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Abstract: The bullwhip effect reflects the variance amplification of demand as they are moving
upstream in a supply chain, and leading to the distortion of demand information that hinders
supply chain performance sustainability. Extensive research has been undertaken to model, measure,
and analyze the bullwhip effect while assuming stationary independent and identically distributed
(i.i.d) demand, employing the classical order-up-to (OUT) policy and allowing return orders. On
the contrary, correlated demand where a period’s demand is related to previous periods’ demands
is evident in several real-life situations, such as demand patterns that exhibit trends or seasonality.
This paper assumes correlated demand and aims to investigate the order variance ratio (OVR), net
stock amplification ratio (NSA), and average fill rate/service level (AFR). Moreover, the impact of
correlated demand on the supply chain performance under various operational parameters, such as
lead-time, forecasting parameter, and ordering policy parameters, is analyzed. A simulation modeling
approach is adopted to analyze the response of a single-echelon supply chain model that restricts
return orders and faces a first order autoregressive demand process AR(1). A generalized order-up-to
policy that allows order smoothing through the proper tuning of its smoothing parameters is applied.
The characterization results confirm that the correlated demand affects the three performance measures
and interacts with the operating conditions. The results also indicate that the generalized OUT
inventory policy should be adopted with the correlated demand, as its smoothing parameters can be
adapted to utilize the demand characteristics such that OVR and NSA can be reduced without affecting
the service level (AFR), implying sustainable supply chain operations. Furthermore, the results of a
factorial design have confirmed that the ordering policy parameters and their interactions have the
largest impact on the three performance measures. Based on the above characterization, the paper
provides management with means to sustain good performance of a supply chain whenever a
correlated demand pattern is realized through selecting the control parameters that decrease the
bullwhip effect.

Keywords: supply chain; generalized Order-up-To inventory policy; autoregressive; correlated
demand; bullwhip effect; net stock amplification; service level; simulation; factorial design; sustainable
supply chains

1. Introduction

Supply chains consist of multiple partners that collaborate to satisfy customer demand.
The demand information flows in the upstream direction of supply chains in the form of replenishment
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orders so that each partner receives the orders from the immediate downstream partner(s) and places his
orders with the adjacent upstream partner(s). Subsequently, the product flows through the downstream
direction to satisfy the partner’s orders and eventually satisfying the customer demand. This is the
common form of coordination in supply chains. The ideal situation is to achieve and sustain the best
balance between the supply and demand throughout the supply chain at minimum cost. However,
in most situations, the required balance is missing and hard to achieve due to the unpredictability of
the supply chain response under various operational conditions [1,2].

Supply chains face a common problem, the so-called the demand information distortion, in which
the demand variability is amplified as demand information moves upstream in supply chain.
This problem is known as the bullwhip effect, and may also be called ‘order variance amplification,’
‘demand amplification,’ or the ‘Forrester effect.’ Several studies have empirically confirmed the existence
of the bullwhip effect and its negative impacts on supply chain performance and sustainability [3,4].
The bullwhip effect is recognized to cause misalignment between demand and supply, resulting in
severe supply chain deficiencies such as excessive production orders, high logistics and inventory
costs, and increased inability to meet delivery schedules. The bullwhip effect increases production
costs since a highly oscillating order pattern, forces a production plan to change frequently, leading
to a higher average production (capacity) costs per period [5]. These consequences of the bullwhip
effect affect the balance of the supply chains and hinder their techno-economic sustainability [4,6].
Moreover, as industries are becoming more obliged to greenability [7], the link between bullwhip and
the environmental consequences in terms of pollution and carbon emissions have been investigated [8].
Therefore, numerous studies have been conducted to measure and analyze the bullwhip effect
(measured as ratio of order variance to demand variance), investigate its causes, and evaluate remedies
and mitigation approaches. Different mitigation solutions for the bullwhip effect, such as information
sharing mechanisms and order smoothing policies, have been proposed [8,9]. Many other researchers
have investigated the effectiveness of the smoothing ordering policies such as smoothing order-up-to
(OUT) policy to eliminate the bullwhip effect [10–12].

Most of the previous modeling studies have assumed that demand is an independent and
identically distributed (i.i.d) stochastic process, and have provided useful insights regarding the causes
of the bullwhip effect and the mitigative solutions for such demand conditions [13]. A correlated
demand exists whenever a period’s demand is correlated to (or dependent on) the last period’s
demands, and the ‘independence’ assumption becomes not valid. Few studies have investigated the
bullwhip effect in supply chain models with correlated demand, even though such demand process
exists in many real-life supply chains. Several researches have confirmed empirically the existence of
correlated demand patterns [14–19]. Lee, So, and Tang [15] reported that the first order autoregressive
(AR(1)) demand process was found to match the sales patterns of 150 SKUs (Stock Keeping Units) in
a supermarket in UK. In particular, they have analyzed the weekly sales pattern of 165 SKUs over a
two-year period. By conducting the Durbin-Watson test, they have found that the sales pattern of
150 SKUs (out of 165 SKUs) have autocorrelation with statistical significance. Moreover, they have
found that all of the 150 SKUs have positive autocorrelation coefficients that vary between 0.26 and
0.89. Lee, Padmanabhan, and Whang [14] have also reported that it is common to have positive
autocorrelation in the high-tech industry. Erkip, Hausman, and Nahmias [20] have also found that
the demands of consumer products are often correlated over time with autocorrelation as high as
0.7. Therefore, most of the obtained results and characteristics of the bullwhip effect for independent
demand need to be revised for correlated demand through conducting further research.

Research in correlated demand has attempted to model, measure, and analyze the bullwhip
effect in supply chains that employ the classical OUT policy while using different forecasting
methods [8,19,21–23]. Most of those studies have been relying upon statistical modeling approaches,
and therefore they have been confined to the analysis of the bullwhip effect only and the so-called
order variance ratio [18,19]. Moreover, for mathematical tractability, most of the previous studies for
both correlated and uncorrelated demand have considered linear supply chains in which negative
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replenishment orders and open return policy are permitted [8,19,24–28]. Very limited research has
been devoted to study the impact of correlated demand on both the bullwhip effect and inventory
performance in supply chains that restrict negative replenishment orders. The inventory performance
can be measured in terms of net stock amplification ratio (measured as ratio of net stock variance to
demand variance), and service level (measured as average fill rate). The net stock variance ratio has
an impact on inventory costs since increased inventory variance leads to a higher inventory cost to
satisfy a desired service level. Analytical modeling studies have shown that when the demand is
i.i.d, then using the smoothing OUT inventory policy will reduce the bullwhip effect. However, this
may affect the inventory variance, and thus more inventory will be required to satisfy the desired
service level [5,26]. Other studies have indicated that the order rate smoothing can be beneficial to both
the bullwhip effect and inventory performance for the sustainability of supply chains of correlated
demand [12,28].

The objectives of this paper are two-fold. First, the impact of correlated demand on supply chain
performance in terms of order variance ratio, net stock variance ratio, and average fill rate is investigated.
Second, the mutual impact of the key supply chain parameters and correlated demand is investigated.
Examples of supply chain parameters are the lead-time, forecasting parameters, and ordering policy
parameters. Most of the previous research assumes that a supply chain employs the classical
OUT inventory policy with a specific forecasting method in response to AR(1). Alternatively, this
research investigates the effect of the autoregressive demand under both the classical and generalized
OUT ordering policies that are similar to those applied for i.i.d demand in previous studies [11,26].
The generalized policy is a modified version of the classical OUT policy that involves two smoothing
parameters (also known as proportional controllers) to regulate the reaction to demand and inventory
changes, and thus allowing order smoothing. The two smoothing parameters (Ti and Tw) can be
controlled to alter the performance of the ordering policy. Furthermore, this paper investigates the
impact of correlated demand not only on the bullwhip effect but also on the inventor stability and
service level.

Due to the complexity and stochastic nature of supply chains under correlated demand,
a simulation model approach is considered to study the impact of the correlated demand on the three
mentioned performance measures. We mainly simulate the response of a single echelon supply chain
that employs the generalized OUT policy, and use the exponential smoothing forecasting method to
predict demand. A nonlinear supply chain that restricts return orders (negative orders) is assumed.
The simulation model is utilized to characterize the supply chain performance in terms of order
variance ratio (OVR), net stock amplification ratio (NSA), and average fill rate/service level (AFR),
under various operating conditions. Furthermore, a full factorial experiment is conducted to investigate
the mutual impact of the other supply chain parameters and their interactions with demand correlation.
The characterization results confirm that the correlated demand affects the three performance measures
and interacts with the key supply chain parameters. The OVR and NSA results under the classical OUT
policy are consistent with the published results in the literature, except when the demand is negatively
correlated due to the assumption of return order restriction [23]. Most importantly, the characterization
results indicate that the generalized OUT policy should be adopted with the correlated demand, as its
smoothing parameters can be tuned to utilize the demand characteristics such that OVR and NSA can
be reduced without affecting the service level (AFR). The characterization results are complemented
with a full factorial experiment that focused only on the positively correlated demand and the other
operational parameters (lead-time, forecasting parameter, and ordering policy parameters). The related
ANOVA results indicate that all the investigated factors and their interactions have significant impacts
on OVR and NSA. In particular, the ordering policy parameters are found to have the largest impact
on OVR, NSA, and AFR. The ANOVA results also confirm that the unmatched smoothing parameters
of the OUT inventory control policy will provide better OVR and NSA than the matched case for the
positively correlated demand.
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This paper contributes to the existing supply chain literature through providing a comprehensive
analysis of supply chain performance in the presence of AR(1) demand process. The paper has
investigated the impact of the generalized OUT policy on OVR, NSA, and AFR such that the trade-off

between bullwhip effect and inventory performance can be analyzed under demand correlation.
Previous research has always assumed the presence of independent demand and has indicated that the
mitigation of OVR will be coupled with an increase in NSA, and thus a lower AFR will be gained unless
safety stock is increased. This paper has provided the evidence that under certain correlated demands,
such as AR(1), the mitigation of both OVR and NSA can be achieved. As such, it is expected that the
findings of this research shall help management to apply the recommended ordering policies and
forecasting methods whenever demand is correlated, and avoid using the classical recommendations
for independent demand situations. The application of the proper policies and forecasting methods to
control a supply chain should sustain its performance measures at their planned levels.

The paper is structured as follows: Section 2 presents the related literature review. Section 3
describes the supply chain model and the corresponding simulation model. The performance
characterization results are presented and discussed in Section 4. The experimental design and the
related ANOVA results are presented and analyzed in Section 5. The conclusions and future research
direction are provided in Section 6.

2. Literature Review

Several studies have empirically confirmed the existence of the variance amplification of demand
in real-life supply chains [3,5,11,14,29–31]. In addition, other studies have resorted to simulation games
to prove the existence and to analyze the bullwhip effect [32–36]. Other research is directed to identify
and analyze its causes. Research in operational causes of the bullwhip effect includes demand signal
processing, batched orders, lead-time, price fluctuations, and rationing and shortage gaming [35].

Extensive modeling research has been conducted to measure and analyze the variance amplification
utilizing several modeling methodologies such as analytical modeling [19,22,38,39], control theory
modeling [10,11,28,40], and simulation modeling [24,41,42]. Most research in this direction assumes that
demand is an independent and identically distributed (i.i.d) stochastic process. Dejonckheere et al. [11]
confirmed through a control theoretic modeling approach that the classical OUT inventory policy
with exponential smoothing (ES), moving average (MA), or demand signal processing forecasting will
produce bullwhip for all demand patterns. However, they also showed that the classical OUT policy
can be modified into a smoothing OUT policy, i.e., one that is able to produce replenishment orders
with less variance than the demand. Chatfield et al. [40] used simulation to analyze the impact of the
stochastic lead time, the information sharing, and the quality of the information on the bullwhip effect,
assuming i.i.d normal demand process. Canella [42] used simulation to investigate and compare the
behavior of classical and smoothing OUT ordering policies in an information exchange supply chain
with i.i.d normal demand process. Several other studies have investigated the effect of forecasting [43],
ordering policy [44], lead-time [24], and collaboration [41,44,45], while assuming i.i.d demand process.
Those studies have provided useful insights regarding the bullwhip effect causes and mitigation
solutions under such demand conditions.

Although the assumption of i.i.d demand has some mathematical advantages, it neglects correlation
in a demand time series. Therefore, another research stream has considered correlated demand models
such as autoregressive integrated moving average (ARIMA) and its variants [8]. In particular, the first
order auto-regressive demand, AR(1), has been the most frequently adopted demand model in the
relevant literature [8,19]. In addition, most of these studies have assumed that the supply chain
employs the classical OUT policy with the minimum mean squared error (MMSE) forecasting method,
and permits the return orders (negative orders) [46–48]. Luong [21] derived a bullwhip effect measure
for a single-echelon supply chain that has AR(1) demand process and employs the classical OUT policy
with the MMSE forecasting method. Similarly, Luong and Phien [47] quantified the bullwhip effect for
AR(2) demand process and extended their results to autoregressive demand processes of higher orders
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(AR(q)). Sirikasemsuk and Luong [48] derived a bullwhip effect measure for a first-order bivariate
vector autoregression (VAR(1)) demand process in a two-stage supply chain. Those studies have
provided useful results concerning the behavior of the bullwhip effect with respect to autoregressive
coefficients and lead-time when the supply chain employs the classical OUT policy with MMSE
forecasting method and permits the negative orders. In particular, for the AR(1) demand process, they
have shown that the bullwhip effect will not exist for the uncorrelated demand (i.i.d. demand, ρ = 0,
where ρ is the autocorrelation coefficient of demand), negatively correlated demand (ρ < 0), or perfect
positively correlated demand (ρ = 1). They have also shown that the bullwhip effect increases as
lead-time increases and there is an upper bound for the bullwhip effect increase that depends on the
autocorrelation level. However, these studies have focused only on the bullwhip effect measure and
therefore they have been relying on analytical modeling approaches. Further similar studies can be
found in Chandra and Grabis [49], and Duc, Luong, and Kim [22].

Unlike the above researches, other correlated demand studies have investigated analytically the
performance of the classical OUT policy when integrated with other common forecasting methods such
as moving average (MA) and exponential smoothing (ES) [18,28]. Chen, Ryan, and Simchi-Levi [37]
and Chen et al. [50] derived analytically the bullwhip effect expressions for both the MA and ES
forecasting methods in a supply chain employing the classical OUT policy and facing AR(1). They
have also compared the impact of the two forecasting methods on the bullwhip effect. Zhang [46]
derived analytical expressions for the bullwhip effect under AR(1) with MA, ES, and MMSE forecasting
methods. Ma et al. [51] derived analytically the measures of bullwhip effect and inventory variance
for MMSE, MA, and ES under price sensitive AR(1) demand. As stated earlier, these researches have
adopted an analytical modeling approach and therefore most of them have focused only on modeling
and analyzing the bullwhip effect. They have confirmed that the selected forecasting method has a
significant role in determining the effect of lead-time and demand autocorrelation on the bullwhip effect.
In particular, they have shown that the impact of reducing lead-time on the bullwhip effect depends on
the correlation level and forecasting method, and therefore decision makers should be aware of the
underlying demand process and the forecasting method used before making such decisions regarding
lead-time reduction.

Other researchers have resorted to simulation modeling to study the impact correlated demand on
different measures of supply chain performance. Hussain, Shome, and Lee [23] conducted a simulation
study to investigate and compare the impact of ES and MMSE on both the bullwhip effect and inventory
variance in a single-echelon supply chain that faces AR(1) demand process, employs the classical OUT
policy, and permits return orders. They have concluded that depending on the demand correlation,
the appropriate selection of forecasting method can help in controlling the bullwhip effect. However,
they have also shown that the inventory variances with ES are greater than inventory variances with
MMSE and that the gap increases as lead-time increases. Campuzano-Bolarín et al. [52] also performed
a simulation study to compare the impact of six different forecasting methods on the bullwhip effect,
net stock amplification, and fill rate. Costantino et al. [53] developed a control chart-based forecasting
mechanism and compared its performance with MA and ES in a multi-echelon supply chain that
employs the classical OUT policy and faces AR(1) demand process, through a simulation study.

Some other researchers attempted to study the bullwhip effect under correlated demand with
different inventory ordering policies other than the classical OUT policy. Bandyopadhyay and
Bhattacharya [54] derived analytically bullwhip effect measures for ARMA(p,q) demand process under
various inventory replenishment policies. Disney et al. [28] have quantified exactly the bullwhip effect,
and the variance of inventory levels over time, for i.i.d. and the weakly stationary autoregressive
(AR), moving average (MA), and autoregressive moving average (ARMA) demand processes under
the generalized OUT policy. Gaalman and Disney [55] analyzed the behavior of the proportional
order-up-to policy for ARMA(2,2) demand with arbitrary lead-times.

The literature review shows that most of the correlated demand research has focused mainly on the
modeling, measuring, and analysis of the bullwhip effect in linear supply chains. Most of the previous
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studies have adopted analytical modeling approach, and therefore their scope has been limited to
the analysis of the bullwhip effect for supply chains that allow return orders. Few studies have been
directed to the modeling and analysis of both the bullwhip effect and the inventory performance
measures (net stock amplification and service level). Moreover, most of the previous research has been
devoted to investigating the impact of correlated demand in supply chains that employ the classical
OUT policy with different forecasting methods. Limited studies have attempted to investigate the
impact of other ordering policies, such as the generalized OUT policy, which is a highly recommended
ordering policy to mitigate the bullwhip effect for i.i.d demand. The literature is lacking studies
that have attempted to investigate the impact of correlated demand and the mutual impacts of other
operational parameters with correlated demand.

3. Model Development

In this section, the single-echelon supply chain model, including ordering policy, forecasting
method, demand model, and performance measures, is described. In addition, the simulation model
of the considered supply chain model is presented to validate the results.

3.1. Supply Chain Model

A generic single-echelon supply chain that may represent a retailer, distributor, or manufacturer is
modeled. This supply chain structure has been widely adopted in related research [23,28]. It is assumed
that this supply chain faces a first order autoregressive demand, AR(1), and employs the generalized
order-up-to (OUT) policy with the exponential smoothing (ES) forecasting method. The supply chain
operations are performed according to the following sequence of events and assumptions that are
adapted from the literature. At each time period, the supply chain echelon (e.g., retailer) receives
the products/materials from an upstream echelon (e.g., manufacturer), updates the available on-hand
inventory, and satisfies the backlogged orders. Afterwards, the downstream echelon observes and
updates the on-hand inventory level, and finally places a non-negative replenishment order, if needed.
The replenishment order is determined based on the generalized order-up-to (OUT) policy. It is
assumed that order returns (negative replenishment orders) are not allowed, and that the upstream
echelon can deliver and ship any quantity ordered. Delivery lead-time is assumed deterministic.

3.1.1. Autoregressive Demand

We assume that the supply chain receives a first order autoregressive demand, AR(1), that can be
defined as follows:

Dt = µd + ρDt−1 + εt (1)

where Dt is the AR(1) demand at time t, µd stands for the mean of the AR(1) demand process,
εt represents the error term which follows a normal distribution with µε = 0 and σ2

ε, and ρ is an
autoregressive (autocorrelation) coefficient, where −1 < ρ < 1. The variance of AR(1) demand can
be approximated as σ2

d = σ2
ε/(1− ρ), and σ2

d = σ2
ε when the demand process is independently and

identically distributed (i.i.d), i.e., ρ = 0 [46].
A demand generator module has been implemented in SIMUL8 to generate AR(1) demand

patterns according to Equation (1). In particular, the generator can simulate the AR(1) demand process
for any given combination of values of ρ, µd, and σ2

ε . After validating the demand generator, several
AR(1) demand times series have been simulated at different values of ρ in order to reflect the specific
characteristics of each demand process (see Figure 1). It can be observed that for the negatively
correlated demand (ρ < 0), the demand time series exhibits period-to-period oscillatory behavior.
In addition, the negatively correlated demand patterns are almost free of runs and do not develop any
trends over time (see Figure 1). On the contrary, the positively correlated demand develops runs and
shows trends that materialize as ρ increases (see Figure 1).
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Figure 1. Different simulated instances of first order autoregressive AR(1) demand process.

3.1.2. The Generalized OUT Policy

The generalized order-up-to policy is a modified classical order-up-to (OUT) policy. The later
policy is common in the literature of supply chain due to its industrial popularity [56]. In the classical
OUT policy, the ordering decision is made at the end of each review period (R) as follows [11]:

Ot = Max
{
(St − InvPt), 0

}
(2)

where Ot is a non-negative replenishment order placed at the end of period t, St is the order-up-to level
considered in period t, and InvPt is the inventory position which is equal to the net stock (NSt) plus
on-order inventory or work in process (WIPt). The net stock NSt represents the on-hand inventory
minus backlogged orders. The order-up-to level St is updated every period according to

St = D̂L
t + SSt (3)

where D̂L
t is the estimate of mean demand over the risk period (D̂L

t = L × D̂t where D̂t is an estimate
of demand in the next period, and L is the risk period), and SSt represents the safety stock component
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which accounts for demand variation over L. The risk period L encompasses the lead-time (Ld) and the
review period (R). In this model, the safety stock is included by extending the risk period by a safety
stock parameter k [11,28,57]. Accordingly, the order-up-to level St is dynamically updated in every
review period based on the demand forecast D̂t , and it can be expressed as shown in Equation (4).

St = (Ld + R + k)D̂t (4)

The classical OUT policy’s ordering rule can be decomposed into several components as shown
in Equation (5). In particular, the order decision based on the classical OUT policy consists of three
components: A demand forecast term (assuming R = 1), a net stock discrepancy term, and a work in
process (on-order inventory) discrepancy term. Thus, both discrepancy terms are completely taken
into consideration in replenishment orders (see Equation (5)). However, previous studies have shown
that the classical OUT policy with demand forecast updating would always result in a bullwhip effect
for any demand process [10,11].

Ot = (Ld + R + k)D̂t −NSt −WIPt

Ot = R× D̂t +
(
k× D̂t −NSt

)
+

(
Ld× D̂t −WIPt

)
Ot = R× D̂t + (TNSt −NSt) + (DWIPt −WIPt)

 (5)

A proposed approach to enable order smoothing is to recover only fractions of the two discrepancy
terms in each time period through adding the two proportional controllers Ti and Tw. This transforms
the classical OUT policy into a generalized OUT policy that is defined as follows:

Ot = R × D̂t +
TNSt −NSt

Ti
+

DWIPt −WIPt

Tw
(6)

where TNSt denotes the target net stock level, and DWIPt denotes the desired work in process at time
t. Ti and Tw are two proportional controllers (also known as smoothing parameters).

The parameters Ti and Tw control how much of the discrepancy between actual inventory and
target inventory, and how much of the discrepancy between actual work in process and target work in
process should be incorporated in the replenishment order [5]. This ordering rule has been adopted
as a mitigation solution for the bullwhip effect by tuning the values of Ti and Tw [11]. Most of the
previous research has investigated this ordering policy with matched controllers (Ti = Tw) under i.i.d.
demand process [12,28,42]. In this study, we allow using unmatched controller and investigate their
interaction effect on supply chain performance.

3.1.3. Exponential Smoothing Forecast

The generalized OUT replenishment policy requires an estimate or a forecast of demand over the
risk period (D̂L

t ) at the end of each time period. The demand forecast D̂L
t is computed by multiplying

the estimate of the next period’s demand (Dt) by the risk period L. Exponential smoothing (ES)
forecasting method is applied to estimate the expected demand (D̂t). ES has been the most employed
forecasting method in the related research [28]. The ES method determines the next period’s demand
forecast by adjusting this period’s forecast error with an exponential smoothing parameter α as follows:

D̂t = αDt + (1− α)D̂t−1 (7)

where D̂t is the forecast of next period’s demand made in period t, Dt is the received demand at time
t, and α represents the exponential smoothing parameter (0 ≤ α ≤ 1). It is known that a larger α
implies a greater weight is assigned to the most recent demand observation, while a smaller α implies
a greater weight is placed on the demand history in the forecast of next period’s demand.
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3.1.4. Performance Measures

We consider three performance measures to assess the impact of correlated demand and of the
other operational parameters on supply chain performance. The following performance measures
are considered: order variance ratio (OVR), net stock amplification ratio (NSA), and average fill rate
(AFR). Most of the previous research has considered only the impact of correlated demand on the OVR
measure, and a limited research has been devoted to the analysis of NSA and AFR measures [19,23,41].
Thus, analyzing the three performance measures provides a wider perspective about the supply chain
performance and its sustainability.

The order variance ratio (OVR) is defined as the ratio of the order rate variance to the demand
variance [5]. It can be expressed mathematically as in Equation (8).

OVR =
Order rate variance (OV)

Demand variance (DV)
(8)

The net stock amplification ratio (NSA) refers to the ratio of the net stock variance to the demand
variance as in Equation (9) [5,28].

NSA =
Net stock variance (NSV)

Demand variance (DV)
(9)

The service level can be assessed through the measure of average fill rate (AFR) which estimates the
proportion of the demand that can immediately be supplied from the on-hand inventory [12,42,57,58].
The proportion of the supplied demand (fill rate) in each time period (FRt) is calculated as shown
in Equation (10), where SRt represents the released shipment at time T, BLt−1 expresses the initial
backlog at time t, and Dt is the received demand at time t, and t = 1, . . . , T.

FRt =

 FRt−BLt−1
Dt

i f SRt − BLt−1 > 0
0 i f SRt − BLt−1 ≤ 0

(10)

The fill rate time series can be used to estimate the average fill rate (AFR), as expressed in
Equation (11):

AFR =

∑T
t=1 FRt

T
(11)

3.2. Simulation Model Validation

A simulation model for the above-described supply chain model has been implemented in
SIMUL8. The complete simulation model includes demand generation module, forecasting module,
ordering policy module, and performance measures estimation module. Several verification tests have
been performed to ensure that these modules are working properly. Output validation tests have
been conducted to ensure the validity and suitability of the simulation model for further analysis.
In particular, the simulation model output is compared with the output of the closed form expressions
derived by Chen, Ryan, and Simchi-Levi [37], and Disney et al. [28] (see Table 1). Chen, Ryan,
and Simchi-Levi [37] derived analytically the OVR measure for a single-echelon supply chain that
employs the classical OUT policy with the ES forecasting method, in response to AR(1) demand process.
Disney et al. [28] quantified both the OVR and NSA measures for a similar supply chain model that
employs the generalized OUT policy with matched smoothing parameters (Ti = Tw = Tn, where Tn is
a single smoothing parameter to replace both Ti and Tw in Equation (6) for the matched controller
case) under different forecasting methods. We consider their closed form expression for OVR and NSA
under the mean demand forecasting method.
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Table 1. Closed form expressions for order variance ratio (OVR) and net stock amplification ratio (NSA).

Measure Mathematical Expressions

Chen, Ryan, and Simchi-Levi [37] OVR = 1 +
(
2Lα+ 2L2α2

2−α

)( 1−ρ
1−(1−α)ρ

)

Disney et al. [28]

OVR =
(

1
2Tn−1

)( Tn(1+ρ)−ρ
Tn(1+ρ)+ρ

)

NSA =

 (Tn2+Ld(2Tn−1))(Tn(1+ρ)−ρ)
2Tn−1 +

2ρ(Ld(1−ρ)−ρ(1−ρLd))
(1−ρ)2


Tn(1−ρ)+ρ

The validation tests are conducted at different values of ρ that varies in the range of −0.9 and 0.9,
while all the other model parameters are kept fixed. It is assumed that negative customer demand
is not allowed, i.e., Dt ≥ 0. Therefore, when simulating AR(1) demand, the mean demand µd is set
much higher than σd to avoid negative demand realizations (e.g., µd > 4σd). In all the validation
experiments, the demand pattern is generated with the following parameter settings: µd = 20 and
σ2
ε = 4. For the validation of OVR with Chen, Ryan, and Simchi-Levi [37] and Disney et al. [28],

the simulation experiments are conducted at Ld = 2, k = 1, α = 0.1, and Tn = 1 (Ti = Tw = 1). The ES
parameter is set to α = 0 for the validation with Disney et al. [28] since the demand forecast should be
based on the long-term average demand (D̂t = µd). This setting of the ES parameter transforms the ES
method’s forecast to be the mean demand value. The simulation results are obtained by running the
simulation model for five replications, with a replication length of 100,000 periods and a warm-up
of 5000 periods. These simulation settings are chosen so that the precision level of the estimated
performance measures is less than ±5% [26].

The validation results are summarized in Tables 2 and 3. The simulation results indicate that the
behavior of OVR for the positively correlated demand is very consistent with the analytical results.
However, the OVR behavior for the negatively correlated demand is less consistent with the analytical
results, especially at high correlation values. For the NSA measure, the simulation results are very
consistent with those of the analytical results. As such, the existing analytical models for OVR that
are based on the assumption of the presence of negative replenishment orders will overestimate
the OVR under the negatively correlated demand especially at high correlation values. This result
has also been confirmed for the i.i.d demand in multi-echelon supply chains [24,25]. Accordingly,
simulation modeling provides an accurate estimation for the performance measures where supply
chain nonlinearity can be easily and accurately considered in the simulation model.

Table 2. Simulation model validation for OVR.

OVR
ρ

−0.9 −0.6 −0.3 0 0.3 0.6 0.9

Analytical * 2.0166 2.0062 1.9913 1.9684 1.9286 1.8421 1.5097

Simulation Model 2.0170 2.0325 2.0280 2.0103 1.9673 1.8710 1.5206

* Chen, Ryan, and Simchi-Levi [37], and Disney et al. [28].

Table 3. Simulation model validation for NSA.

NSA
ρ

−0.9 −0.6 −0.3 0 0.3 0.6 0.9

Analytical * 1.0200 1.3200 1.9800 3.0000 4.3800 6.1200 8.2200

Simulation Model 1.0282 1.3434 2.0012 3.0018 4.3542 6.0761 8.1940

* Disney et al. [28].
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4. Performance Characterization under Correlated Demand

Sets of simulation experiments are conducted to investigate the impact of the autoregressive
parameter on the three measures of performance (OVR, NSA, and AFR), under various operating
conditions. The first set of experiments is conducted to investigate the impact of ρ (the demand
correlation coefficient) on the performance measures under the classical OUT policy while considering
different combinations of α and Ld. The second set of experiments is devoted to analyzing the impact
of ρ under different settings of the ordering policy parameters (Ti and Tw), to allow the comparison
between the classical and the smoothing OUT policies. For each simulation experiment, the simulation
model is run for five replications with a replication length of 100,000 periods and a warm-up of 5000
periods. The other model parameters are set to µd = 20 and σ2

ε = 4, and k = 1. The case of i.i.d.
demand is included in each experiment by setting ρ = 0.

4.1. Analysis of the OVR Measure

The simulation results of the OVR measure under the classical OUT policy for Ld = 2 and Ld = 4
are depicted in Figure 2. Results confirm that the bullwhip effect will not exist (i.e., OVR = 1), as long as
there is no updating of demand forecast (α = 0) regardless of the value of ρ or Ld [11,28,37]. The setting
of α = 0 for the exponential smoothing forecast makes the demand forecast constant, and equals to
the long-term average demand (D̂t = µd), for all time periods. On the other hand, the bullwhip effect
appears (OVR > 1) when demand forecast is updated (α > 0) and it increases as α increases, for all
values of ρ. Moreover, the results show that the negatively correlated demand produces a higher
bullwhip effect than both the i.i.d demand and the positively correlated demand. The same behavior
of OVR for the classical OUT with ES has been reported in Hussain, Shome, and Lee [23], and they
have shown that the MMSE forecasting method will result in an increasing pattern of OVR over ρ.
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Figure 2. The impact of ρ on OVR under classical OUT policy for Ld = 2 and Ld = 4.

Furthermore, when the demand is positively correlated (ρ > 0), the OVR decreases as ρ increases
(see Figure 2). Especially for the highly positively correlated demand and when α is large, the forecast
shall follow the most recent highly correlated demand, and hence a smaller OVR value is realized as ρ
increases. On the contrary, for small ρ, the demand process is stationary and reverses sign around
its mean more frequently, and thus a large α will produce higher deviations of the forecasts from the
actual demand. For small α (α = 0, α = 0.1), OVR is not affected by ρ (−1 < ρ < 1). However, when the
demand is negatively correlated, the OVR increases as ρ increases until it reaches to a maximum level
and then decreases. For the highly negative correlation demand (ρ = −0.7 to ρ = −0.9), the demand
variance (σ2

d) becomes larger, but the order variance increases at a lesser rate, and thus making OVR
smaller (see Equation (8)). Moreover, at highly negatively correlated demand, the likelihood of placing
negative orders is high, and since it is assumed that all orders should be greater than or equal to zero
(no return policy), the order variance is reduced, leading to the shown decline in OVR (see Table 4).
The existing analytical models have shown that OVR will be an increasing function of ρ over the
negative correlation domain [24,28,37]. Accordingly, these analytical models are not recommended for
estimating the OVR measure at highly negatively correlated demand as it will overestimate the actual
bullwhip effect for this demand pattern.

Table 4. The OVR under highly negative correlation demand.

Variance Measure
ρ

−0.5 −0.6 −0.7 −0.8 −0.9

DV 5.4001 6.3104 7.9062 11.1886 21.2177

OV (Ld = 2, α = 0.4) 45.1737 53.4232 66.9546 91.6913 145.9274

OVR (Ld = 2, α = 0.4) 8.3653 8.4659 8.4686 8.1952 6.8782

OV (Ld = 4, α = 0.4) 77.4508 90.0306 109.3083 140.8079 200.0207

OVR (Ld = 4, α = 0.4) 14.3425 14.2672 13.8258 12.5855 9.4281

Figure 2 also shows that the lead-time Ld contributes considerably to the OVR measure (bullwhip)
regardless of the autocorrelation level. Moreover, the OVR measure is more sensitive to Ld and α under
the negatively correlated demand than under the positively correlated demand. For a given value of ρ,
doubling the lead-time (Ld = 4) increases the bullwhip effect almost proportionally. The long lead-time
seems to amplify the reaction to demand changes, and thus the forecasting error of the lead-time
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demand will increase. In addition, as the lead-time increases, the actual demand (Dt+R+Ld) will be
lagging the actual order size placed based on D̂t, thus, increasing the order variance and increasing
the OVR (see Table 4). This is also evident from the closed form expressions for OVR in Table 1 where
the effect of lead-time is related to the update of demand forecast.

The impact of the parameters of the inventory ordering policy on OVR is shown in Figure 3.
The effect of the ordering policy parameters (Ti and Tw) varies with the value of ρ. In particular,
the results confirm that the generalized OUT policy can mitigate and almost eliminate the bullwhip
effect by the proper selection of the values of Ti and Tw. In this case, the generalized OUT policy is
transformed into a smoothing OUT policy. For the negatively correlated and i.i.d demands, the best
bullwhip effect is achieved when Ti = Tw > 1 and that increasing the levels of Ti and Tw leads to a
lower OVR. This conclusion is also valid for demands with weak positive correlation. The equality of
the two smoothing parameters is called a matched controller, and it has been the most investigated
and recommended in the related studies that considered i.i.d. demand process [28]. However, for the
highly positively correlated demand, the matched controller (Ti = Tw) is not the preferred setting for
lowering the bullwhip effect. It can be seen that the settings “Ti > Tw” provide a lower OVR than
“Ti = Tw.” These results extend the previous findings of Disney et al. [28] that considered the matched
case. However, the results should be extended to investigate the interaction of the ordering policy
parameters (Ti and Tw) and their interactions with the other operational parameters (including ρ).
This will be accomplished though the factorial design study in Section 5.
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Figure 3. The impact of the ordering policy parameters on OVR.

The results of the OVR measure provide useful insights for the practitioners and decision makers.
The practitioners should be aware of the demand pattern (correlated or uncorrelated), and if the demand
is correlated, they should identify whether it’s positively or negatively correlated. A careful attention
should be given to the negatively correlated demand, especially in supply chains that employ the
classical OUT policy, since it leads to a higher OVR than the positively correlated demand. In addition,
the negatively correlated demand shows a higher sensitivity to lead-time such that reducing the
lead-time to improve the OVR measure is highly recommended for the negatively correlated demand.
In other words, the benefits gained from reducing the lead-time depend on the demand correlation.

For a practitioner, he is advised to conduct further evaluation before investing in lead-time
reduction, especially when the demand is positively correlated. Most importantly, a practitioner
is advised to adopt the generalized OUT policy since it can mitigate/eliminate the bullwhip effect.
In particular, a practitioner can easily adapt the classical OUT policy (which is commonly applied in
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real-life supply chains) into a generalized OUT policy by incorporating the two smoothing parameters
Ti and Tw. They are also suggested to adapt the matched smoothing parameters for the negatively
correlated demand, i.i.d demand and weak positively correlated demand. However, for the highly
positively correlated demand, the unmatched smoothing parameters (Ti > Tw) may provide better
results than the matched settings (Ti = Tw).

4.2. Analysis of the NSA Measure

The impact of ρ on NSA under the classical OUT policy is depicted in Figure 4. The results show
that the positive correlation demand (ρ > 0) produces a higher NSA than either the i.i.d. demand or
the negatively correlated demand. Moreover, the i.i.d. demand has a higher NSA than the negative
correlation demand. For ρ > 0, the NSA increases as ρ increases until it reaches to a maximum level
and then decreases. However, the NSA becomes an increasing function of ρ when the demand forecast
is based on the long-term average demand (α = 0). For ρ < 0, the NSA decreases as ρ increases.
The same behavior of NSA, with respect to the impact of ρ under the classical OUT, is reported in
Hussain, Shome and Lee [23] for both the ES and MMSE forecasting methods. Results indicate that the
impact of ES forecasting becomes of significant value when the demand process is highly positively
correlated (ρ > 0.7). The NSA increases with Ld and α consistently but may decline after some cut-off

value depending of the value of α. Most likely, this can be explained by the developed trends at highly
positively correlated demand (see Figure 1). As such, the over-reaction to demand changes will reduce
the gap between the supply and demand and thus the net stock amplification ratio is reduced [28].

The impact of the ordering policy parameters on NSA is shown in Figure 5. The results indicate
that the impact of the ordering policy parameters (Ti and Tw) depends on the value of ρ. For the
negatively correlated demand, the generalized OUT policy (with the smoothing settings of Ti and
Tw) will lead to a lower NSA than the classical OUT policy (Ti = Tw = 1). In general, the effect of
the different settings of the ordering policy parameters is within a narrow band for demand with
ρ < 0.5. For such correlated demand, the results suggest that it is possible to utilize the flexibility of the
generalized OUT policy to design inventory ordering policies that can lessen or avoid the bullwhip
effect while achieving a comparable NSA. In particular, for the i.i.d and positively correlated demands,
the results confirm that the smoothing OUT will result in a higher NSA than the classical OUT policy.
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Figure 4. The impact of ρ on NSA under the classical OUT policy (Ti = Tw = 1).
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Figure 5. The impact of the ordering policy parameters (Ti and Tw) on NSA.

The results provide useful insights for the supply chain managers regarding the behavior of the
inventory under correlated demand. It is known that the increase in NSA implies that the safety stock
level should be increased to realize a desired service level (AFR). Therefore, the inventory costs will
increase as NSA increases. For the NSA measure, the practitioners are advised to pay more attention to
the positively correlated demand as it results in a higher NSA than the negatively correlated demand.
They are suggested to use the classical OUT policy with the positively correlated demand while
the smoothing OUT policy (with matched smoothing parameters) is highly recommended with the
negatively correlated demand. The classical OUT policy will provide a good inventory performance
with the positively correlated demand but it has undesirable performance with respect to the order
variance ratio as discussed above. On the other side, the smoothing OUT policy will provide a good
performance in terms of both OVR and NSA with the negatively correlated demand.
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4.3. Analysis of the AFR Measure

The impact of ρ on AFR under the classical OUT policy is shown in Figure 6. The results
indicate that AFR is not affected by the change of ρ when the demand is negatively correlated,
regardless of the level of Ld and α. Similarly, the AFR is not affected by the change of ρ for the
i.i.d and slightly positive correlation demand. However, for the medium and highly positively
correlated demand, AFR decreases as ρ increases and that the reduction in AFR will be more for longer
lead-time. Furthermore, at this demand structure, the selection of the smoothing parameters of the
generalized OUT policy may lead to higher reduction in AFR (see Figure 7). This can be explained
by the increase of NSA under such operating conditions as shown above. The results imply that the
trade-off between order smoothing and amplification of net stock should be studied carefully when the
demand is positively correlated. The higher order smoothing, the higher the safety stock needed to
achieve a desired fill rate. Furthermore, the results confirm that the smoothing OUT policy is highly
recommended for the negatively correlated demand as it can mitigate/eliminate the bullwhip effect
without affecting the inventory performance measures (NSA and AFR) under such demand conditions.
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Figure 6. The impact of ρ on AFR under the classical order-up-to (OUT) policy (Ti = Tw = 1).
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5. Experimental Design and Analysis

The characterization results have shown that the demand correlation affects the supply chain
performance and that its effect varies with the operating conditions: the lead-time (Ld), the ordering
policy parameters (Ti and Tw), and the forecasting parameter (α). The results have also revealed
that such effects vary with the demand correlation level. To complement the characterization results,
a statistically designed experiment is conducted to identify the most important factors and their
interactions that significantly affect the studied three performance measures (OVR, NSA, AFR).
Furthermore, the experimental design approach facilitates the statistical analysis of the simulation
results, thus allowing to identify the statistically significant factors and interactions, and pointing out
their relative importance with respect to the different performance measures.

5.1. Investigated Factors

A factorial design approach is considered to investigate the impact of positively correlated demand
(ρ > 0) with lead-time (Ld), forecasting parameter (α), and ordering policy parameters (Ti and Tw) on
the three measures of performance, OVR, NSA, and AFR. The investigated factors and their levels are
summarized in Table 5, where two levels are considered for each of the five factors.

Table 5. Investigated factors and their levels.

Factors
Levels

Low (−1) High (+1)

Rho (ρ) 0.3 0.7

Ld 1 3

Alpha (α ) 0.2 0.4

Ti 1 3

Tw 1 3

In this experiment, we consider only the case of positively correlated demand since it is the most
commonly known in real applications [15,35]. Moreover, the characterization results have shown
complex interactions between the operational parameters when the demand is positively correlated.
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In particular, the two levels of the autocorrelation parameter ρ ‘Rho’ are selected to be within 0.3 and
0.7, where the correlated demand becomes nonstationary as Rho gets closer to one. Furthermore,
the correlated demand in real supply chains is usually within Rho lower than 0.7 [17,20]. The levels of
Ld, α ‘Alpha’, Ti, and Tw are selected considering the used ranges in related studies [23,42]. Moreover,
the low levels of both Ti and Tw are set to one in order to consider the impact of transforming from the
classical OUT policy (Ti = Tw = 1) to the generalized OUT policy in this experiment. A full factorial
design is run in which all possible combinations of the factors levels are investigated, resulting in
32 simulation scenarios. For each scenario, the simulation model is run for five replications with a
simulation run length of 100,000 periods, and a warm-up of 5000 periods, to estimate the performance
measures. The estimated performance measures (average responses) for the 32 simulation scenarios
are presented in Table 6.

Table 6. Full factorial design and estimated performance measures.

Run
Factors Performance Measures

Rho Ld Alpha Ti Tw OVR NSA AFR (%)

1 0.3 1 0.2 1 1 2.5160 3.6273 100.00

2 0.3 1 0.2 1 3 5.3611 6.4040 100.00

3 0.3 1 0.2 3 1 1.0053 4.0964 100.00

4 0.3 1 0.2 3 3 0.9111 4.3437 100.00

5 0.3 1 0.4 1 1 4.6327 4.7139 100.00

6 0.3 1 0.4 1 3 9.2888 9.8288 99.99

7 0.3 1 0.4 3 1 2.1224 3.6417 100.00

8 0.3 1 0.4 3 3 1.5111 4.2698 100.00

9 0.3 3 0.2 1 1 3.9103 9.6054 99.99

10 0.3 3 0.2 1 3 66.9747 202.1584 81.70

11 0.3 3 0.2 3 1 2.1973 7.9704 100.00

12 0.3 3 0.2 3 3 1.2658 9.6863 99.99

13 0.3 3 0.4 1 1 8.7397 13.1250 99.95

14 0.3 3 0.4 1 3 66.3925 200.7926 82.62

15 0.3 3 0.4 3 1 6.7739 8.9613 99.99

16 0.3 3 0.4 3 3 2.3617 10.5368 99.98

17 0.7 1 0.2 1 1 2.1196 3.7074 100.00

18 0.7 1 0.2 1 3 3.8702 4.8929 100.00

19 0.7 1 0.2 3 1 1.1697 6.5795 99.98

20 0.7 1 0.2 3 3 1.3344 6.3646 99.98

21 0.7 1 0.4 1 1 3.2204 4.0068 100.00

22 0.7 1 0.4 1 3 6.0879 6.8081 99.97

23 0.7 1 0.4 3 1 1.7462 4.5801 100.00

24 0.7 1 0.4 3 3 1.7977 5.2627 99.99

25 0.7 3 0.2 1 1 3.1573 12.5909 99.65

26 0.7 3 0.2 1 3 38.1882 122.2211 82.68

27 0.7 3 0.2 3 1 1.6287 14.1497 99.51

28 0.7 3 0.2 3 3 1.8007 16.5540 99.21

29 0.7 3 0.4 1 1 5.7269 13.9211 99.51

30 0.7 3 0.4 1 3 39.6230 127.7397 82.79

31 0.7 3 0.4 3 1 3.7065 11.2083 99.77

32 0.7 3 0.4 3 3 2.6806 15.5031 99.33

5.2. Results Analysis

An ANOVA study is conducted to investigate the statistical significance of the key factors and
their interactions that impact the three performance measures. ANOVA results are presented in terms
of the regression coefficients for a single order model (including the two-way interactions only), and the
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interaction plots. The regression coefficients tables given in Tables 7–9 convey the same information in
the classical ANOVA tables in addition to effect magnitudes of the factors and their interactions.

Table 7. Estimated Effects and Coefficients for OVR (coded units).

Term Effect Coef SE Coef T P

Constant 9.494 0.1451 65.44 0.000

Rho −4.257 −2.128 0.1451 −14.67 0.000

Ld 12.902 6.451 0.1451 44.46 0.000

Alpha 1.813 0.906 0.1451 6.25 0.000

Ti −14.737 −7.369 0.1451 −50.79 0.000

Tw 12.192 6.096 0.1451 42.02 0.000

Rho*Ld −3.506 −1.753 0.1451 −12.08 0.000

Rho*Alpha −0.398 −0.199 0.1451 −1.37 0.173

Rho*Ti 3.971 1.986 0.1451 13.68 0.000

Rho*Tw −3.079 −1.539 0.1451 −10.61 0.000

Ld*Alpha 0.298 0.149 0.1451 1.03 0.307

Ld*Ti −11.55 −5.775 0.1451 −39.8 0.000

Ld*Tw 10.739 5.369 0.1451 37.01 0.000

Alpha*Ti −0.389 −0.195 0.1451 −1.34 0.182

Alpha*Tw −0.558 −0.279 0.1451 −1.92 0.057

Ti*Tw −13.028 −6.514 0.1451 −44.9 0.000

Table 8. Estimated Effects and Coefficients for NSA (coded units).

Term Effect Coef SE Coef T P

Constant 27.5 1.726 15.93 0.000

Rho −7.98 −3.99 1.726 −2.31 0.022

Ld 44.6 22.3 1.726 12.92 0.000

Alpha 0.62 0.31 1.726 0.18 0.857

Ti −38.28 −19.14 1.726 −11.09 0.000

Tw 39.18 19.59 1.726 11.35 0.000

Rho*Ld −8.14 −4.07 1.726 −2.36 0.020

Rho*Alpha −0.38 −0.19 1.726 −0.11 0.914

Rho*Ti 11.32 5.66 1.726 3.28 0.001

Rho*Tw −9.85 −4.93 1.726 −2.85 0.005

Ld*Alpha 0.23 0.12 1.726 0.07 0.946

Ld*Ti −37.67 −18.84 1.726 −10.91 0.000

Ld*Tw 37.53 18.76 1.726 10.87 0.000

Alpha*Ti −1.34 −0.67 1.726 −0.39 0.698

Alpha*Tw 0.39 0.2 1.726 0.11 0.910

Ti*Tw −37.76 −18.88 1.726 −10.94 0.000
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Table 9. Estimated Effects and Coefficients for AFR (coded units).

Term Effect Coef SE Coef T P

Constant 97.706 0.1791 545.67 0.000

Rho −0.116 −0.058 0.1791 −0.32 0.746

Ld −4.576 −2.288 0.1791 −12.78 0.000

Alpha 0.077 0.038 0.1791 0.21 0.831

Ti 4.306 2.153 0.1791 12.02 0.000

Tw −4.381 −2.19 0.1791 −12.23 0.000

Rho*Ld −0.106 −0.053 0.1791 −0.3 0.767

Rho*Alpha −0.031 −0.016 0.1791 −0.09 0.931

Rho*Ti −0.158 −0.079 0.1791 −0.44 0.660

Rho*Tw 0.075 0.037 0.1791 0.21 0.835

Ld*Alpha 0.076 0.038 0.1791 0.21 0.831

Ld*Ti 4.307 2.154 0.1791 12.03 0.000

Ld*Tw −4.376 −2.188 0.1791 −12.22 0.000

Alpha*Ti −0.026 −0.013 0.1791 −0.07 0.942

Alpha*Tw 0.065 0.032 0.1791 0.18 0.857

Ti*Tw 4.287 2.143 0.1791 11.97 0.000

The ANOVA results indicate that most of the investigated factors and their interactions have
significant impact statistically on OVR and NSA (see Tables 8 and 9). The investigated factors have
similar impacts on both OVR and NSA. In particular, the direction of the change in response is the
same for the main and interaction effects (see Figures 8–10). Therefore, we present the analysis of the
ANOVA results for both OVR and NSA, followed by a separate section for the analysis of ANOVA
results of AFR.

5.2.1. Impact of Factors on OVR and NSA

The ANOVA results confirm that the autocorrelation parameter (Rho) has a notable significant
impact on OVR and NSA such that they both decrease as Rho increases (see Tables 8 and 9). This can be
clearly observed in the main effect plots shown in Figures 8 and 9. Furthermore, the interaction effect
plots show that the OVR and NSA measures are more sensitive to Rho under the classical OUT policy
(Ti = 1) (see Figures 8 and 9). However, this sensitivity decreases under the smoothing OUT (Ti > 1).
In addition, it can be observed that the impact of Rho is substantial for long lead-times. This has
also been shown in the characterization results for a wider range of Rho. The effect of Rho is almost
independent of Alpha as can be revealed from the interaction plots. In general, the interaction effect
plots indicate that both measures are less sensitive to changes in Rho value when Ti is large, Tw is
small, and Ld is short.

Most importantly, the results show that the two smoothing parameters of the generalized OUT
policy have the largest effects on both OVR and NSA. The previous research has assumed that both
parameters are equal (Ti = Tw) and therefore their results confirm that higher levels of the smoothing
parameter are of significant impact on the reduction/elimination of the bullwhip effect [28]. However,
the analysis of the main effect plots suggests to select Ti = 3 (high) and Tw = 1 (low) for smaller OVR
and NSA under the positively correlated demand. Furthermore, analyzing the interaction effect plots
suggests that the combination of Ti = 3 and Tw = 1 also offers the least interaction between Ti and Tw.
This confirms that the unmatched case of the smoothing parameters outperforms the matched case.
The interaction of the smoothing parameters with the other operational parameters are statistically
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significant. At low level of Ld (Ld = 1), the OVR and NSA are not affected by the choice of Ti or Tw.
However, long lead times (Ld = 3) favors large value of Ti (Ti = 3) and smaller value of Tw (Tw = 1).
Low correlated demand (Rho = 0.3) also suggests large Ti and smaller Tw values to decrease OVR.
At high correlation parameter (Rho = 0.7), these plots suggest that smaller value of Alpha and Ld,
and OUT policy of Ti = 3 and Tw = 1 offers best performance. Therefore, it can be argued that the
proper settings of Ti and Tw are of essential importance to control the variance amplification in supply
chains with correlated demand.Sustainability 2020, 12, x FOR PEER REVIEW 22 of 28 
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Figure 9. The effects of the investigated factors and their interactions on NSA.

The lead-time has one of the largest effects on OVR and NSA. However, the effect of lead-time
can be counteracted by the proper selection of the ordering policy parameters as indicated above.
The forecasting parameter (Alpha), in general, has the least impact on OVR and NSA. Its effect is almost
independent (no interaction) of the levels of the other factors. This is evident also from the regression
coefficients table, where all the interactions between Alpha and the other factors are insignificant.
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5.2.2. Impact of Factors on AFR

The main and interaction effects plots show that the fill rate is almost insensitive to correlation and
forecasting parameters (see Figure 10). This is also evident from the related ANOVA results in Table 9.
Changes in AFR are between 95% to 100% as the other factors (Ld, Ti, Tw) are varied in levels. Higher
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AFR values favor low Ld, high Ti, and low Tw. This policy is clearly similar to what is recommended
for OVR and NSA measures.

6. Conclusions

Supply chains face the variance amplification in replenishment orders and inventory levels,
leading to severe inefficiencies at all supply chain partners, such as increased production and inventory
costs, and decreased serviceability. Therefore, variability need to be controlled to sustain economic
and planned performance of a supply chain. In this regard, extensive modeling studies have been
performed to analyze the variance amplification in supply chains while assuming i.i.d demands. Most
of the previous studies have investigated the variance amplification in supply chain models that adopt
the classical OUT policy, and permit return orders. These studies also have relied upon analytical
modeling approaches, and therefore they analyzed the bullwhip effect only. Although supply chains
that are subjected to correlated demand are common in reality, not enough attention is devoted to
study their characterization and operational performance.

This research has adopted a simulation modeling approach in order to investigate the variance
amplification and service level (average fill rate) in a supply chain that faces AR(1) demand, employs
the generalized OUT policy, and restricts returns. The generalized OUT policy is a modified version of
the classical OUT policy that can be adapted to allow order smoothing and thus mitigating and even
eliminating the bullwhip effect. We utilize a simulation model to investigate the impact of correlated
demand on order variance ratio (OVR), net stock amplification ratio (NSA), and average fill rate (AFR),
under different operating conditions.

The characterization results for OVR and NSA under the classical OUT policy are consistent
with the results reported in the literature. Exceptionally, the behavior of OVR over the negatively
correlated demand is different from the previous research, due to the different modeling assumption
of the allowance of returns. In particular, the results imply that applying the supply chain models
that permits return orders will overestimate OVR for the supply chains that restrict returns. Therefore,
supply chain practitioners will be misguided if they apply the existing analytical models to estimate
the bullwhip effect for the negatively correlated demand. Existing analytical models should be revised
to include the proper assumptions that are proved to have significant impact on the estimation of
supply chain response.

The characterization results also reveal that the generalized OUT policy should be adopted with
the correlated demand since its smoothing parameters can be tuned to produce better OVR and NSA
without affecting the service level (AFR). For the negatively correlated demand, the best OVR, NSA,
and AFR favors the generalized OUT policy with the matched smoothing parameters (Ti = Tw > 1).
The generalized OUT policy can also be utilized to avoid the bullwhip effect (OVR) for both the i.i.d and
positively correlated demand. The characterization results are complemented with a factorial design
study that focused only on the positively correlated demand and the other operational parameters.
The results confirmed that the ordering policy parameters and their interactions have the largest
impact on the performance measures. In particular, the results have indicated that the unmatched
smoothing parameters are more suitable than the matched settings for the positively correlated demand.
The proper settings of the smoothing parameters will alleviate the impact of the lead-time and demand
correlation on the performance measures.

This research provides useful managerial recommendations to control the variance amplification in
supply chains with AR(1) demand. Supply chain managers have to identify the demand characteristics
and determine the performance measures that they need to improve. If the demand is independent
or correlated and the objective is to avoid the bullwhip effect, the managers are recommended to
use the generalized OUT policy with the proper smoothing parameters according to the demand
characteristics. The matched smoothing parameters (Ti = Tw > 1) are recommended for the negatively
correlated or independent demand, while the unmatched settings (Ti > Tw) are preferred for the
positively correlated demand. These recommended settings provide good inventory performance that
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can eliminate or minimize the bullwhip effect without affecting the inventory performance. This should
lead to considerable savings in supply chain costs while achieving the desired service level, and thus
sustaining the economic and planned performance of supply chains. However, managers need to
keep track of inventory performance if they apply the generalized OUT policy with the positively
correlated demand since it may affect net stock variability and service level. They also need to avoid
the generalized OUT policy if inventory performance is their target measure. Moreover, for correlated
demand, managers are recommended to trace the long-term average of the AR(1) demand process
and use it as their demand forecast for every time period. When the demand is highly correlated,
other responsive forecasting methods should be selected, and managers are advised to counteract the
impact of lead-time through tuning the ordering policy parameters. These managerial implications are
essential to achieve the techno-economic sustainability of supply chains with correlated demand.

For future research, forecasting methods other than the most industrially popular methods should
be investigated, such as the time series forecasting methods and new adaptive forecasting methods
that can comply with the nature of correlated demand. Also, the development of new ordering
policies that cope with correlated demand is an interesting future research direction. The variance
amplification under mixed and higher order correlated demand processes, such as ARIMA models
and its variants, need to be characterized. The optimization of the forecasting and ordering policy
parameters under correlated demand should be considered in future work. In general, performance of
multi-echelon supply chains under correlated demand conditions is a highly viable research area of
practical importance.
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