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Abstract: People often base their mobility decisions on subjective aspects of travel experience, such
as time perception, space usage, and safety. It is well recognized that different groups within a
population will react differently to the same trip, however, current data collection methods might
not consider the multi dimensional aspects of travel perception, which could lead to overlooking the
needs of large population groups. In this paper, we propose to measure several aspects of the travel
experience from the social media platform Twitter, with a focus on differences with respect to gender.
We analyzed more than 400,000 tweets from 100,000 users about transportation from Santiago, Chile.
Our main findings show that both genders express themselves differently, as women write about
their emotions regarding travel (both, positive and negative feelings), that men express themselves
using slang, making it difficult to interpret emotion. The strongest difference is related to harassment,
not only on transportation, but also on the public space. Since these aspects are usually omitted from
travel surveys, our work provides evidence on how Twitter allows the measurement of aspects of the
transportation system in a city that have been studied in qualitative terms, complementing surveys
with emotional and safety aspects that are as relevant as those traditionally measured.

Keywords: gender differences; social media; topic modeling; sentiment analysis; transport perception

1. Introduction

Transport experience varies from different groups within a population [1]. Men and women
have different travel characteristics [2–4], place different degrees of importance on mobility-decision
factors (e.g., time, cost, accessibility, frequency, safety), and move differently across the city
depending on their daily activities [5–8]. This difference is critical for the sustainability of cities,
as stated in one of the Sustainable Development Goals by the United Nations, which aims to
“provide access to safe, affordable, accessible, and sustainable transport systems for all, [. . . ]
with special attention to the needs of those in vulnerable situations, women [. . . ]” (emphasis
ours). (https://www.undp.org/content/undp/en/home/sustainable-development-goals/goal-11-
sustainable-cities-and-communities.html).

Advancing toward reaching this goal is not an easy task. One of the main difficulties is quantifying
the differences in population groups. It is vital for transport planners to take into consideration
the trends and behaviors of different segments of the population and understand their context
(conditions, opportunities, and constraints) [9]. Traditional methods to gather information on travel
experience often observe users as one “average user” group, without considering the heterogeneity
among groups of people. For instance, surveys are the most common tool to measure the travel
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experience [10,11]. Typically, their design is targeted to optimize quantitative characteristics such as
costs for the system, while maintaining or improving quality of service, mainly, time and frequency.
Even though they offer rich information, surveys have limitations. Surveys are not created to consider
the multi-dimensional aspects of perception when people travel [12], leading to conclusions assuming
that the travel experience is the same for both genders [13]. Reportedly, that is not the case. For instance,
women experience higher levels of violence and harassment in transportation, which leads them to
respond in ways that affect their travel experience and quality of life [14]. Many of these incidents
are under-reported to the authorities, thus lowering the probability of this problem being accurately
reflected in urban and transport planning [15]. The reasons include entrenched gendered power
hierarchies and the lack of robust information about women’s needs.

The ubiquity of mobile phones has allowed people to express their opinions and daily experiences
on social media platforms, creating a vast source of unstructured data on implicit user satisfaction.
We propose that social media data may complement surveys and other methods. In particular, in this
study, we analyze gender differences in transport perception through the analysis of posts on Twitter.
We hypothesize that, if gender influences travel experience in any way, this should be reflected by a
difference in the linguistic components of the texts published in social media. Measuring the perception
and its potential gender differences is a challenging task due to the unstructured data and the informal
nature of social media.

The research question that drives our study is: How can we measure the gender differences in
transport perception presented in social media? To answer this question, we develop a three-step
process to analyze transport-related opinions expressed on social media platforms. First, we infer
gender for user profiles, which is not directly available on micro-blogging sites. Second, we extract the
latent structure from the discussion using a topic modeling approach [16,17], which allows to separate
the personal experience (e.g., feelings about a specific trip by bus) from the general discussion (e.g.,
opinions on public transport policy). Finally, we quantify perception and its differences with respect to
gender with an analysis grounded on psycho-linguistic theory, which allows us to study the affective
and relative aspects of transportation revealed by users.

With this methodology, we study the Twitter transport perception in Santiago (Chile) during
2017–2018. We chose Chile as it has been the most connected country in Latin America since 2017 [18],
and Santiago as it is the largest city in Chile, with a population of 7 million people. Santiago also
poses a wide offer of transportation modes, including metro, bus, taxi, shared taxi, public bikes,
and several ride-share apps for cars, scooters, and bikes. We chose Twitter as it is one of the most
accessed applications from mobile phones in Santiago [19].

The main contributions of this work are two-fold. The first contribution is a methodology to
analyze the discussion about transportation in social media, with a focus on gender differences.
This contribution could help data scientists to extract new applied insights from already available
data. The second contribution is a case study of measured gender differences, using Twitter data
from a big city. These contributions could help urban planners to widen their understanding of how
different groups of people experience one of the most recurrent daily activities, transportation, using a
promising data source in planning for sustainability: social media [20].

This paper is structured as follows. Section 2 presents the related work about social media
analysis and transportation experience measurement. Section 3 introduces the data and the proposed
methodology for measuring gender differences in transport perception using social media data.
Section 4 shows the results for a case study in Santiago, Chile. Section 5 presents the implications and
main limitations of this work, as well as future work. The conclusions are given in Section 6.

2. Related Work

There are two main areas of research related to this work: Social Media Analysis and
Transportation Experience Measurement. Here we discuss both in relation to the contributions of
this work.
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2.1. Social Media Analysis

In the field of Social Media Analysis (SMA), we identify three sub-areas relevant for this work:
demographic analysis, sentiment analysis, and topic modeling.

Demographic analysis is essential, as social media platforms are not representative of the entire
population in terms of age, gender, and socio-economic status [21]. Data obtained from this type of
source cannot be generalized, although it is possible to de-bias the results from the analysis by using
census data and specific methods [22]. In our work, we put the focus on gender, a specific demographic
attribute of user profiles. Since this attribute is not always explicit, researchers need to infer them using
machine learning methods [23]. Then, we analyze each group in separate, meaning that even if there
are imbalances in the analyzed population groups, the insights regarding each gender should not be
affected by this imbalance.

Sentiment analysis is the measurement of polarity in text, mainly between negative, neutral,
and positive [24]. Methods to extract polarity commonly start with a subjectivity lexicon of words that
are associated with positive and negative feelings [25], which are then used to train a classifier [26].
Note, however, that the sentiment in a text may go beyond being positive or negative. Other approaches
take into account the multidimensional aspects of speech. To the extent of our knowledge, the most
common is Linguistic Inquiry and Word Count (LIWC) [27], which includes multiple emotions and
other topical dimensions of expression such as psychological and cognitive components. LIWC usage
with social media data includes predicting postpartum changes in emotion [28], identifying health
issues [29,30], and predicting political sentiment [31]. Our work is based on LIWC as a proxy of
perception in transport (instead of other issues or themes), as it is available in Spanish (the language
we analyze) and it has a proven track record in analyzing perception in different issues.

Topic modeling is a family of approaches to extract thematic clusters from unstructured collections
of text. In the case of social media, this refers to inferring the several themes, or topics, that people
discuss. The most well-known methods are Latent Dirichlet Allocation (LDA) [32] and Non-Negative
Matrix Factorization (NMF) [33]. Both methods infer latent topics in text, where words and documents
are associated with these topics in a quantifiable way. LDA follows a generative approach, aiming at
finding the most likely word and topic distribution given the text under analysis. NMF decomposes
documents (or arbitrary objects represented as a non-negative matrix) into the sum of its latent parts.
When choosing one method over the other, the task to be solved needs to be considered as well as the
type of text. In short texts (which are commonly found in Twitter), NMF and its variations tend to
exhibit topics of better quality [34]. In similar contexts to ours, NMF has been used to characterize
urban areas according to their tweets [35], to infer political leaning of words and user profiles [36],
and to separate the several topics related to depression discussion [37], among others. A potential
limitation in this area is that latent topics are not always interpretable. To guide the topic extraction
toward a predefined set of human-interpretable topics, a semi-supervised method can be used [38].
In topic modeling, these methods require modelers to label a fraction of the dataset, where labels may
be applied to documents (such as Labeled-LDA [39]) or either to documents or keywords, such as in
Topic-Supervised NMF (TS-NMF) [16]. Here we use TS-NMF due to its direct formulation, as well
as its precedents in being used jointly with LIWC to characterize perception in at least two thematic
discussions: migration [40] and mode of transportation usage [41].

2.2. Transportation Experience Measurement

The concept of transport perception can be defined as the social value of the transport experience,
while transport service quality can be considered as the sum of the users perceptions of that experience.
Transport perception is generally estimated focusing on quality related factors such as accessibility,
cost, frequency, reliability, comfort, and safety or through the measurement of subjective well-being.
Although the mobility decisions of users of public transportation are assumed to maximize utility and
satisfaction [42], transport perception has been proven to directly influence future user behaviour [43].
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Some studies involving quality related factors include the creation and application of surveys
which explicitly ask to participants to rank factor importances [44–49], and the generation of
models to measure the the overall satisfaction considering factor contributions [50–55]. Many
studies have attempted to identify peculiar characteristics of subpopulation groups on travel
perception and behavior. These include defining traveler profiles based on the disaggregation of
behavioral, socio-economic and psychosocial variables that map common attitudes, perceptions,
and experiences [56]; the differentiation of different periods of the day (holiday or non-holiday)
and visitor profile (tourist or non-tourist) [57]; the usage of mode of transportation also shapes
experience, as socio-economic characteristics alone do not explain travel patterns [58]; women place
more importance on factors such as road safety and punctuality regarding perception of quality for
interurban bus services [59]; and finally, there is a potential of mutual influence between attitudes and
behavior over time [60].

The aforementioned works imply that analyzing the experience and its perception is no easy task.
However, methods to measure perception are arguably standardized. The study of transport perception
through the measurement of subjective well-being is based on Satisfaction with Travel Scale (STS) [61].
This scale considers both cognitive judgement (self-reported ratings) and affective judgement of
satisfaction (duration and intensity of affects during a given time span) to measure perception. A study
on travel and time use on subjective well-being proved accessibility in transportation as a key factor
towards improving the quality of life of women [62]. This further highlights how transportation
analysis should consider the particular gender barriers in the access to the city [63].

The role of social media in transport analysis has rapidly grown over the last years, allowing the
ability to obtain information regarding trips [64] and activities [65], while highlighting the benefits
of using these unstructured data sources [66]. There are a few approaches to understand transport
perception using this data source: in our literature search, we found a descriptive analysis of public
transport perception from tweets in the city of Chicago [67], the monitoring of malfunctions in public
transport in Madrid [68], the analysis of satisfaction with public transport in Santiago [69], and the
public transport opinion (in terms of polarity, from negative to positive) in Nanjing [70]. Our work can
be seen as a deeper analysis of the travel experience than these previous works, which are primarily
focused on the polarity of messages, without considering gender differences nor more nuanced
perception categories. This awareness of travel experience differences could allow transportation
planners to consider a wider range of needs and dynamics into their work, beyond the needs of the
business, complementing traditional data sources with fine-grained data.

3. Data and Methodology

In this section, we describe the dataset and methodology used to answer our research question.
The context is the discussion about transportation from the city of Santiago, Chile. This discussion is
contained in a collection of messages from the micro-blogging platform Twitter.

3.1. Social Media Dataset

Twitter is a micro-blogging platform that allows people to publish and exchange posts up to 280
characters, called tweets. Tweets may contain mentions to other users, hashtags to indicate topics of the
post, website addresses, emoji, etc. Given that it is one of the most accessed applications from mobile
phones in Santiago [19], we expect that people will frequently report their daily experiences, including
transportation. We collected tweets related to transportation from the years 2017 and 2018. We used a
manually crafted dictionary of keywords to query the Twitter streaming Application Programming
Interface (API). The list contained transportation-related words, hashtags, mentions of transportation
accounts, URLs, and transportation emojis. Samples of these query terms can be found in Table 1.
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Table 1. Samples of keywords used to crawl transportation tweets. In parentheses, translations
or explanations.

Sample Keywords

bus stop (paradero) easy taxi (ride-hailing application) gas (bencina)
ride bicycle (andar en bicicleta) panne (to run out of gas) fare meter (taxímetro)
@uber_chile (ride-hailing application) @mfc_oficial (bike organization)
@cabify (ride-hailing application) train (tren)
bus-only lane (corredor de buses) @metbus (bus operator) #baquedano (metro station)
waze (GPS, route application for cars) bike (bici) subway station (estación de metro)
@autop_central (highway operator) wagon (vagón)
highway (autopista) #electricalbuses (#buseselectricos)
#publictransport (#transportepublico) bus

In total, we collected 443,000 tweets from 112,000 users living in the Santiago Metropolitan area.
A manual inspection of these tweets showed several themes within transportation, e.g., complaints
mentioning the subway service provider, announcements of new bicycle paths, and general complaints
about the size of the children safety chairs in cars (see Table 2 for example tweets).

Table 2. Sample tweets from our dataset. The original tweets are in Spanish, we have translated them
here for clarity.

Quote # Tweet

1 @metrodesantiago An escalator breaks and the whole line is down? Over an hour from Macul to
Tobalaba

2 Recognize and locate the new bike lanes that @Muni_Stgo is implementing. Plan your mobility this
#march

3 In conclusion, if you have 3 children under the age of 9, you must change your car for a 3 row van!!
#semana24

4 @metrodesantiago the smell of tobalaba station is very toxic, please put masks on the poor people
who work there all day

5 There are way too many uber drivers who don’t know Santiago

6

@sebastianpinera @metrodesantiago @GloriaHutt @MTTChile @J_LDominguez @louisdegrange
And the humiliation of subway drivers? Any public apology? Very unfortunate comment
@sebastianpinera minimizing the work of the drivers of @metrodesantiago . . . Do you do your job
well? To a part of the population, not less, it also seems little. Remember it.

7 @mbachelet L3 I look forward to it

8 @Transantiago thanks!!! :)

9 @UOCT_RM How are the traffic lights now?, I have to go to the O’Higgins park from Quinta normal

10 @Transantiago bus line 223 took 40 min to get to pb114 stop this always happens in the evenings!
terrible

11 All traffic returned to Santiago of Chile.

12
Las Condes will saction street harassment @TroncoTorrealba I hope Vitacura will also implement
this! I say it because for months I walked scared across Bicentenary Park (part of my travel route)
where I was harassed by a man who parked cars.

13
@valderrax Do you think street harassment does not exist? Eg I was riding a bicycle and a guy told
me: I would like to be the saddle to have my face in your ass. Is that an unfortunate phrase? and
isn’t it harassment? Doesn’t it affect my freedom?

14 20 min between my office’s door to the exit of National Stadium station. I LOVE YOU LINE 6 OF
@metrodesantiago

15 Again buses 425 won’t stop after 00:00 hrs. What’s going on? Don’t you oversee? I’m angry.
@Transantiago @DTPMet @AlsaciaExpress

The weekly publishing rate of those tweets is not uniform in time; on the contrary, people react to
certain events. The periods with most volume have identifiable events related to transportation, but
not necessarily to the transportation experience. Topics include public transport service shutdowns,
malfunctions, and massive power outages, among others (see Figure 1). The daily frequency also
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changes from day to day, as more tweets are published during business days than on weekends (see
Figure 2).
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Figure 1. Transportation tweeting frequency during the years 2017 and 2018. Periods with zero tweets
correspond to shutdowns in the tweet collection program.
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Figure 2. Average number of tweets per day of the week with a 95% confidence interval.

The hourly frequency distribution exhibits morning and evening peaks related to commuting
times in Santiago (see Figure 3). It does not resemble the general usage of the application in the city [19].
For instance, during lunch hours, people tweet less about transportation.
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Figure 3. Average number of tweets per time of day with a 95% confidence interval.

With this data set, we sought to answer our research question on understanding gender differences
in transport perception. Next, we explain our methodology. It is composed of three main steps (see
Figure 4 for a schematic diagram): (1) user profiling used to infer gender, (2) inference of transportation
topics in the discussion, and (3) measurement of perception with gender differences.
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Figure 4. Schematic diagram of the proposed methodology.

3.2. User Profiling

In Twitter, user profiles contain the following attributes used in our study: an id (a unique number
for each user), a full name (freely reported), a description (usually used as biography), a location
(freely reported), and the number of tweets. Although Twitter requests such information, these fields
are not mandatory, and can be filled with fictional data. For instance, a user could decide to write
a fictional place (e.g., Wonderland) as their profile location [71], use a fantasy name, or no name at
all. In this step of the methodology, we inferred gender (binary) using the available user attributes
and published content by using information provided by some users—whom we could identify as
residents of Santiago, with a specific gender—to predict the attributes of others.

To predict these attributes we used XGBoost [72], a gradient boosting classifier based on decision
trees. Our approach was based on the idea of using profiles that self-report their attributes to train a
classifier, and then to propagate attribute labels to the rest of the data set [23]. In order to classify these
attributes, we characterized each user through a set of features, which included:

1. The content published in his/her/their tweets, separated into terms, where a term may be a
word, a hashtag, an emoji, an URL, or an n-gram (i.e., n single terms that appear consecutively).
Not all terms appear on the feature matrix, as there were many terms that were not relevant for
the task at hand, such as lexical errors. Hence, we discarded terms that were used by fewer than
50 users (determined through manual exploration).

2. The content published in his/her/their biographies, separated into terms (in the same way as
tweet content). Here, we use a minimum threshold of five users for each term (determined
through manual exploration).

3. The profile information, which includes time-zone, the home page link, and the use of specific
words related to commonly discussed topics (sports, religion, TV, etc.).

4. The interactions with other profiles through replies, retweets, and quoting other tweets.

Using these features for users, a classifier may learn that specific language cues, interactions,
words in profile description, among other characteristics, have predictive power.

Next, we identified which users self-reported demographic attributes in their profiles. Gender
may be revealed by displaying a typically gendered name in the profile [73], and location may be
disclosed by mentioning where a user lives in the profile [71]. The set of users that we could label
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though these simple measures were the training sets for the XGBoost classifiers, one for gender and
one for location. Note that we used the location classifier just to discard users from the data set that
belonged to non-relevant locations in the study.

Once a classifier was trained with profiles that self-disclosed their attributes, we proceeded to
predict those attributes for the rest of the dataset, enabling us to have demographic attributes for all
users. Note that XGBoost included prediction confidence (where 1 is maximum confidence), and thus,
we only kept users with a minimum confidence of 0.7 (determined by manual exploration). Technical
details about this classification process can be found in Ref. [74].

3.3. Topics in Transport Modeling

Some users may comment on their daily experiences, positive or negative. Other users participate
in the political discussion of transport, giving their opinion on the subject. This work will focus on
classifying transport discussion into two main topics: personal experience and general discussion.

Given that the text from Twitter is unstructured, the task at hand required a method to infer the
latent structure that separates both aspects of content. We resort to topic modeling methods to achieve
that aim. Particularly, we used Topic-Supervised Non-Negative Matrix Factorization (TS-NMF) [16],
which has been used successfully in our previous work to infer the main mode of transportation of
Twitter users [41], as well as mobile phone users [17].

Topic modeling techniques require a parameter with the number of topics, i.e., the number of
latent dimensions in the structure inferred by the model. In general, because these topics are latent,
they do not always align with human interpretation. The TS-NMF method is semi-supervised, which
means that each latent dimension can be guided toward a specific meaning. A set of terms can be
pre-labeled with their association to one or more topics, two in our case study. Then, the model guides
the topic extraction process by aligning the obtained latent topics with the input information.

TS-NMF works by decomposing a known matrix D into the multiplication of two lower-rank
matrices W and H of rank k. The supervision matrix L contains the available labels for user-documents
(i.e., rows of X). The W and H matrices are found by solving the following optimization problem:

min
W≥0,H≥0

||D− (W ◦ L)H||2F, (1)

where || · || is the Frobenius norm, ◦ is the Haddamard product operator, k represents the number of
topics, W represents the relevance of each topic in each document, and H represents the relevance
of each term in each topic. The matrix L contains the subset of terms categorized into a topic, where
each row is a term, and each column is a topic, and a cell value of 1 indicates association to the
topic. (An efficient Python implementation of the TS-NMF method is available at https://github.com/
Vokturz/tsnmf-sparse).

In our context, k = 2, and D is a term-user matrix, where each cell contains the weighted number
of times the corresponding user published a tweet with the corresponding term. The weight is
estimated using Term-Frequency–Inverse-Document-Frequency (TFIDF) [75], which measures how
important a word is to a document in a collection or corpus. We apply TFIDF to D to give more weight
to words that are less frequent in the data set, but that may be relevant for each discussion topic.
The matrix L contains the subset of terms categorized into personal experience and general discussion.
See Figure 5 for an overview of this approach.

After applying the TS-NMF method, we obtained two matrices, one with the association of users
with the topics of discussion, and one with the association of terms with the topics of discussion.
We assigned each user to a specific discussion group by estimating the maximum topic association.
Users with a max topic score lower than 0.8 were discarded from the analysis due to being hard to
classify (the threshold was determined via manual exploration).

https://github.com/Vokturz/tsnmf-sparse
https://github.com/Vokturz/tsnmf-sparse
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Figure 5. Depiction of the Topic-Supervised Non-Negative Matrix Factorization technique.

At this stage of the methodology, for each user we knew his/her/their gender and main topic
of discussion.

3.4. Transport Perception Metric

Once users had demographic attributes and the discussion was divided in two topics, the next
step was to measure perception in each discussion. To do so, we followed a lexical approach,
because language style can be an indicator of the subjective way in which people understand
themselves and the different situations they take part in. Particularly, we used a well-known dictionary
approach based on the psycho-linguistic dictionary named Linguistic Inquiry and Word Count
(LIWC) [27], which is designed to capture emotional, cognitive, and structural components present
in speech. LIWC defines several categories and words belonging to these categories. The frequency
of word usage is assumed to be a proxy of how these categories are related to who is performing
the speech. As relevant categories for our study, we considered affective processes such as anxiety,
anger, and positive feelings; relativity notions of time and space; and usage of certain words such as
cursing, or sexual language (see Table 3 for examples of words from these categories). For this project,
we updated the original dictionary to include Chilean slang, e.g., weón (dude, in swearing), agarrón
(grab, in sexual language), and taco (traffic jam, in space).

Table 3. Linguistic Inquiry and Word Count (LIWC) term samples. The terms of the LIWC categories
reflect cognitive processes such as emotions, and aspects related to transport.

Category Sample Terms

Anger damn, assaulted, run over, aggressiveness, shit, threaten, motherfucker
Anxiety riots, sorrows, scandalous, miserable, insecurity, worry, intimidation, dangerous
Positive Feelings care, good, smile, want, applaud, happy, incentive, humor, wish, admire
Time stopped, start, semester, minute, tip, june, late, season, we finish, start
Space block, blocks, small, interior, region, zones, moving forward, base, through
Sexual sexually, ass, sexual, naked, butt, darlings, fags, grabbed, rape
Swear crest, assholes, faggot, asshole, fuck, shit, damn, motherfucker



Sustainability 2020, 12, 5405 10 of 21

We refer to our selected categories as perception categories, because they are proxies of how
people perceive the transportation experience and the general discussion. The perception of users is
represented in a Perception Matrix P using the LIWC dictionary, such that:

P(i, c) =
# of times user i has used words from category c
# of words used by user i in any LIWC category

, (2)

where c is the perception category of interest, i is a user id. In this way, P contains emotional and
contextual cues of how users feel regarding transportation, according to the frequency of words in
perception categories. This matrix is divided into subgroups for the next step. For instance, two
sub-matrices can be defined according to the most associated topic of users, PT (subset of P with
users associated with personal experience) and PG (subset of P with users associated to general
discussion). Four sub-matrices can be defined according to that definition, this time separating each
group by gender.

Following previous work on perception in Twitter [76], we define the Transport Perception Metric
(TP) of user i in sub-group S (e.g., S is one of PT or PG) for category c as:

TP(i, c) =
S(i, c)− µ(Sc)

σ(Sc)
, (3)

where µ(Sc) is the mean of column vector Sc, and sigma(Sc) is the standard deviation of column vector
Sc. In summary, TP is a standardized measure of how each user in a subgroup expresses each category
in relation to the rest of users in the same group.

Considering the previous definition of TP, we define the gender gap in perception as the difference
in TP in a category c for a given discussion group S as:

GAP(S, c) = TP(S f , c)− TP(Sm, c), (4)

where S f is the group of women users in S, and Sm is the group of men users in S. As result, GAP tells
us if the tendency of using a specific perception category in a group is more skewed towards women
(GAP > 0) or men (GAP < 0). The GAP metric allows us to calculate the gender differences in each
perception category, it provides answer to our research question.

In summary, by following this methodology, it was possible to infer users’ attributes, identify
topics of discussion in transportation, estimate their perception in the discussion, and measure the
gender differences of these perceptions. In the next section, we applied this methodology to tweets
describing transportation in Santiago.

4. Results

In this section, we present the results of a case study of transportation tweets in Spanish from
Santiago, Chile. The main goal is to characterize the gender differences in transport perception as seen
on Twitter.

4.1. Demographic Classification

First, we report the results on demographic classification. To assess the prediction of gender, we
evaluated the classifier with 5-fold cross-validation. The average precision is 0.712, a value that is
below the state of the art of 0.967 [77]. To maintain the quality of the results, we only considered users
that were classified with confidence. Note that our classifier relied on self-reported demographic found
in users profiles, while the state of the art classifier had a more vast training set than ours, including the
profile image of each user. We manually explored the dataset and found no relevant errors in gender
prediction. Gender was determined by the usage of gendered-words in the biography, such as mom,
engineer (man), and lawyer (woman); use of emoji, and the mention of words belonging to causes
and sports (see Table 4). We classified 35% of users as women, and 65% as men. Comparing with
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the Chilean population, we found that 11 women and 20 men were present in our dataset for every
1000 inhabitants. Two-thirds of users talking about transportation were men. The over-representation
mirrors previous studies of demographic on the social platform [78,79].

Table 4. Gender classification metrics: precision and recall, and the top predictive features identified
by the classifier.

Precision Recall Top Predictors

Gender
Classification 0.712 ± 0.02 0.706 ± 0.02

profile:# of emojis, profile:mother (madre), profile:mom
(mamá), profile:engineer (man, ingeniero), [words regarding
political causes], profile:lawyer (man, abogado), [words
about sports], profile:in love (woman, enamorada),
profile:woman (mujer), profile:teacher (woman, profesora),
profile:teacher (man, profesor), profile:chilean (man,
chileno), profile:lawyer (woman, abogada), profile:crazy
(woman, loca), profile:engineer (woman, ingeniera)

4.2. Topics in Transportation Discussion

Next, we proceeded to infer the topic structure. As the first step, we built the labeling matrix L
using a set of manually crafted seed terms. See example terms for each topic in Table 5.

Table 5. Sample keywords used to guide the topic modeling of transportation discussion.

Topic Sample Keywords

Personal Experience
bus, subway (metro), #line5 (#linea5), , @metbus, bicycle, @bikesantiago, #ipedal,

, highway (autopista), taxi, wazers (community of Waze users), #vespuciosur (a
highway in Santiago), cabify (a ride-hailing application)

General Discussion

#census (#censo, population census in 2017), #chileelections, (#eleccioneschile,
national elections), #chilevotes (#chilevota, national elections), @maratonsantiago
(a sports event) #bienvenidos13 (a TV show), #lacooperativa (news media
hashtag), @elmercurio_cl (news media), @adnradiochile (news media),
@mop_chile (Ministry of Public Infrastructure), @mtt_chile (Ministry of
Transportation), @paolatapiasalas (Ministry of Transportation), @marcoporchile
(politician), @danieljadue (politician), @camaradiputados (Chamber of Deputies)

Regarding personal experience, we assumed that people would mention specific terms such as
station names, transport operators support accounts, highway names, ride-share apps like Uber or
Cabify, and terms related to cycling and walking (see Quotes 4 and 5 from Table 2). For the general
transportation discussion, we expected to identify users that discuss specific events, comment on
publications from media outlets, send tweets directed to politicians, or comment about transportation
policy, among other themes (see Quotes 6 and 7 from Table 2 for sample tweets).

To assess the accuracy of the topic modeling method, we manually labeled a set of 389 users
classified under each topic (see Table 6 for performance metrics). The precision in personal experience
was 0.93 (with recall of 0.64), whereas the precision in general discussion was 0.40 (with recall of 0.83).
The experience topic was correctly predicted; however, there were personal experience users that
were being classified into general discussion. This was not bad per se, as our focus was the transport
experience. To qualitatively explore how the topic extraction worked, we calculated a tendency
value for each term in the dataset, defined as the difference between topic associations for each term.
Figure 6 shows word clouds of terms with the highest tendency for each topic. Personal experience
terms belong mostly to public transportation (subway—metro, line—línea–, @metrodesantiago) and
often also conveyed part of the interactions between service providers and users (see Quote 8 from
Table 2). They often referred to the functioning and availability of the system, with words such as
working (funciona), available (disponible), problems (problemas), service (servicio), and thank you
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(gracias). Meanwhile, terms related to general discussion consisted mostly of mentions of politicians
and service administrators (see Quote 9 from Table 2), as well as media outlets (@biobio) and politicians
(@sebastianpinera, president of Chile).

Table 6. Manual evaluation of the topic model.

Topic Precision Recall F1-Score

Personal Experience 0.93 0.64 0.76
General Discussion 0.40 0.83 0.54

(a) Personal Experience (b) General Discussion

Figure 6. Word clouds of the most associated terms to each topic of transportation.

The frequency of tweeting among topics showed resemblance to the general tweeting frequency,
where transport discussion was higher during the weekdays to decrease over the weekend (see
Figure 7). The relationship between both topics, in relative terms, was maintained during the
whole week.

Mon Tue Wed Thu Fri Sat Sun
Day of the Week

200

400

600

800

1000

# 
Tw

ee
ts

General Discussion
Personal Experience

Figure 7. Tweet frequency per day of week, by topic of interest.

With respect to gender, a difference appeared in the distribution per topic. In general, men
represented a larger portion of both topics, and participated more in the general discussion, which
means that men used Twitter as a platform to express their opinions on politics, event discussion,
among others. We expected a majority of Twitter users to be male due to the relative demographics of
the population in Chile, and therefore even topics more likely to be gendered towards women have
an greater representation by male users [80]. However, in proportion, women appeared to talk more
about their daily experiences when referring to transportation (see Figure 8).

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Users

General Discussion

Transport Experience female
male

Figure 8. Distribution of users per topic of transportation and gender.
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4.3. Transport Perception

Following our methodology, the next step was estimating transport perception using LIWC
categories in each discussion topic. As an exploratory analysis, we estimated the correlations between
each category in the perception of users as defined in matrix P (see correlation matrices in Figure 9).
The correlation between two different categories could help us understand the interactions between
each of them. Time and space had a negative correlation in both personal experience and the general
discussion of transport. This may be due to users only referring to one relative component in general,
probably the one with the greatest personal importance. In that sense, time and positive feelings
correlated negatively, which implies that users did not often express themselves positively while
referring to travel times (see Quote 10 from Table 2). On the other hand, the general transport
discussion had its focus on the space-related component. This can be caused by users commenting on
the design or planning of transport, commenting on vehicle congestion, or the little space inside the
train or bus cars, among other things (see Quote 11 from Table 2).
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Figure 9. Matrix of significant correlations between Perception categories for the Personal Experience
topic. All correlations are significant (p < 0.05, corrected using the Holm–Sidák method)

Regarding emotional components, the use of words related to anxiety and anger were positively
correlated in the personal experience topic, which was an expected result when people experience
uncertainty in their travel. Positive feelings were negatively correlated with the space component for
the personal experience discussion, perhaps related to the discontent users experience when they do
not have enough space. Swear words were positively correlated with anger for both topics, an arguably
expected result.

Then, we proceeded to estimate the differences with respect to gender in the overall discussion
(see Figure 10). We found that women showed greater use of positive and anxious words, while men
used more swear words. Other insights also emerged, with women using more words related to time,
and words from the sexual category (See Quotes 12, 13, 14, and 15 from Table 2). Evidence showed that
time played an important role in the experience of women and their interaction with transportation.
There was also greater use of words in the sexual category depending on the time. These results are
consistent with previous results on the issue [81].
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Figure 10. Gender gap in perception.

Finally, we estimated the differences in perception by gender for the two topics of discussion.
Women expressed anxiety and positive feelings more frequently than men, in both dimensions of
transport, skewing more to time. They also use sexual-related words, likely participating in the
discussion about harassment. This indicates that while harassment was something they experienced
on a daily basis, it was seen as a systemic problem within transportation, which was also discussed from
the approach of politics and planning. There were no differences in anger on the general discussion,
but women expressed more anger in reference to their transportation experience, implying that there
were aspects of transport where users did not feel satisfied. In addition, women used more words
related to time when talking about their personal experience, which indicated the relevance of this
factor. We validated these results following a null model approach, where we estimated 1K tests
shuffling the gender attribute of profiles. Figure 11 shows the comparison between the distribution of
observed values (Effect Model, with distribution estimated using bootstrap sampling with replacement)
and the null model.

0.1

0.0

0.1
General Discussion

anger anx posfeel time space sexual swear
0.05

0.00

0.05

more used 
by men

more used 
by women

GA
P
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P

*: p < 0.05, **: p < 0.01, ***: p < 0.001

*

* ***

**

*** ***

*** *** ***
Transport Experience Effect Model

Null Model

Figure 11. Boxplots of the GAP distributions per gender, topic, and perception category. Each plot
contains the observed distribution (estimated with bootstrap sampling) and the null model (estimated
with feature permutations).

5. Discussion

The main aim of this paper was to design a methodology to measure the gender differences in
transport perception as seen on social media platforms. We measured the gender differences across
seven perception categories: affective processes (anxiety, anger, and positive feelings), relativity notions
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(such as time and space), and the use of words associated with cursing or sexual issues. In particular,
we conducted a case study of gender differences in perception in micro-blogging messages from
Santiago, Chile. Here we showed that both genders express differently. On the one hand, female users
write about their emotions regarding travel (both positive and negative feelings). On the other hand,
male users use more slang, making it difficult to interpret emotion. The most notable difference is
related to female sexual-related harassment, not only on transportation, but also on the public space.
This may indicate that women are more exposed to sexual harassment in transportation, a situation
reported in other big cities in Latin America [14].

Overall, we believe that data obtained from social media can complement traditional information
gathering methods, overcoming restrictions such as time and cost, while also allowing for previously
unseen granularity of data. In this context, here we discuss the implications, limitations, and future
work derived from this paper.

5.1. Comparison with Previous Works

A previous study on gender differences in language use has shown that women often tend to
express anxiety or positive feelings more frequently, with no differences in anger word usage [81].
However, for the personal experience discussion, women showed significantly more anger in their
publications, proving their dissatisfaction with their journey experience. At the same time, women also
referred more to time while talking about their personal experiences, which is consistent with previous
studies on the perception of quality factors in which women place a high emphasis on punctuality in
transportation systems [59]. The most significant gender difference is related to harassment to women,
not only on transportation but also on the public space. Both issues are consistent with recent studies
in Latin American cities [82].

Our results contradict previous assessments of sentiment toward public transport in Santiago
de Chile, where it was found that most messages regarding transport experience were negative [69].
From a dataset point of view, both approaches are not directly comparable, as the referenced study
focused on tweets about bus stops and bus routes, which may prompt adverse reactions when
published on the go. From a methodological point of view, the study did not consider differences
concerning gender, which may influence results considering the over-representation of men in
Twitter [21,80]. Addressing this disagreement could be done by defining more specific topics in
future work.

5.2. Implications

Social media analysis enables the identification of significant gender differences in the transport
experience. Historically, these differences have been hidden due to the consideration of the “average
user” in transportation. This identification of differences may be helpful for service providers and
policymakers, not only in terms of management and planning, but also to improve accessibility of the
public transportation with a gender perspective, in line with the Sustainable Development Goals by
the UN, which aim to make cities more inclusive for all.

Service providers could track the most used terms to refer to transportation on their social
networks, and study their occurrence based on events, time or characteristics of their users. Our
method would allow them to highlight particularities that a survey or a traditional method fails
to show.

Another benefit of having gender indicators is that it makes it possible to monitor the situation
of women in transport. It allows evidence-based decisions to be made by policymakers to design,
formulate, monitor, and evaluate interventions effectively. We focused our analysis on Santiago,
Chile, however, harassment in the public space and transportation is a common problem in Latin
America, thus, our work could be generalized and applied to other cities such as Quito, Buenos Aires,
among others [82].
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5.3. Scope and Limitations

Critics may point out three aspects that scope the reach of this work: representativeness,
geographical coverage, and methodological points of improvement.

First, we measured and compared transportation discussion with respect to gender, however,
there are also other population groups with special needs, such as children and the elderly. Including
them in this kind of study is not just a matter of adding categories to the demographic classifier,
as these groups are also under-represented in social media in general. This aspect does not hinder
the insights obtained: as long as it is made clear who is represented by the study, then insights are
valuable and actionable.

Second, the lack of geographic information prevents us from comparing different sectors of
the city, which may be crucial for transportation discussion. For instance, comparing the wealthier
part of the city with deprived sectors may reveal different emotional patterns with respect to the
transportation experience.

Third, our methodology can be deepened in several steps. For instance, users are assigned to
their most associated topic, whereas a more advanced alternative would be to assign weights to topics.
The consideration of the temporal aspect of discussions is also needed, as it would allow answering
questions such as “what is the time of the day perceived as more safe/dangerous for women?” Still,
our work has proven that it is possible to move in this direction. We leave these advancements to
future work.

5.4. Future Work

In addition to address the limitations of this work, we devised two main lines of research:
visualization and bias mitigation. Our current results provide insights regarding the transportation
discussion, with identified implications for two types of stakeholders. However, it is not clear how to
actually transfer those insights to these stakeholders in a meaningful way. Visualization has been a
successful medium to communicate between data scientists and transportation experts, particularly
in scenarios of solving transportation problems with non-traditional data sources and methods [83].
Finally, social media data is not considered a representative source of population information [21].
Several access gaps to technology, plus the different algorithmic and systemic biases in operation
in these scenarios, imply that designing and implementing bias mitigation strategies are needed,
especially if the insights derived are planned to be used in decision making and policy design.

6. Conclusions

In this paper we quantified the gender differences in perception of transportation from a two-fold
perspective: the personal experience of transport, and the general discussion around it. The usage of
social media data, particularly from Twitter, which is not used traditionally for these issues, analyzed
with methods from machine learning and psycho-linguistics, proved fruitful in finding topic- and
gender-specific insights.

If these differences are taken into account by relevant stakeholders in city planning and
management, policies could be implemented that help eliminates gender gaps in terms of access
to work, education, opportunities, and above all, equal access to the opportunities a city has to offer,
in line with the Sustainable Development Goals. Future work should address methodological aspects
of our proposal, but also communication and transfer strategies to ensure its adoption in planning,
complementing survey-based information, making visible critical problems that are hidden in these
traditional instruments.
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