larger. Therefore, more travelers will choose the
risky route—i.e., they are risk-seeking. Similarly, when the bad state is salient, its distorted probability
will become larger, and thus the right-hand-side value of Equation (19) will become smaller. Therefore,
more travelers will choose the non-risky route—i.e., they are risk-averse. �

4. More Discussions on the Salient User Equilibrium

In this section, we give more discussions on the salient user equilibrium.

4.1. Diminishing Sensitivity

From the above discussions, we see that the equilibrium analysis only concerns ordering and
symmetry properties. Diminishing sensitivity is irrelevant. In this section, we examine the effect of
diminishing sensitivity on the equilibrium analysis.

Here, we increase the intrinsic value c, denoted as c′. We can also decrease the value of c to illustrate
the diminishing sensitivity, and similar discussions can be made accordingly. From Equation (21), we
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see that the value of nR0 remains the same, while the values of σ1 and σ2 are changed. In particular, we
calculate the new splitting point as:

nR′split
=

2Na2
2 − 2a2c′ − a1c′ + Γ

1
2

2a2
2

, (35)

where Γ = c′(a2
1c′ + 4a2

2c′ + 4a1a2c′ − 4Na1a2
2).

Furthermore, when nR ∈ (0, nR′split
), σ1 > σ2; when nR ∈ (nR′split

, N], σ1 < σ2; and when nR = 0 and

nR = nRsplit , σ1 = σ2. Here, we continue to use the parameters shown in Figure 1, and only change the
value of c from 300 to 350 to show the effect of diminishing sensitivity, as presented in Figure 5.
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Figure 5. Schematic diagram of diminishing sensitivity.

From Figure 5, we see that the values of σ1 and σ2 decrease with the increase in the intrinsic
value, which can be verified with the property diminishing sensitivity. Next, we discuss the impact of
the increase in intrinsic value on the final salient user equilibrium. The value of the discriminant is
changed due to the new splitting point. The above propositions show that if the original sufficient
conditions are still satisfied with this new discriminant, the final equilibrium solution will remain the
same. Otherwise, it will be different.

4.2. Relationship between a1 and a2

From the process of equilibrium analysis, we see that the relationship between a1 and a2—i.e.,
a1 > (=,<)a2—has no impact on the equilibrium existence and uniqueness. However, the final salient
user equilibrium can indeed be changed if we change the value of a1 and a2. Moreover, Proposition 3 is
always true no matter what relationship is.

We show two representative situations for the utility functions in Figure 6. In Figure 6a, a1
a2

is large
(e.g., a1

a2
= 10), and the final equilibrium on the risky route could be large or small, which depends on

the salient state. However, in Figure 6b, a1
a2

is small (e.g., a1
a2

= 0.2), and the final equilibrium on the
risky route is large. The explanation for this is the same as that for Proposition 3.
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5. Numerical Experiments

In this section, we conduct the numerical experiments to demonstrate our theoretical findings.
All the flow-dependent route preference functions are solved with the solve function in Matlab R2014a.

We consider N = 10000 drivers traveling from the common origin to the common destination.
Each traveler has to choose between a non-risky route and a risky route, and there are no other
alternatives, as aforementioned.

The travel time utility functions for the non-risky route, the risky route in a bad state, and the risky
route in a good state are uNR(nR) = 350 − 0.02(N − nR), u−(nR) = 350 − 0.03nR, and u+(nR) = 350,
respectively. That is, c = 350, a1 = 0.03, and a2 = 0.02. According to the aforementioned equations,
nR0 = 4000 and nRsplit = 5363. Given these parameters, the flow-dependent route preference function
is written as:

VR→NR(nR) =


δ(1− p)(200− 0.02nR) + δp(200− 0.05nR), when nR = 0,
δ(1− p)(200− 0.02nR) + δ2p(200− 0.05nR), when nR ∈ (0, 5363),
δ(1− p)(200− 0.02nR) + δp(200− 0.05nR), when nR = 5363,
δ2(1− p)(200− 0.02nR) + δp(200− 0.05nR), when nR ∈ (5363, 10000].

(36)

First, we consider two special cases for the salient travelers to demonstrate the propositions.
(1) Let p = 0.8 and δ = 0.5; thus, δp

1−p = 2, p
1−p = 4, and p

δ(1−p) = 8. The value of the

discriminant is η =
a2(N−nRsplit )

a1nRsplit−a2(N−nRsplit )
= 1.3605. Therefore,

a2(N−nRsplit )

a1nRsplit−a2(N−nRsplit )
<

δp
1−p . According

to Proposition 5, we know that there is a unique equilibrium solution ne
R ∈ (4000, 5363). Solving

V12(nR) = 0.1× (200− 0.02nR) + 0.2× (200− 0.05nR) = 0, we obtain ne
R = 5000.

Next, we set p = 0.8, and change the value of δ from 0.34 to 0.99 (the range of δ is to ensure
the existence of the salient user equilibrium). The salient equilibrium flow and the expected flow of
Equation (19) on the risky route are shown in Figure 7. We see that the salient equilibrium flow is
larger than the expected flow—i.e., the travelers are risk-seeking—when the good state is salient, which
demonstrates Proposition 7. Furthermore, we see that the smaller the value of δ is—i.e., the larger
the extent of the salience bias is—the larger the salient equilibrium flow is, and vice versa. That is,
travelers’ risk-seeking extent depends the extent of salience bias.
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Here, we see that the probability for the risky route to have a small travel utility (i.e., in bad
state) is high, but the travelers are risk-seeking, which sounds non-intuitive. The reason for this is that
the salient travelers focus on the unusual aspect. When the risky route is in a bad state with a high
probability, combining the above-mentioned travel utility functions and the equilibrium flows on the
risky route shown in Figure 7, we obtain the utility difference in good state is larger—i.e., the good
state is salient. Therefore, travelers are risk-seeking.

(2) Let p = 0.3 and δ = 0.8; thus, δp
1−p = 0.3429, p

1−p = 0.4286, and p
δ(1−p) = 0.5377. The value of

the discriminant is η =
a2(N−nRsplit )

a1nRsplit−a2(N−nRsplit )
= 1.3605. Therefore,

a2(N−nRsplit )

a1nRsplit−a2(N−nRsplit )
>

p
δ(1−p) . According

to Proposition 5, we know that there is a unique equilibrium solution ne
R ∈ (5363, 10000].

Solving V21(nR) = 0.448× (200− 0.02nR) + 0.24× (200− 0.05nR) = 0, we obtain ne
R = 6565.

Next, we set p = 0.3, and change the value of δ from 0.32 to 0.99 (the range of δ is to ensure
the existence of the salient user equilibrium). The salient equilibrium flow and the expected flow
on the risky route are shown in Figure 8. We see that the salient equilibrium flow is smaller than
the expected flow—i.e., the travelers are risk-averse—when the bad state is salient, which further
demonstrates Proposition 7. Furthermore, we see that the smaller the value of δ is—i.e., the larger the
extent of salience bias is—the smaller the salient equilibrium flow is, and vice versa. That is, travelers’
risk-averse extent depends the extent of salience bias.

Here, we also see that the probability for the risky route to have a large travel utility (i.e., in good
state) is high, but the travelers are risk-averse. This is also due to travelers’ salience characteristic.
When the risky route is in a good state with a high probability, combining the above-mentioned travel
utility functions and the equilibrium flows on the risky route shown in Figure 8, we obtain the utility
difference in the bad state is larger—i.e., the bad state is salient. Therefore, the travelers are risk-averse.

Next, we show the change in the equilibrium traffic flow on the risky route with the change in p
and δ in Figure 9. Here, we increase the value of p and δ from 0.01 to 0.99. The blue horn denotes the
area in which there is no salient user equilibrium, and its corner denotes the special unique equilibrium
when η = p

1−p (travelers are risk-neutral). The warmer (cooler) color denotes the larger (smaller) value
of the equilibrium flow on the risky route. The largest value is 9851, and the smallest value is 4024 in
our test. The left part of Figure 9 corresponds to the situation where η > p

δ(1−p) , and we see that (1) the
larger p is, the smaller the equilibrium traffic flow on the risky route is, and vice versa; (2) the larger δ
is, the larger the equilibrium traffic flow on the risky route is, and vice versa. The right part of Figure 9
corresponds with the situation where 0 < η <

δp
1−p , and we see that (1) the larger p is, the smaller

the equilibrium traffic flow on the risky route is, and vice versa; (2) the larger δ is, the smaller the
equilibrium traffic flow on the risky route is, and vice versa. All the findings can be verified by the



Sustainability 2020, 12, 6706 20 of 23

derivatives of ne
R with respect to p and δ in each part, given the values of a1, a2, and N. If we change
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6. Conclusions and Future Directions

This paper proposed a salient travel utility model to study travelers’ context-dependent route
choice behavior on a risky traffic network. The psychological foundation of this new choice model is
the proposed flow-dependent salience theory, which is an extension of the salience theory. Based on the
salient travel utility model, we analyzed the long-run effect of this route choice model, and proposed
the salient user equilibrium model. We followed the convention used in [35] to propose the salient
travel utility model with a discrete ranking, and proposed an analysis procedure (the flow-dependent
salience ranking analysis and flow-dependent route preference analysis) to study the user equilibrium.
Finally, we theoretically proved the solution existence and uniqueness.

The equilibrium results show that travelers are not always risk-neutral, risk-seeking, or risk-averse,
and this depends on the state that is salient. The main insights into travelers’ choice behavior are:
(1) When no state is salient, travelers are risk-neutral; when a good state is salient, travelers are
risk-seeking; and when a bad state is salient, travelers are risk-averse. (2) Travelers’ risk-neutral
behavior is irrelative with the salience bias, while the extent of the risk-seeking or risk-averse behavior
depends on the salience bias. A strong salience bias leads to a strong extent of travelers’ risk-seeking
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or risk-averse attitude. (3) When the travel utility on the risky route is small with a high probability
(e.g., 0.7), the travelers are risk-seeking, and when the travel utility on the risky route is large with
a high probability (e.g., 0.7), the travelers are risk-averse. (4) Risk-neutral is one special situation,
where the solution to the flow-dependent route choice function and the solution to the salience ranking
equivalence need to coincide. The main implication our findings can provide, for study and policy
design considering travelers’ risk attitudes on the risky route choice, is that the salience characteristic
can lead to non-intuitive risk attitudes for the travelers.

There are several limitations about the proposed methodology which merits further study. Firstly,
although we propose a general framework for the salient travel utility in which multiple states of the
world is considered, we only present the formal study on the two-state case in the equilibrium analysis.
Secondly, we only focus on the two-route setting, and studying travelers’ salience characteristic in
a general traffic network (three or more routes for each origin-destination pair) is important due to
the practical use. This is a big open question (choice with three or more alternatives) even for the
original salience theory [35]. Thirdly, we focus on the choice behavior only with one attribute, but
many studies (e.g., [7,16]) show that travelers’ choice behavior might be affected by several attributes,
such as travel time, travel time reliability, and travel cost. Fourthly, we assume that all the travelers
know the objective probabilities, which can be relaxed based on travelers’ perceived probabilities.
Fifthly, a behavioral experiment as conducted in [35] and [38] can be made to study travelers salient
behavior empirically, which can provide some support to the parameter settings, and some parameter
estimations can also be made accordingly. Finally, the new equilibrium model can shed light on some
other problems—e.g., the congestion pricing and emission modeling. We plan to work on all these
aspects in the future.

Author Contributions: Q.X.: Formal analysis, Methodology, Software, Writing—original draft. X.J.:
Conceptualization, Funding acquisition, Formal analysis, Methodology, Project administration, Writing—review
and editing. All authors have read and agreed to the published version of the manuscript.

Funding: The work is partially supported by project funded by Natural Science Foundation of China (No. 71801138),
by project funding by Natural Science Foundation of Shandong Province (ZR201709210154), and by project
funding by China Postdoctoral Science Foundation (2018M630744).

Acknowledgments: Special thanks go to the anonymous reviewers for their suggestions which improve the
quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wardrop, J.G. Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. 1952, 1, 325–362.
[CrossRef]

2. Beckmann, M.; McGuire, C.B.; Winsten, C.B. Studies in the Economics of Transportation; Yale University Press:
New Haven, CT, USA, 1956.

3. Gao, Z.; Wu, J.; Sun, H. Solution algorithm for the bi-level discrete network design problem. Transp. Res.
Part B Methodol. 2005, 39, 479–495. [CrossRef]

4. Wu, D.; Yin, Y.; Lawphongpanich, S.; Yang, H. Design of more equitable congestion pricing and tradable
credit schemes for multimodal transportation networks. Transp. Res. Part B Methodol. 2012, 46, 1273–1287.
[CrossRef]

5. Sun, X.; Lu, H.P.; Chu, W.J. A low-carbon-based bilevel optimization model for public transit network.
Math. Probl. Eng. 2013, 2013, 374826. [CrossRef]

6. Umar, M.; Ji, X.; Kirikkaleli, D.; Xu, Q. COP21 Roadmap: Do innovation, financial development, and
transportation infrastructure matter for environmental sustainability in China? J. Environ. Manag. 2020,
271, 111026. [CrossRef]

7. Chen, A.; Zhou, Z. The α-reliable mean-excess traffic equilibrium model with stochastic travel times.
Transp. Res. Part B Methodol. 2010, 44, 493–513. [CrossRef]

8. Ji, X.; Ban, X.; Zhang, J.; Ran, B. Moment-based travel time reliability assessment with lasserre’s relaxation.
Transp. B Transp. Dyn. 2019, 7, 401–422. [CrossRef]

http://dx.doi.org/10.1680/ipeds.1952.11362
http://dx.doi.org/10.1016/j.trb.2004.06.004
http://dx.doi.org/10.1016/j.trb.2012.05.004
http://dx.doi.org/10.1155/2013/374826
http://dx.doi.org/10.1016/j.jenvman.2020.111026
http://dx.doi.org/10.1016/j.trb.2009.11.003
http://dx.doi.org/10.1080/21680566.2018.1434018


Sustainability 2020, 12, 6706 22 of 23

9. Knight, F.H. Risk, Uncertainty and Profit; Houghton Mifflin: Boston, MA, USA, 1921.
10. Chen, Z.; Sim, M.; Xu, H. Distributionally robust optimization with infinitely constrained ambiguity sets.

Oper. Res. 2019, 67, 1328–1344. [CrossRef]
11. Mirchandani, P.; Soroush, H. Generalized traffic equilibrium with probabilistic travel times and perceptions.

Transp. Sci. 1987, 21, 133–152. [CrossRef]
12. Von Neumann, J.; Morgenstern, O.; Kuhn, H.W. Theory of Games and Economic Behavior (Commemorative

Edition); Princeton University Press: Princeton, NJ, USA, 2007.
13. Ban, X.J.; Ferris, M.C.; Tang, L.; Lu, S. Risk-neutral second best toll pricing. Transp. Res. Part B Methodol.

2013, 48, 67–87.
14. Lo, H.K.; Luo, X.; Siu, B.W. Degradable transport network: Travel time budget of travelers with heterogeneous

risk aversion. Transp. Res. Part B Methodol. 2006, 40, 792–806. [CrossRef]
15. Watling, D. User equilibrium traffic network assignment with stochastic travel times and late arrival penalty.

Eur. J. Oper. Res. 2006, 175, 1539–1556. [CrossRef]
16. Ji, X.; Ban, X.J.; Li, M.; Zhang, J.; Ran, B. Non-expected route choice model under risk on stochastic traffic

networks. Netw. Spat. Econ. 2017, 17, 777–807. [CrossRef]
17. Ji, X.; Ban, X.; Zhang, J.; Ran, B. Subjective-utility travel time budget modeling in the stochastic traffic network

assignment. J. Intell. Transp. Syst. 2017, 21, 439–451. [CrossRef]
18. Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. Econometrica 1979, 47,

263–292. [CrossRef]
19. Tversky, A.; Kahneman, D. Advances in prospect theory: Cumulative representation of uncertainty. J. Risk

Uncertain. 1992, 5, 297–323. [CrossRef]
20. Bell, D.E. Regret in decision making under uncertainty. Oper. Res. 1982, 30, 961–981. [CrossRef]
21. Xu, H.; Lou, Y.; Yin, Y.; Zhou, J. A prospect-based user equilibrium model with endogenous reference points

and its application in congestion pricing. Transp. Res. Part B Methodol. 2011, 45, 311–328. [CrossRef]
22. Zhang, C.; Liu, T.-L.; Huang, H.-J.; Chen, J. A cumulative prospect theory approach to commuters’ day-to-day

route-choice modeling with friends’ travel information. Transp. Res. Part C Emerg. Technol. 2018, 86, 527–548.
[CrossRef]

23. Chorus, C.G.; Arentze, T.A.; Timmermans, H.J. A random regret-minimization model of travel choice.
Transp. Res. Part B Methodol. 2008, 42, 1–18. [CrossRef]

24. Daganzo, C.F.; Sheffi, Y. On stochastic models of traffic assignment. Transp. Sci. 1977, 11, 253–274. [CrossRef]
25. Mahmassani, H.S.; Chang, G.-L. On boundedly rational user equilibrium in transportation systems. Transp. Sci.

1987, 21, 89–99. [CrossRef]
26. Ahipasaoglu, S.D.; Meskarian, R.; Magnanti, T.L.; Natarajan, K. Beyond normality: A cross moment-stochastic

user equilibrium model. Transp. Res. Part B Methodol. 2015, 81, 333–354. [CrossRef]
27. Yan, C.-Y.; Hu, M.-B.; Jiang, R.; Long, J.; Chen, J.-Y.; Liu, H.-X. Stochastic ridesharing user equilibrium in

transport networks. Netw. Spat. Econ. 2019, 19, 1007–1030. [CrossRef]
28. Xiao, F.; Shen, M.; Xu, Z.; Li, R.; Yang, H.; Yin, Y. Day-to-day flow dynamics for stochastic user equilibrium

and a general lyapunov function. Transp. Sci. 2019, 53, 683–694. [CrossRef]
29. Di, X.; Liu, H.X.; Ban, X.J. Second best toll pricing within the framework of bounded rationality. Transp. Res.

Part B Methodol. 2016, 83, 74–90. [CrossRef]
30. Liu, J.; Zhou, X. Capacitated transit service network design with boundedly rational agents. Transp. Res. Part

B Methodol. 2016, 93, 225–250. [CrossRef]
31. Sun, L.; Karwan, M.H.; Kwon, C. Path-based approaches to robust network design problems considering

boundedly rational network users. Transp. Res. Rec. 2019, 2673, 637–645. [CrossRef]
32. Xu, H.; Yang, H.; Zhou, J.; Yin, Y. A route choice model with context-dependent value of time. Transp. Sci.

2017, 51, 536–548. [CrossRef]
33. Finkelstein, A. E-ztax: Tax salience and tax rates. Q. J. Econ. 2009, 124, 969–1010. [CrossRef]
34. Michel, A.; Zhao, J. Modeling saliency in transportation pricing: Optimal mixture of automobile management

policies. In Proceedings of the Transportation Research Board 94th Annual Meeting, Washington, DC, USA,
11–15 January 2015.

35. Bordalo, P.; Gennaioli, N.; Shleifer, A. Salience theory of choice under risk. Q. J. Econ. 2012, 127, 1243–1285.
[CrossRef]

http://dx.doi.org/10.1287/opre.2018.1799
http://dx.doi.org/10.1287/trsc.21.3.133
http://dx.doi.org/10.1016/j.trb.2005.10.003
http://dx.doi.org/10.1016/j.ejor.2005.02.039
http://dx.doi.org/10.1007/s11067-017-9344-3
http://dx.doi.org/10.1080/15472450.2017.1326116
http://dx.doi.org/10.2307/1914185
http://dx.doi.org/10.1007/BF00122574
http://dx.doi.org/10.1287/opre.30.5.961
http://dx.doi.org/10.1016/j.trb.2010.09.003
http://dx.doi.org/10.1016/j.trc.2017.12.005
http://dx.doi.org/10.1016/j.trb.2007.05.004
http://dx.doi.org/10.1287/trsc.11.3.253
http://dx.doi.org/10.1287/trsc.21.2.89
http://dx.doi.org/10.1016/j.trb.2015.01.005
http://dx.doi.org/10.1007/s11067-019-9442-5
http://dx.doi.org/10.1287/trsc.2018.0853
http://dx.doi.org/10.1016/j.trb.2015.11.002
http://dx.doi.org/10.1016/j.trb.2016.07.015
http://dx.doi.org/10.1177/0361198119835807
http://dx.doi.org/10.1287/trsc.2016.0710
http://dx.doi.org/10.1162/qjec.2009.124.3.969
http://dx.doi.org/10.1093/qje/qjs018


Sustainability 2020, 12, 6706 23 of 23

36. Spitmaan, M.; Chu, E.; Soltani, A. Salience-driven value construction for adaptive choice under risk.
J. Neurosci. 2019, 39, 5195–5209. [CrossRef] [PubMed]

37. Nielsen, C.S.; Sebald, A.C.; Sørensen, P.N. Testing for Salience Effects in Choices under Risk. Available online:
http://web.econ.ku.dk/sorensen/papers/TestingForSalienceEffects.pdf (accessed on 17 May 2020).

38. Frydman, C.; Wang, B. The impact of salience on investor behavior: Evidence from a natural experiment.
J. Financ. Forthcom. 2020, 75, 229–276. [CrossRef]

39. Bordalo, P.; Gennaioli, N.; Shleifer, A. Salience theory of judicial decisions. J. Leg. Stud. 2015, 44, S7–S33.
[CrossRef]

40. Dertwinkel-Kalt, M.; Köster, M. Salient compromises in the newsvendor game. J. Econ. Behav. Organ. 2017,
141, 301–315. [CrossRef]

41. Fochmann, M.; Wolf, N. Framing and salience effects in tax evasion decisions-an experiment on underreporting
and overdeducting. J. Econ. Psychol. 2019, 72, 260–277. [CrossRef]

42. Bordalo, P.; Gennaioli, N.; Shleifer, A. Salience and consumer choice. J. Political Econ. 2013, 121, 803–843.
[CrossRef]

43. Taylor, S.E.; Thompson, S.C. Stalking the elusive “vividness” effect. Psychol. Rev. 1982, 89, 155. [CrossRef]
44. Kontek, K. A critical note on salience theory of choice under risk. Econ. Lett. 2016, 149, 168–171. [CrossRef]
45. Connors, R.D.; Sumalee, A. A network equilibrium model with travellers’ perception of stochastic travel

times. Transp. Res. Part B Methodol. 2009, 43, 614–624. [CrossRef]
46. Wu, X.; Nie, Y.M. Modeling heterogeneous risk-taking behavior in route choice: A stochastic dominance

approach. Transp. Res. Part A Policy Pract. 2011, 45, 896–915. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1523/JNEUROSCI.2522-18.2019
http://www.ncbi.nlm.nih.gov/pubmed/31023835
http://web.econ.ku.dk/sorensen/papers/TestingForSalienceEffects.pdf
http://dx.doi.org/10.1111/jofi.12851
http://dx.doi.org/10.1086/676007
http://dx.doi.org/10.1016/j.jebo.2017.07.008
http://dx.doi.org/10.1016/j.joep.2019.03.005
http://dx.doi.org/10.1086/673885
http://dx.doi.org/10.1037/0033-295X.89.2.155
http://dx.doi.org/10.1016/j.econlet.2016.10.021
http://dx.doi.org/10.1016/j.trb.2008.12.002
http://dx.doi.org/10.1016/j.tra.2011.04.009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Development of a General Salient Travel Utility Model 
	Review of Original Salience Theory 
	Salient Travel Utility Model 

	User Equilibrium Analysis with Salient Travel Utility Model 
	Definitions and Notations 
	Trivial Equilibrium Analysis 
	Salient User Equilibrium Analysis 
	Salience Ranking Analysis 
	Equilibrium Analysis 


	More Discussions on the Salient User Equilibrium 
	Diminishing Sensitivity 
	Relationship between a1  and a2  

	Numerical Experiments 
	Conclusions and Future Directions 
	References

