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Abstract: Assignment methodologies attempt to determine the traffic flow over each network arc based
on its characteristics and the total flow over the entire area. There are several methodologies—some
fast and others that are more complex and require more time to complete the calculation. In this study,
we evaluated different assignment methodologies using a computer simulation and tested the results
in a specific case study. The results showed that the “all-or-nothing” methods and the incremental
assignment methods generally yield results with an unacceptable level of error unless the traffic is
divided into four or more equal parts. The method of successive averages (MSA) was valid starting
from a relatively low number of iterations, while the user equilibrium methodologies (approximated
using the Frank and Wolfe algorithm) were valid starting from an even lower number of iterations.
These results may be useful to researchers in the field of computer simulation and planners who
apply these methodologies in similar cases.
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1. Introduction

Traffic assignment techniques can be used to assess traffic intensities on a track or road system
based on its physical and functional characteristics and the potential traffic that can use it.

An assignment process has two stages. First, it is necessary to determine the possible traffic that
can be used by the network, which is usually expressed through current and future origin/destination
matrices. Based on this data, in the second stage of the process, this potential traffic is assigned to each
of the sections of a given road network. There are a multitude of procedures for this purpose, most of
which are empirical and based on statistical observations of user behavior, certain track conditions,
and the traffic itself. Procedures with a higher level of precision are, of course, more complicated.
However, we cannot forget that we are starting from an estimate of future potential traffic; therefore,
each result must be studied by a decision-maker in order to develop appropriate contrasts and produce
final results that are consistent with the analyzed situation.

There are several assignment methodologies, some of which have already been compared in certain
case studies, although usually not all at once, and only sometimes using simulation techniques [1,2].
The assignment stage has been analyzed at times as an intermediate problem between optimization
and equilibrium issues [3]. We can also attempt to analyze the zonal distribution and assignment
stages together, as was performed by Tan et al. [4] in a study in which the use of Intelligent Transport
Systems (ITS) was incorporated. The number of possible applications of assignment methodologies
is enormous, among which we can include their adaptation to multimodal networks as especially
novel [5], their use to minimize the environmental impact of traffic [6] and the damage caused to
infrastructure by traffic [7], or to optimize the process of searching for a place to park a vehicle [8].
In addition, if we add the use of simulation with computer tools to this [9,10], the number of possibilities
is greatly increased.
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However, the assignment problem is not only associated with road traffic, but also with other means
of transport. For example, within road networks, assignment methods are applied to private vehicles,
including taxis and autonomous vehicles and public transportation (PT). For example, Long et al. [11]
introduced the concept of the expected rate of return of taxi drivers and performed a dynamic taxi traffic
assignment problem supposing real-time traffic information provision; Bischoffa and Maciejewski [12]
analyzed the possible effect of a city-wide replacement of private cars with autonomous taxi fleets;
Heilig et al. [13] used a microscopic travel demand model to simulate the mode choice behavior in the
assumption of the existence of a large autonomous mobility on demand service instead of private cars;
and Poulhès and Berrada [14,15] analyzed the effect of dial-a-ride services on the assignment problem.
Within the PT assignment problem, Liu and Ceder [16] and Eltved et al. [17] considered different
schemes for that; Cats and Hartl [18] focused on the discomfort that causes congestion on PT users and
how it affects their choices; and Nuzzolo and Comi [19] included big data issues to this modeling.

With railway transport, there are also interesting studies that employ these techniques to estimate
the passenger load on each route. Thus, Lin et al. [20] investigated the railway passenger pricing
problem, supposing that operators could modify ticket prices to optimize the system’s performance;
Xu et al. [21] proposed a dynamic assignment problem for urban rail transit networks considering
queuing process, capacity constraints, and congestion effects; and Gao and Wu [22] proposed a method
to calculate the proportion of passengers on each path based on the entry and exit time records of users.

In the maritime domain, assignment methods are also applicable and there are several studies
that have analyzed the assignment problem by considering traffic assignment close to seaports.
Venturini et al. [23] and Iris et al. [24] studied the integrated berth allocation in seaport container
terminals; Li and Jia [25] modeled the traffic scheduling problem as a mixed integer linear program
to minimize the berthing and departure delays of vessels; Han et al. [26] studied a storage yard
management problem if the loading and unloading activities are both heavy and concentrated;
and Iris et al. [27] formulated a mathematical model for the containership loading problem, where the
terminal has the right to decide which specific container to load for each slot.

In air transportation, we can find some examples of the application of assignment methods.
For instance, Ganić et al. [28] and Ho-Huu et al. [29] developed mathematical models of air traffic
assignment in order to minimize the noise effects on population, and Starita et al. [30] considered
future capacity provision in terms of the available man-hours of air traffic controllers.

Finally, several studies have considered two or more means of transport simultaneously in a
multimodal scenario. Thus, Yu and Guo [31] developed a tri-level combined-mode traffic assignment
model; Pi et al. [32] included heterogeneous traffic on roads, parking availability, and travel modes
(such as solo-driving, carpooling, ride-hailing, public transit, and park-and-ride); Macedo et al. [33]
proposed an efficient traffic assignment, where users are not only concerned about travel times, but also
about global and local pollutant emissions; Jiang et al. [34] included the car–truck interaction paradox
in assignment problems; and Dimitrov et al. [35] modeled the interaction between buses, passengers,
and cars on a bus route.

Some researchers have applied these methodologies in a specific case study, often with the support
of computer simulation [36–39], while others have attempted to assess different techniques or even
propose novel ones [40–45]. Among the first ones, Zhang et al. [36] integrated an activity-based travel
demand model with a dynamic traffic assignment model for the Baltimore Metropolitan Council;
Shafiei et al. [37] developed a simulation-based dynamic traffic assignment model of Melbourne,
Australia; Zhu et al. [38] used dynamic traffic assignment for a case study in Maryland; and Kucharski
and Gentile [39] applied the Information Comply Model on different situations, including a corridor in
the North of Kraków, Poland, and the Sioux-Falls network. Within the latter ones, Zhang et al. [40]
analyzed the calibration of dynamic traffic assignment models applying the extended Kalman filter;
Prakash et al. [41] presented a dimensionality reduction of the assignment model’s calibration problem
based on principal components; Du et al. [42] focused on the dynamic traffic assignment problem on
large-scale expressway networks, especially under the condition of traffic events (such as severe weather,
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large traffic accidents, etc.) and proposed an approximate solution algorithm; Lin and Chen [43]
developed a simulation-based multiclass, multimodal traffic assignment model for evaluating the
traffic control plans of planned special events; Batista and Leclercq [44] studied a regional dynamic
traffic assignment framework for a macroscopic fundamental diagram considering stochasticity on
both the trip lengths and the regional mean speed; and Bagdasar et al. [45] examined discrete and
continuous optimization and equilibrium-type problems and made a comparison of them with the
Beckmann cost function.

Finally, we can cite some interesting studies that consider multi-class, multi-modal, and elastic demand
traffic for assignment models. Cascetta [46] covered all the issues on traffic assignment; Cantarella [47]
provided a highlight on traffic assignment with elastic demand; and Cantarella et al. [48–50] proposed an
overview of solution algorithms for traffic assignment, presenting a general fixed-point formulation for
the multi-user stochastic equilibrium assignment with variable and elastic demand and comparing it with
other approaches.

Following this line of research, the main objectives of this study are: (1) to develop an assignment
model for a specific case study (the new B-40 highway in Barcelona, Spain) and implement it using
traffic macro-simulation tools; and (2) to evaluate the influence of the use of different assignment
models on the results and the numbers of iterations in them.

This paper is structured as follows. After a brief introduction, Section 2 outlines the main
techniques used in the modeling work performed in this study. Section 3 contains a description
of the case study and the principles adopted for delimitation, zonification, and obtaining the base
origin/destination matrix. The principles adopted for applying the general methodologies to the
specific case study that is being analyzed are then set out in Section 4. Section 5 contains an evaluation
of the best assignment methodology for the specific case study to be analyzed. Finally, in Section 6,
we discuss our results and the main conclusions drawn from the full study.

2. Methods for Traffic Assignment

Potential users of a transportation system in which there are different alternative itineraries
generally have incomplete information about the conditions of each section; however, they must make
their decision with these inaccurate data. These data include the length of each segment, the quality of
the track (in terms of layout, pavement, and safety conditions), and, finally, the degree of congestion
at all times, which decisively affects the vehicle’s speed and, therefore, the time spent on the route.
The possibility of knowing the above data ranges from high to low. In addition, with regard to
congestion, the knowledge that each driver has is very subjective and is generally based on his/her
previous experiences, since in very few cases does he/she have information about the actual situation.

Typically, when choosing from several possible itineraries, we consider different types of factors
(e.g., distance, travel time and/or cost, comfort, and toll, if any) that are usually grouped into a single
variable called generalized cost. In practice, the process that we need to follow in order to assign traffic
to the existing road network in a given area of study has the following steps:

• Zone division. First, the entire study area to be analyzed must be divided into zones of more or
less homogeneous characteristics.

• Origin/destination matrix construction. Once the study area has been divided into zones, we need
to construct a matrix that lists the movements of each origin/destination pair. We should also
distinguish between light and heavy vehicles, since the conditions for the assignment of each type
of vehicle are different.

• Definition of road networks. Each defined zone is represented by its centroid, which is the fictional
place that generates or attracts all trips in the area. All zones must be joined to one another
through the existing transportation system and, if applicable, through the future one (constituting
two separate transport networks: a current one and a future one).

• Calculation of travel costs and/or times. For each of the sections of the considered network (current
and future), the generalized cost of travelling along it under certain traffic conditions must be
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determined. It is desirable to calculate the costs for various traffic levels in order to take into
account the capacity of each segment, or even do it dynamically at each iteration of the process,
depending on the traffic supported by each part of the network.

• Assignment. Using the origin and destination data, it is advisable to calculate the traffic intensities
for the existing network in the current situation, and then compare the results obtained with the
traffic accounts that have been made. Once this check has been carried out, each of the movements
in the origin/destination matrix is assigned to the current and future networks. A separate
assignment should be performed for light and heavy vehicles and for various driving conditions.
The application of computer tools to traffic assignment models has resulted in the creation of
new methods that introduce a greater number of theoretical complications but are perfectly
applicable nowadays.

Among the wide variety of methods for traffic assignment (or methods for calculating the traffic
load on the network), we used the following, which are those that are used in practice in most cases [51]:

• all-or-nothing assignment
• stochastic assignment

• simulation methodologies
• proportion-based methodologies

• assignment with congestion

• wardrop equilibrium
• speed adaptation
• incremental assignment
• the successive averages method

2.1. All-or-Nothing Assignment

This is the simplest of all assignment methods and results from the load of all journeys to the
minimum cost path between the nodes. The costs are initially fixed for all segments in the network:
i.e., the speed/flow ratio function is not considered.

While it is simple, it has significant drawbacks. It is an unstable method because small changes in
the travel time of a segment can drastically change which routes are chosen to form the minimum
cost path. This method ignores limits on the capacity of each segment and the number of times that
they have been used in the assignment, so the result may result in little relation to the real flow in the
network. In addition, it does not allow for variations between users. For these reasons, if in a study
we include a new alternative route and use this methodology, we usually find that all trips head for
the new path (the so-called “vacuuming effect”), when, in reality, there will be a distribution of travel
through the segments of the network.

A number of modifications have been made to this “base” methodology, such as the one by Lee
and Oduor [52], which includes parameters from a GIS (Geographic Information System) network that
improve the model’s results.

2.2. Stochastic Assignment

Stochastic assignment distributes the trips of each O/D (Origin/Destination) pair between different
paths of the multiple alternatives that connect them. We can sort these methodologies into two kinds:
those based on simulation and those based on proportions.

In simulation-based methodologies, which often use the Monte Carlo simulation [53] to represent
the variability among users in terms of their perception of network costs, the following assumptions
are often made:
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• For each segment, it is necessary to differentiate the objective costs, which are measured or
estimated by an observer (modeler), from the subjective costs, which are perceived by each
user. It is accepted that the target cost roughly matches the average of the subjective costs,
which are randomly distributed according to a given probability function. By analyzing the
literature on this topic, we can find different assumptions regarding the distribution of these
subjective costs. For example, Burrel [53] adopts a uniform distribution, while other authors adopt
a normal distribution.

• The distributions of costs perceived by users are independent.
• Users choose the route that minimizes their perceived travel cost: i.e., the sum of the costs of each

used section.

Although these methods are simple and relatively quick to apply, they have certain drawbacks.
For instance, the assumption that the perceived costs of each section are independent may not be true
when users have a certain predisposition to the use of certain types of infrastructure (high-capacity
highways, as an example). In addition, the effect of congestion is not explicitly taken into account.
However, these methods do allow us to distribute the trips in such a way that the “optimal” paths for
the modeler turn out to be the ones with the highest amount of traffic; however, they do not convey the
total number of trips. Moreover, it is not necessary to know the flow–speed functions of each section,
which makes these methods easier to apply, although sometimes this can be a limitation.

In proportion-based methods, as their name suggests, the fraction of trips assigned to a particular
path is equal to the probability of choosing it, which is calculated using a logit-type route choice model.
The lower the generalized cost of one path as compared with the others, the greater its chance of being
chosen. However, with this methodology, the only alternative paths that have traffic are those that are
considered to be “reasonable”—that is, those that separate the user from the origin point and bring
them to the destination point. The travel time for each segment in a stochastic assignment is a fixed set
of input data and is not dependent on the volume that it supports. Therefore, these methods are not
equilibrium methods, nor are they valid in situations of congestion.

According to the single path method [54], the trips between an i–j origin/destination pair along
the r-path, Tijr, would result in:

Ti jr = Ti j
e−ΩCi jr∑
k e−ΩCi jk

(1)

where Tij is the total number of trips from i to j, Cijk is the generalized cost from i to j using the k-path,
Ω is a parameter (usually 1), and k is the number of reasonable paths from i to j. Ω can be used to
control the distribution of trips between routes; thus, depending on their (always positive) value,
cheaper routes tend to concentrate trips, or, on the contrary, distribute them more uniformly among
the possible reasonable paths.

2.3. Assignment with Congestion

Regarding congestion-side assignment techniques, the methodologies that researchers most
commonly use when requiring an adequate level of detail are equilibrium methods. These methods
take into account the dependence between the flow of a section and its generalized travel cost,
and calculate both of them simultaneously so that they are consistent. Equilibrium algorithms
require the iteration of flow assignments and the recalculation of travel times. Despite the additional
computational load, equilibrium methods are almost always preferable to other assignment methods.

The main behavioral assumptions are that each traveler has all of the information about the
attributes of network alternatives, all travelers choose routes that minimize their travel time or cost,
and all travelers—of the same category—assign the same value to all of the network attributes.

According to the first equilibrium principle, which was proposed by Wardrop [55] and is called
“user equilibrium” (UE), no individual traveler can reduce his/her travel time unilaterally by changing
his/her path [56]. One consequence of the UE principle is that all of the roads that an O/D pair uses
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have the same minimum cost, while unused roads have equal or higher costs. Unfortunately, this is
not an absolutely realistic description of congested traffic networks, although it can be considered to
be sufficiently approximate. The mathematical notation for these expressions is as follows (bearing in
mind that, in addition, the conditions of continuity, conservation, and non-negativity of flows must
be met):

∀w ∈W → cp

{
= cw ∀p ∈ Pw/hp > 0
≥ cw ∀p ∈ Pw/hp = 0

(2)

where cp is the unit cost in the equilibrium state, Pw is the set of paths that connect the pair w, and hp is
the flow of path p.

In addition, Wardrop [55] proposed a second alternative to assigning traffic to the network,
which takes the name of “system equilibrium.” According to this alternative, under balanced conditions,
traffic should be distributed so that the total cost of operation of the network is the minimum possible
cost. Computationally, it is similar to the first principle, as expressed in Equation (2), but it replaces
unit costs with marginal costs:

CMa( fa) =
∂( fa·ca( fa))

∂ fa
(3)

CMp
(
hp

)
=
∂
(
hp·cp

(
hp

))
∂hp

(4)

where fa and hp are the flows of section a and path p, respectively, CMa and CMp are their respective
marginal costs, and ca and cp are their respective unit costs.

In either case (the first principle is most commonly used, since it responds more to the actual
“self-interested” behavior of users), we obtain a system of equations, the solution of which would be
the flows in sections or on paths.

Another type of model is that of speed adaptation. The simplest of these models, called direct
adaptation, is based on all-or-nothing methodologies. However, it differs from them in that, once it
assigns traffic, it recalculates the travel times or costs of each section, and then reapplies the all-or-nothing
method with the new values. This process can be iterated indefinitely. However, this approach has
a major drawback, as the selected paths usually change at each iteration, and the method does not
converge to a single solution.

Therefore, in order to try to reduce these oscillations, a methodology was proposed that uses the
average of the speeds of two or more all-or-nothing assignments in each iteration. This methodology,
called speed-weighted adaptation, is not a real improvement, as it continues to assign all traffic to a
single minimum path, which is also usually different in each iteration.

The incremental assignment methodologies are, again, based on the all-or-nothing concept. In this
case, however, they introduce a significant improvement by making the results more realistic. In the
first step, the demand matrix is split into parts (not necessarily equal ones). The first portion is
assigned using the all-or-nothing method and, once the flows are entered, the travel times of each
section are recalculated. Then, with the new travel times, the second fraction of the demand matrix is
allocated using the all-or-nothing method, and the travel times of each section are recalculated again.
This continues until all of the fractions have been assigned. Commonly used values for the fractions
are [51]: 0.4, 0.3, 0.2, and 0.1. The end result provides us with flows that are distributed between routes
and not assigned in their total to the initially shorter one, which more closely approximates reality.

Theoretically, the larger the number of fractions considered, the more likely it is that trips will be
distributed among a greater number of roads. However, even if the demand matrix is divided into
very small fractions, this method may never converge to the solution when using the Wardrop balance,
as the flow that is already assigned to a section cannot be suppressed or modified. In any case, it is
clear that its simplicity and ease of use and the possibility of interpreting its results as the accumulation
of congestion during peak periods make it an interesting method.
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Finally, the method of successive averages (MSA) is another variant of the all-or-nothing method.
In each iteration, the flow of a section is calculated as a linear combination of the flows assigned in the
previous iterations and the auxiliary flow resulting from an all-or-nothing assignment in that iteration.
Thus, the resulting flow in each iteration is:

Vn
a = (1−∅)Vn−1

a +∅Fa (5)

where Va
n is the flow of section a in iteration n, Fa is the auxiliary flow in section a from an all-or-nothing

assignment, and φ is a value between 0 and 1. The different variations of this algorithm lie in the
value of the parameter φ. One approach is to assign it a fixed value of 0.5. However, one of the
best-performing techniques [57] assigns a value of φ = 1/n. In this situation, each auxiliary flow Fa

always has the same weight, and that is why it is called the method of successive averages (MSA).
In fact, it has been demonstrated [56] that, with this value, it is possible to obtain a convergent solution
with Wardrop’s equilibrium principles.

Frank and Wolfe’s algorithm [58] aims to determine the optimal values of φ in order to ensure a
rapid convergence of the MSA methods with the user equilibrium principle. The problem of searching
for “the lowest point of the valley on a day of thick fog” is often used as an allegory to explain it [51]:

• Since we do not know the optimal downward direction in global terms, we start by descending to
where it looks optimal at that point.

• We continue descending until the slope starts to rise again.
• We stop at that point, look again for a new downward direction, and take it. We continue and

repeat the previous step.
• We continue like this until there are no downward directions. By that time, we will have reached

the bottom of the valley.

In our case, in each iteration of the MSA method, a feasible solution (equivalent to a position
in the valley) was obtained. The all-or-nothing assignment is the one that marks the direction of
descent. The Frank–Wolfe algorithm tends to converge quickly in the first few iterations; however,
it will converge more slowly as it approaches the optimal value [59].

3. Case Study

In the study report of the Barcelona Orbital Highway B-40 (from Terrassa to Granollers (link with
AP-7/C60 roads)) it was necessary to carry out a traffic study in Barcelona, Spain to analyze the different
considered alternatives. This traffic study was divided into two phases, each with a different scope:

• Phase A. This phase included a comprehensive background study and the collection of numerous
previous traffic, mobility, urban planning, and socio-economic data.

• Phase B. This phase contained the traffic study itself, including the complete modeling of the
network, the network’s simulation via a computer, and the final results and conclusions.

In November, 2017, Phase A of the study was conducted. In September, 2018, Phase B was
completed. We used the results obtained in this traffic study as the basis for a further assessment of the
influence of the used type of model on the level of observed error.

In total terms, the road network of Catalonia (Spain) consists of 12,076 km of tracks, of which
1648 km are high capacity. The regional government is responsible for 50.4% of these tracks, the local
government is responsible for 34.8% of them, and the country’s government is responsible for 14.9% of
them [60].

For the analysis of traffic in the area, all of the roads parallel and perpendicular to the new network
were considered, regardless of their ownership. We collected data from the Ministry of Development
of Spain [61] and the Government of Catalonia [62]. In particular, we collected information from 16
metering stations belonging to the Ministry of Development (three of them permanent ones) and 42
stations of the Government of Catalonia.
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3.1. Zonification

Seventeen (17) municipalities were directly affected by the layout of the different considered
corridors. All 17 belonged to the province of Barcelona (Spain). However, as the study area obviously
could not be limited to these municipalities, we extended it to a much larger territorial area that
included the entire province of Barcelona, the neighboring provinces, and the rest of Spain.

Therefore, we defined two distinct areas:

• The internal area, which incorporated the areas on which the new infrastructure had a direct
impact. This area included the municipalities directly affected by the new infrastructure and
almost the entire Metropolitan Area of Barcelona.

• The external area, which incorporated some areas that supported penetration or crossing trips
and usually contained more than one municipality. In the external area, we had large areas that
modeled long-distance relationships in the corridor, such as trips from the Mediterranean area or
Portugal to Europe or Girona.

The model consisted of 38 zones (34 internal zones plus four external macro zones), with municipal
disaggregation in the area most directly influenced by the new highway, and with less detail when
moving away from the area of action. All areas were composed of individual municipalities or
aggregations thereof. The final zonification set is shown in Figure 1.
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3.2. Determining the Basic Origin/Destination Matrix

The main source of data used in the project was anonymized mobile phone data from a network
operator with an important market share of total users in Spain. To do so, information on the
geolocated positions of mobile devices was gathered and recorded during March, 2018. The study
population consisted of residents of Spain over 16 years old. The resulting data from this process
were: four origin/destination matrices for light vehicles (with different travel reasons) and one
origin/destination matrix for heavy vehicles on an average working day.

After adding the different travel reasons, a global origin/destination matrix was obtained for an
average working day. Finally, based on data collected from the Movilia survey [63], we noted that
the proportion of private vehicle travel on a working day was 40.6%, and that the average occupancy
of vehicles was 1.22 people/vehicle on a working day. Taking into account all of these corrective
elements, the final base matrices of light and heavy vehicles were obtained for the 38 considered zones.
These tables were found to yield values similar to those obtained in the Movilia survey for the province
of Barcelona, which gave us some confidence in the reliability of the process.
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However, when applying these matrices to the network model, the traffic values recorded at
the actual metering stations were not accurately reproduced. Therefore, we needed to make one last
adjustment after developing the offer model (or network model).

4. Methodological Application

This section describes the particularities of the methodology that we used for the modeling in the
case study. We differentiate between an offer model (a model of the road network on which the future
highway is framed) and an assignment traffic model (consisting of a choice model with multiple paths
according to the generalized cost).

4.1. Network Model

The offer model consists of a representative structure of the characteristics of the road network on
which the travel matrices assignment was to be carried out. We included, as prescribed by Spanish
regulations [64], all of the sections of roads belonging to corridors, from which the new road could
take a significant amount of traffic, all of the sections of roads that connected the new road with
alternative corridors, all of the roads that crossed the new road, and all of the connections to the traffic
generation/attraction centers in the immediate area.

In other words, all of the main types of road infrastructure included in the new road’s area of
influence were modeled. The scenario was complemented by the inclusion of other roads of the
province of Barcelona that could potentially be in competition with the new infrastructure or may
have influenced the results of the model. Furthermore, sections where movement was free were
distinguished from those where a toll was applied. This incorporated an additional cost into the latter
sections depending on the travelled distance.

Figure 2 shows the explanatory graph of the modeled network and the connections of the centroids
on it.
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In total, the modeled network consisted of 1232 sections and 519 intersections and had a total
length of 1593 km (3251 km if we divided the roads by lane). Considering that the total length of the
road network of the province of Barcelona was 3929 km during the same period, these data reflect the
high degree of detail achieved in this study.
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4.2. Traffic Assignment Model

The network model was implemented using the AIMSUN software. In this case, we used
macro-simulation tools, as they have been adapted for studies in which the size of the study area is
large. Each section of the network was delineated in this software from the basic information contained
in the OpenStreetMap platform [65], updating the new or modified infrastructures with respect to it if
necessary. The generalized cost of each section was determined using a function that considered the
economic cost, the cost of spent time, and other variables, such as toll rates, if needed. The general
expression of the unit generalized cost was:

GC =
ttravel·SVT

60
+ tollper km·Length (6)

where SVT is the subjective value of time. The average value of time was extracted from the Spanish
regulations [66], which set a value of 23.03 euros/h for the year 2013, which we updated in accordance
with the official Euribor [67].

The model assigned both types of trips—light vehicle trips and heavy vehicle trips—together to
the network by applying an equivalence factor, which, in our study, was initially equal to 3.0, as this
value corresponded to undulating terrain in the Highway Capacity Manual [68]. The network was
simulated over various assignment models, and the results obtained with each of them were compared
with the actual data from the existing metering stations.

5. Results

In this section, we compare the assignment models described in Section 2 in order to initiate a brief
discussion on the quality of the different alternatives. Specifically, we performed experiments with five
types of static traffic assignment (all-or-nothing, stochastic assignment with a simulation-based method,
the method of successive averages (MSA), incremental assignment, and user equilibrium, applying
the Frank and Wolfe algorithm). We compare the results obtained with each of these methodologies
with the traffic data that were actually measured by the detectors in the network. We also qualitatively
assess the ability of each methodology to estimate the traffic flow in the modeled network. To this end,
we followed the guidelines established by Spanish legislation [64], which indicate that a valid model
satisfies two conditions:

• Regression analysis. A scatter plot should be developed containing the pairs of traffic volume
values obtained in each section by the model (vertical axis) and by the actual observations in
metering stations (horizontal axis). Above it, a regression line must be adjusted, where the slope
value should be close to 1, the intercept value on the vertical axis should be close to 0 (compared
with the analyzed traffic volume ranges), and the coefficient of determination R2 should be greater
than 0.7.

• Root–mean–square error (RMSE) index. The total set of observations should be divided into two
groups: a “contrast” sample containing at least 10% of the values and a sample containing the rest
of the values. For each group, the following indicator should be calculated, and the values in all
cases should be less than 30%:

%RMSE = 100

√∑
(Ei−Oi)

2

N−1∑
Oi

N

(7)

where Ei is the estimated flow by the model, Oi is the observed flow in the metering station, and N
is the number of observations. In our case study, the data were divided into a sample containing
29 observations (representing 28% of the total data) and a sample containing the remaining 73
observations. These proportions were used in all considered models.
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5.1. All-or-Nothing Assignment

By comparing the data recorded by the metering stations with those estimated by the model,
we obtained Figure 3. A regression analysis was performed between the observed and the estimated
values. In Figure 3, the estimated values are shown on the vertical axis and the observed ones are
shown on the horizontal axis. We found an R2 coefficient of 80.1% for light vehicles and an R2 coefficient
of 69.1% for heavy vehicles. Since the value for heavy vehicles was less than 0.7 [64], this methodology
can be directly discarded in the current case.
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Figure 3. All-or-nothing assignment: regression analysis.

In addition, the RMSE index was calculated, resulting in a value of 27.6% for the sample of
29 observations, and a value of 43.3% for the sample of 73 observations. These results were also
inadmissible [59], so we again arrived at the above conclusion.

5.2. Stochastic Assignment with a Simulation-Based Method

For the application of this methodology, we tested seven different utility functions. All of these
functions were dependent on the generalized cost of travel and were calculated according to Equation
(6) with a 95% level of confidence. These functions are shown in Table 1.

Table 1. Stochastic assignment: utility functions.

Function Equation

U1a Ui jr =
100
ci j

U1b Ui jr =
100
ci j1.5

U1c Ui jr =
100
ci j2

U2a Ui jr = −0.1ci j
U2b Ui jr = −0.3ci j
U2c Ui jr = −0.5ci j
U2d Ui jr = −ci j

Where Uijr is the utility within path r for trips from i to j and cij is the generalized cost of the trip from i to j.

After comparing the data recorded in the metering station with the estimated values from the
model, the results shown in Table 2 were obtained by a regression analysis. Table 2 shows that, in general
terms, this methodology did not allow us to obtain a sufficient degree of approximation to the actual
situation. Only the U2d utility function yielded admissible R2 coefficients [64]. Table 3 contains the
results of the calculation of the RMSE indices for each considered utility function. In this case, there was
no utility function that yielded values lower than 30% in all cases. Therefore, this methodology should
also be discarded in the current case study.
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Table 2. Stochastic assignment: regression analysis.

Utility Function
Light Vehicles Heavy Vehicles

Equation R2 Equation R2

U1a y = 1.0312x − 753.67 0.7886 y = 0.8523x + 1296.8 0.6146
U1b y = 1.0258x − 41.031 0.7808 y = 0.889x + 1563.3 0.5308
U1c y = 1.02x + 553.03 0.7738 y = 0.9241x + 1690 0.4754
U2a y = 1.7822x − 9943.3 0.715 y = 0.7287x + 2677.2 0.2442
U2b y = 1.6037x − 7780.3 0.7405 y = 0.7797x + 1954.1 0.4494
U2c y = 1.4134x − 5076.1 0.7688 y = 0.8021x + 1578.5 0.5765
U2d y = 1.1243x − 975.06 0.7969 y = 0.92x + 927.58 0.7445

Table 3. Stochastic assignment: root–mean–square error (RMSE) index.

Utility Function Sample Rest

U1a 25.5% 43.5%
U1b 26.9% 45.5%
U1c 28.2% 47.6%
U2a 87.5% 108.7%
U2b 65.5% 90.2%
U2c 43.2% 72.1%
U2d 20.9% 49.1%

5.3. Incremental Assignment

For this methodology, we tested six different configurations. In the first five configurations, the
demand was divided equally—specifically, into 2, 3, 4, 5, and 10 parts, respectively. In the sixth
configuration, we used the scheme proposed by Ortúzar and Willumsen [51] with declining proportions
(40%–30%–20%–10%).

Similar to the previous cases, after comparing the data recorded by the metering stations with
those estimated using the model, the results shown in Table 4 were obtained by a regression analysis.
Table 4 shows that all of the considered schemes yielded admissible R2 coefficients [64]. On the other
hand, Table 5 shows the results of the calculation of the RMSE indices in each analyzed case. This time,
we can see that only homogeneous partitions with four or more divisions yielded values less than 30%,
so they were the only permissible ones [64]. Therefore, this methodology can be accepted, but only in
the case of four or more homogeneous partitions.

Table 4. Incremental assignment: regression analysis.

Partitions
Light Vehicles Heavy Vehicles

Equation R2 Equation R2

2 × 50% y = 1.0539x − 1335.1 0.8691 y = 0.8557x + 610.06 0.7918
3 × 33% y = 1.0528x − 1670.4 0.8872 y = 0.85x + 607.36 0.8046
4 × 25% y = 1.0436x − 863.34 0.8984 y = 0.8692x + 559.38 0.8429
5 × 20% y = 1.0345x − 642.87 0.9049 y = 0.8503x + 646.15 0.824

10 × 10% y = 1.0389x + 475.52 0.8976 y = 0.8632x + 604.35 0.8466
40–30–20–10% y = 1.0381x + 475.58 0.883 y = 0.8519x + 654.53 0.8162

Table 5. Incremental assignment: RMSE index.

Partitions Sample Rest

2 × 50% 21.4% 34.7%
3 × 33% 22.4% 31.0%
4 × 25% 20.3% 29.1%
5 × 20% 19.4% 28.0%

10 × 10% 18.8% 29.3%
40–30–20–10% 18.3% 31.7%
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5.4. Method of Successive Averages (MSA)

For this methodology, we tested five different configurations with a maximum number of 5, 10, 20,
50, and 100 iterations to determine the value needed to achieve the required level of detail [64].

Table 6 shows the results of the regression analysis. The results showed that all of the considered
schemes yielded admissible R2 coefficients [64]. Table 7 shows the evolution of the RMSE indices based
on the number of iterations. From Table 7, we can see that all configurations with 10 or more iterations
yielded permissible values [64].

Table 6. Method of successive averages (MSA) assignment: regression analysis.

No Iterations
Light Vehicles Heavy Vehicles

Equation R2 Equation R2

5 y = 1.031x + 4306.5 0.864 y = 0.8644x + 718.37 0.8615
10 y = 1.0257x + 2670.5 0.9153 y = 0.8799x + 602.54 0.8826
20 y = 0.9967x + 2370.5 0.9324 y = 0.8965x + 510.79 0.8866
50 y = 0.9872x + 1888.3 0.9341 y = 0.9095x + 440.84 0.888
100 y = 0.9861x + 1671.5 0.9335 y = 0.9143x + 412.01 0.8893

Table 7. MSA assignment: RMSE index.

No Iterations Sample Rest

5 21.6% 37.1%
10 15.5% 28.8%
20 14.3% 24.3%
50 14.9% 23.0%

100 15.3% 22.8%

Finally, Figure 4 shows a summary of the evolution of these indices based on the number of
iterations. We can see there that the level of accuracy increased rapidly over the first several iterations,
and then remained practically stagnant even though the number of iterations significantly increased.
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5.5. User Equilibrium Using the Frank and Wolfe Algorithm

As in the previous case, the main issue to consider was the maximum number of iterations with
which to limit the process. Again, we tested five different configurations with a maximum number of
5, 10, 20, 50, and 100 iterations.

After comparing the data recorded by the metering stations with those estimated using the model,
the results shown in Table 8 were obtained by a regression analysis. Table 9 shows the evolution of
the RMSE indices based on the number of iterations. Tables 8 and 9 show that all of the considered
schemes yielded admissible R2 coefficients and that all configurations, even the one that only had five
iterations, yielded adequate RMSE values [64].
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Finally, Figure 5 shows that the level of accuracy increased even more rapidly over the first several
iterations than in the MSA algorithm, and then remained practically stagnant even though the number
of iterations significantly increased. This finding was consistent with those of Arezki and Van Vliet [59].

Table 8. Equilibrium assignment: regression analysis.

No Iterations
Light Vehicles Heavy Vehicles

Equation R2 Equation R2

5 y = 0.9809x + 3849.9 0.8889 y = 0.8544x + 733.41 0.8417
10 y = 1.0006x + 2551.3 0.9224 y = 0.8867x + 578.03 0.8784
20 y = 0.9917x + 2008 0.9324 y = 0.908x + 467.01 0.8876
50 y = 0.9749x + 2019.3 0.9329 y = 0.907x + 444.57 0.8874
100 y = 0.9784x + 1752.4 0.9325 y = 0.9143x + 410.07 0.8893

Table 9. Equilibrium assignment: RMSE index.

No Iterations. Sample Rest

5 17.5% 29.8%
10 15.5% 25.8%
20 14.8% 23.6%
50 15.4% 22.7%

100 15.6% 22.7%
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6. Discussion and Conclusions

From our analysis, we can draw the following conclusions:

• The all-or-nothing and stochastic assignment methods are inadmissible in this particular case
study. In our study, we did not obtain the same outcome as Chen and Pan [69], who concluded
that stochastic algorithms can produce similar results to the UE and MSA. This may be due to the
size of the simulated network; the examples they used were small in size, while we analyzed a
large area. Further research is needed to verify this point.

• The incremental assignment algorithms are valid only when they have four or more demand
partitions of equal size; thus, no individual partition can exceed 25% of the total.

• The method of successive averages (MSA) algorithm is valid only when working with more than
10 iterations. This result is consistent with those of Ameli et al. [1], who found that this method is
good for small- and medium-sized networks, but is not the fastest one when estimating the traffic
flow in a large network.

• Finally, the user equilibrium methods (approximated by the Frank and Wolfe algorithm) were
found to be valid in all of the considered cases (five or more iterations).

Table 10 shows a summary of the results obtained using those methodologies that were found to
be valid for the case study.
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Table 10. Comparison of results obtained with valid methodologies.

Algorithm
R2 Index RMSE Index

Light Vehicles Heavy Vehicles Sample Rest

Incremental assignment
4 × 25% 0.8984 0.8429 20.3% 29.1%
5 × 20% 0.9049 0.824 19.4% 28.0%

10 × 10% 0.8976 0.8466 18.8% 29.3%

MSA

10 iterations 0.9153 0.8826 15.5% 28.8%
20 iterations 0.9324 0.8866 14.3% 24.3%
50 iterations 0.9341 0.888 14.9% 23.0%

100 iterations 0.9335 0.8893 15.3% 22.8%

User equilibrium

5 iterations 0.8889 0.8417 17.5% 29.8%
10 iterations 0.9224 0.8784 15.5% 25.8%
20 iterations 0.9324 0.8876 14.8% 23.6%
50 iterations 0.9329 0.8874 15.4% 22.7%

100 iterations 0.9325 0.8893 15.6% 22.7%

From the results, we can conclude that the MSA and UE yield practically the same results when we
have a sufficiently high number of iterations [59]. However, for lower numbers of iterations, the results
of the UE algorithm are clearly better. The incremental allocation method provides a significantly
lower level of detail.

Therefore, we recommend the use of user equilibrium methodologies. To speed up the process,
approximation with the Frank and Wolfe algorithm could be performed. This recommendation is
in line with the results of Denoyelle et al. [70], who determined, by applying numerical simulation
techniques, that this method is versatile and superior to other methodologies.

However, as Bliemer et al. [71] note, planners have to evaluate a methodology’s applicability in
terms of both its adjustment to real-world data and its computational flexibility and speed. In our
case study, the Frank and Wolfe algorithm was found to satisfy all of these criteria. We can infer that a
network’s size is a crucial variable to take into account when choosing a method [40,41,44,69,71].

To finish, we want to make a note about the limitations of this study and its scientific and practical
implications. In this study, we used five different types of methods to estimate the traffic flow in a large
network and compared the results with real-world data. These five methods were the ones included in
the employed software. It would be interesting to use other methodologies, or even a higher number
of different configurations within the considered ones. In addition, we determined whether the models
complied with the Spanish regulations [64], since their verification, through the R2 and the RMSE
indices, is a prerequisite of their use in our geographical area. However, it would have been interesting
to use other goodness-of-fit indicators, or even to develop new ones, to enhance our knowledge of
the adjustment of each methodology to real-world data. These are possible lines of future research in
this field.

Regarding scientific and practical implications, we want to note that the results obtained in this
study can be considered to be valid for both the case study and other areas with similar characteristics.
However, although they cannot be directly extrapolated to different cases, it may be possible to
develop a similar methodology that allows, under the same conditions, for the selection of the optimal
assignment method in eacvv cfdh case. The results of this study and the employed procedure may be
useful to researchers in the field of computer simulation and planners who apply these methodologies
in similar cases.
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