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Abstract: The recent innovation of IoT-based sensor technologies facilitates real-time monitoring of
indoor air pollutants, such as particulate matter (PM), but its dynamic impacts on the level of endocrine
disruptors in human body remain understudied. This feasibility study analyzed if the constant
measurements of indoor PM concentrations collected at every five minutes are meaningfully associated
with the levels of 15 types of endocrine disruptors in urine samples collected three times a day from
nine new breastfeeding mothers in Seoul, Korea. Some promising results are observed in terms of
detecting cumulative effects of PM10 and PM2.5 on some phthalate metabolites (MnBP, MiBP, MiNP,
MCOP, MEOHP and MEHHP), BPA and TCS, at least for some participants. The findings from
this study are expected to provide valuable directions for guiding future studies that discover potential
associations between indoor PM concentrations and exposure to endocrine disruptors, which is still
far from the consensus in the literature. Such efforts should offer empirical and scientific evidences
for designing technology-based early warning/alarm services and evidence-based interventions to
mitigate the level of exposure to PM and endocrine disruptors in their living environments.
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Indoor air quality is one of the most critical indicators for economic and environmental
sustainability [1]. Despite a growing evidence that indoor air pollutants are predominantly contributing
to human exposure to a variety of chemicals due to the changes in lifestyle and indoor environments [2],
a majority of studies still focus on the associations between outdoor particulate matter exposure
and the level of endocrine disruptors in urine samples, such as phthalate metabolites, bisphenol A
(BPA) and triclosan (TCS) [3,4]. Only a few researches have been dedicated to the effect of indoor air
pollution on the exposure to those chemicals in commonly used exposure biomarkers, such as urine or
blood, mostly based on a one-time collection of house dust samples [5,6]. This type of measurements
could assess the long-term cumulative effects of indoor air pollutants, but fail to detect the dynamic
temporal changes of those concentrations and their varying impacts on the level of endocrine disruptors
in human body which should also fluctuate in a short interval.

The recent advancement of IoT (Internet of Things) based sensor technologies facilitates real-time
constant monitoring of indoor air pollutants such as particulate matter (PM), volatile organic compounds
(VOC) and radon [7]. Recently, such database has been constructed in a big data analytic framework
and analyzed by a deep learning model in order to be utilized for practical prevention and intervention
such as early warning or alert systems tailored to vulnerable households and individuals [8]. However,
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an IoT-based air pollution monitoring and data analysis system have not been used to detect its
association with the exposure to endocrine disruptors. This study aims to analyze the impacts of
real-time measurements of indoor PM concentrations on exposure to various types of endocrine
disruptors in urine samples from nine new breastfeeding mothers in Seoul, Korea who stay indoors
most of the time, considering the growing concerns on health impacts of PM and chemical exposure in
the country. This is a feasibility study with a relatively small sample size, but the findings and lessons
from this study are expected to discover the dynamic and cumulative effects of PM concentrations
on varying levels of exposure to different types of endocrine disruptors over time. The proposed
research is expected to provide scientific and practical evidences for potential association between
indoor PM concentrations and exposure to endocrine disruptors which is still far from the consensus
in the literature.

The urine samples were collected in 10 to 28 June 2019 from ten new mothers living in
Seoul, South Korea with their infant indoors for the majority of the time, but one sample was
excluded due to metabolic disturbances or abnormal urine excretion (hematuria and urinary tract
infection). Each of them was requested to take urine samples three times a day over one week
(first morning voids, lunch time void, and bed time void) for which the collection time was
recorded. The chemical analysis was conducted for all samples by analysis of ten phthalate
metabolites (MnBP, MiBP, MEHP, MEOHP, MEHHP, MECPP, MEP, MiNP, MBzP and MCOP), BPA,
TCS and three parabens (MP, EP and PP), following the previously reported methods for national
biomonitoring programs [9,10]. Urine concentrations of environmental phenols were determined using
a high-performance liquid chromatography–triple tandem mass detector (HPLC-MS/MS, API Triple
Quad 550 System; AB SCIEX, Canada). The limit of detection (LOD) for each chemical is as follows:
MnBP—0.282 µg/L; MiBP—0.188 µg/L; MEHP—0.139 µg/L; MEOHP—0.154 µg/L; MEHHP—0.139 µg/L;
MECPP—0.113 µg/L; MEP—0.131 µg/L; MiNP—0.043 µg/L; MBzP—0.082 µg/L; MCOP—0.091 µg/L;
BPA—0.02 µg/L; TCS—0.04 µg/L; MP—0.17 µg/L; EP—0.11 µg/L; PP—0.12 µg/L. For the values below
LOD, we assigned the value of LOD divided by the square root of 2 [11].

Following a similar process of IoT-based indoor air monitoring for PM described in the previous
study [8], a device with low-cost monitoring sensors were installed in each participant’s dwelling to
measure PM10 and PM2.5 concentrations as well as temperature and relative humidity every 10 min.
The sampling device, PiCOHOME, is equipped with the PM sensor (PMSA003) and has been evaluated
for first-class accuracy at an accredited certification facility in South Korea (Korea Testing & Research
Institute) and calibrated before installation, as implemented in the previous work [8]. See Figure S1
for the calibration results. All data were stored real-time into the device and transferred to the cloud
storage through Wi-Fi network. The data for indoor PM concentrations for each participant were then
matched with those for endocrine disrupters based on time of measurement. The integrated data were
used to assess bivariate association between three kinds of cumulative sum of PM concentrations (3 h,
6 h and 12 h) and each of 15 chemicals via time-series line plots and Pearson’s correlation coefficients.
This study was reviewed and approved by the Institutional Review Board of Kyung Hee University
(KHSIRB-19-023).

Figure 1 shows the temporal trends of PM2.5 concentrations and a specific chemical for some
selected participants, for which the bivariate association is statistically significant. Despite some
fluctuations and noise in the trend lines, some levels of correspondence are observable for MiBP, MiNP,
BPA and TCS at least for some individuals during the one-week period. The matching trends show
some promise for further investigation of possible association between indoor PM concentrations
and exposure to at least some endocrine disruptors. See Figure S2 for the similar plot for PM10.
Table 1 shows for whom the cumulative effects of PM concentrations (3 h, 6 h and 12 h sum) on each of
the endocrine disruptors are statistically significant. For all three cumulative levels, the PM2.5 patterns
are positively associated with MnBP, MiBP, MiNP, MCOP, BPA and TCS for four participants (C, D, G,
H). The effects of PM10 concentrations seem more noticeable for 12-h cumulative measures, which
appear significant on MnBP, MiBP, MEOHP, MEHHP, MiNP, MCOP and TCS. The inconsistency of
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significance across chemicals and participants may reflect different indoor environments and lifestyle,
but also indicate how much chemical remains in urine after a certain number of hours of exposure.
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Figure 1. Time-series plots for PM2.5 concentrations and a specific chemical for selected participants. 
(a) MiBP and PM2.5 trends (for participant G). (b) MiNP and PM2.5 trends (for participant D). (c) BPA 
and PM2.5 trends (for participant H). (d) TCS and PM2.5 trends (for participant C). 

  

Figure 1. Time-series plots for PM2.5 concentrations and a specific chemical for selected participants.
(a) MiBP and PM2.5 trends (for participant G). (b) MiNP and PM2.5 trends (for participant D). (c) BPA
and PM2.5 trends (for participant H). (d) TCS and PM2.5 trends (for participant C).

Table 1. Correlation between cumulative exposure to particulate matters (PM2.5 and PM10) and chemical
concentrations in urine samples.

PM10 PM2.5

12-h Cumulative
Sum

6-h Cumulative
Sum

3-h Cumulative
Sum

12-h Cumulative
Sum

6-h Cumulative
Sum

3-h Cumulative
Sum

MnBP B, G G G G G
MiBP B, G C, G C, G G G G

MEHP
MEOHP G
MEHHP G
MECPP

MEP
MiNP D, G D D D
MBzP
MCOP G D D D

BPA H H H
TCS C C C C C
MP
EP
PP E, F

* The letters A to I indicate the unique ID for each participant, shown in this table only if the Pearson’s correlation
coefficient is positive and statistically significant (p < 0.05).
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A significant bi-variate association between the dynamic and cumulative PM concentrations
and the levels of endocrine disruptors is revealed at least for some phthalate metabolites, BPA or TCS,
depending on the lifestyle and metabolism of new mothers. This is the first study that presents the role of
the IoT-based real-time indoor PM monitoring tool on discovering its possible association with the levels
of endocrine disruptors in urine samples. Despite several limitations, such as small sample size,
we consider this investigation as a feasibility study that yields promising results and provides valuable
directions for guiding future study. Future study should expand the database by incorporating more
chemicals, outdoor PM concentrations and other covariates (other indoor environmental characteristics,
lifestyle, diet, heathy behaviors, etc.), which can be analyzed via deep learning algorithms to predict
the future patterns of endocrine disruptors based on spatiotemporal trends of both indoor and outdoor
PM concentrations. Such efforts should provide empirical and scientific evidences for designing
the models of technology-based early warning/alarm services or evidence-based educational programs
tailored to vulnerable groups, such as new mothers and newborns, to mitigate the level of exposure to
PM and endocrine disruptors in their living environments.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/15/6166/s1,
Figure S1: Calibration result (performance certificate and test result), Figure S2: Time-series plot for PM10
concentrations and MiBP for participant G (similar pattern to Figure 1a).
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