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Abstract: Honey is a natural sweet substance produced by honeybees from the nectar of
flowers, plant secretions or plant-sucking insect excretions. Sugars and water constitute the major
components, other minor components characterize the organoleptic and nutritional properties. To date,
Salento (Apulia region, Italy) honey production is considerably threatened due to the suggested use
of neonicotinoids in order to control the insect-vectored bacterium Xylella fastidiosa (subsp. pauca).
Metabolomics based on Nuclear Magnetic Resonance (NMR) spectroscopy was used to describe, for the
first time, the composition of honey samples from different Salento producers. Exploratory Principal
Component Analysis (PCA) showed, among the observed clustering, a separation between light
and dark honeys and a discrimination according to producers, both further analyzed by supervised
multivariate analysis. According to the obtained data, although limited to small-scale emerging
production, Salento honey shows at the molecular level, a range of specific characteristic features
analogous to those exhibited by similar products originating elsewhere and appreciated by consumers.
The impact on this production should therefore be carefully considered when suggesting extensive
use of pesticides in the area.

Keywords: honey; spectroscopic fingerprint; metabolomics; nuclear magnetic resonance (NMR);
multivariate statistical analysis

1. Introduction

Honey is a natural sweet substance produced by honeybees from the nectar of flowers,
plant secretions or plant-sucking insect excretions (honeydew honey). Botanical and geographic
origins determine both sensory properties (colour, flavor, and texture) and physicochemical parameters
(viscosity and crystallinity) of this product [1]. Honey is one of the most complex natural foods
and it is considered the only sweetening agent that can be used by humans without processing [2].
Sugars constitute the major component (95% of dry weight) responsible for the energy value of honey:
two monosaccharides, fructose, and glucose are the dominant constituents [3]. Besides the two main
sugar components, honey contains about 25 oligosaccharides (tri- and tetra-saccharides). Several studies
reported the characterization of the carbohydrate profile of honey [3,4]. Water is the second most
abundant honey constituent (12–23%). Other minor components such as organic acids, minerals,
vitamins, enzymes, proteins, amino acid, and volatile and phenolic compounds characterize the
organoleptic and nutritional properties of honey [5]. Besides the high nutritive value, minor components
are also responsible for the healthy properties of honey such as antibacterial, anti-inflammatory,
antioxidant, and immune system-stimulating activities, as reported in the literature [2,6]. Many factors
such as geographical, botanical or floral origin, together with climatic and seasonal variations,

Sustainability 2020, 12, 5009; doi:10.3390/su12125009 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-0085-8539
https://orcid.org/0000-0003-3073-5772
http://dx.doi.org/10.3390/su12125009
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/12/5009?type=check_update&version=2


Sustainability 2020, 12, 5009 2 of 18

influence honey chemical composition and quality [7]. Moreover, other external factors such as the
environment, honey treatment methods, and storage conditions used by beekeepers as well as possible
deliberate adulteration should also be taken into account [8]. According to the current standards
of the Codex Alimentarius [9] and the European Union (EU) [10], several physical and chemical
measurements are required for honey quality control, all very important for honey producers, the food
industry, consumers, and regulatory authorities. To date, several different botanical varieties of honey
are available on the market, namely, monofloral or polyfloral, with strong differences in composition
and physical, chemical, and organoleptic characteristics [11,12]. Honey colour strongly depends
on its age and the kind of flowers that supplied the nectar to the producing bees. Honey colour
is also related to its flavor. Light-coloured honeys are mild-flavoured, while the dark ones have
a stronger flavor [13,14]. Darker honeys such as honeydew honeys are reported to contain more
phenolic acid derivatives but fewer flavonoids than light coloured ones [13,15,16]. Several studies have
reported on the assessment of the quality, geographical, and botanical origins of honey, also with the
aim to detect any possible adulteration [3,8,17]. Application of Nuclear Magnetic Resonance (NMR)
spectroscopy for the analysis of honey offers some advantages compared to other conventional analytical
methods (such as GC and GC–MS) [17,18]. These include the availability of a wealth of information
in a single measurement, simultaneous detection of various components, high reproducible and
comparable data with a high statistical confidence level, and minimal requirements for sample amount
and pre-processing [19,20]. In particular, the metabolomic approach based on NMR spectroscopy,
in combination with chemometrics, is a powerful fingerprinting technique that is successfully employed
for biomarker detection, food quality control, and/or origin discrimination [11,21–26]. This approach
is used to analyze metabolite profiles and identify the most important discriminating compounds
that differentiate honeys. Indeed, several studies proved the NMR-based screening techniques are a
suitable tool for the rapid authenticity analysis of honey [19].

In this paper, we present an investigation of combined NMR and a chemometric data analysis
approach to describe the variability in the composition of honey samples from different local Salento
(Lecce and Taranto Provinces, Apulia region, South-East Italy) producers. Although some papers
describing NMR characterization of Italian honey have already been published [3,11,12,21,27,28],
the present study appears to be the first work focused on honey from Salento. On the other hand,
although it can be considered one of the most important Italian regions as a foodstuff source, nowadays,
Apulia only represents an emerging honey producer with about 290 t, less than 2% of the total Italian
production (23,344 tons) [29]. Moreover, the Salento contribution to the Apulia production only relies
on a minor part of active beehives in the region [29,30]. Nevertheless it should be considered that
Salento honey (part of the Apulia production) is considerably threatened due to the suggested use of
neonicotinoids in order to control the insect-vectored bacterium Xylella fastidiosa (subsp. pauca) [31].
The suggested use of insecticides in order to control X. fastidiosa vector(s) in the Salento area has been
recently reviewed in an EFSA (European Food Safety Authority) report [32]. Neonicotinodis, the
insecticides that are most widely used worldwide, are substances known to be carcinogenic to people
and considered responsible for the deaths of bees, representing a serious risk for biodiversity and
ecosystems [33–35]. After monitoring by the EFSA in 2013 [36], the EU decided to prohibit the use of
neonicotinoids in open fields [37]. Nevertheless, as a consequence of the “National emergency plan for
X. fastidiosa management in Italy”, on the 13 of March 2018, the Italian Minister of Agriculture, issued a
decree determining in the Apulia Region a specific area (Salento) where farmers may be forced to use
these pesticides [31,38,39]. On the other hand, Salento honeys, under treat due to the possible deaths of
bees related to pesticide use, do not appear to have been previously characterized. Thus, this could be
one of the main reasons to focus, for the first time, on the characterization of honey produced in Salento
(an Apulia sub-region where X. fastidiosa diseases first appeared). In particular, thirteen honey samples
from different provinces of the Salento area were subjected to spectroscopic fingerprints in order to
characterize them qualitatively and also to identify potential molecular components responsible for
discrimination among sample clusters.
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2. Results and Discussion

2.1. 1H-NMR Fingerprinting and Metabolite Identification

A total of 13 samples of mono- and multi-floral honeys and honeydew supplied in commercial jars
by four trusted Salento honey producers were analyzed. Three technical replicates were obtained from
a single specific commercial honey jar in order to minimize possible data inhomogeneity. The studied
honeys included eight multi-floral, three mono-floral (one acacia, one orange, and one citrus sample),
and two honeydew samples. The limited size of the reported sample set was chosen to provide
preliminary indications of Salento honey characteristics. However, several studies used a very
limited number of samples for much wider productions and geographic areas, such as the quality
and bio-functional properties characterization of seven honey samples of different botanical and
geographical origins collected from different regions of Portugal [40]; the 1H-NMR profiling and
chemometric analysis of ten selected honeys from South Africa (five), Slovakia (three), and Zambia
(two) [8]; the chemometric analysis of three stingless bee honey samples from different botanical origins
collected in Malaysia [41]; the 1H NMR characterization of twenty Finnish honeys [42]. The screenings
based on 1H-NMR spectroscopy allowed us to extract, in a single and quick analysis, all sample
molecular information while maintaining the specific ratios between metabolites present in a complex
matrix, without previous separation. The assignments of honey signals identified in the samples,
prepared according to the procedures described in the experimental section, are reported in Table 1.

Table 1. Chemical Shifts (δ) and assignment of metabolite resonances in the 1H NMR (600 MHz) of
honey samples.

δ (ppm) Metabolite Assignment Multiplicity

9.45 HMF H1 s
9.13; 8.84 trigonelline N−CH; CH−3.5 s; t

8.42−8.46 * formate HCOOH s
7.90; 5.90 uridine

8.22, 7.86, 7.55, 6.94 kynurenic acid (only in dark
honey samples) d, d, d, s

7.42; 7.38; 7.32 phenylalanine CH–3,5 ring; CH4 ring; CH–2,6 ring; m; m; m;
7.28, 6.18 nucleoside derivatives
7.19; 6.90 tyrosine CH–2,6 ring; CH–3,5 ring; m; m;
5.41; 3.56 sucrose CH1; CH2 d; dd;

5.40 maltose
5.30; 3.58 turanose CH1
5.23; 3.52 α-glucose CH1; CH2 d; dd;

4.99 raffinose
4.94 isomaltose

4.64; 3.24 β-glucose CH1; CH2 d; dd;
4.10 α/β- fructofuranose CH3 d;
4.01 β- fructopyranose CH5 d;
3.12 lysine γ−CH2 t

2.70; 2.90 citrate Half−CH2; half−CH2 d; d
2.55; 2.80 aspartate half β−CH2; half β−CH2; γ − dd; dd

2.56 succinate α−β - CH2 s
2.34; 2.07; 2.01 proline half β −CH2; half β-CH2; γ−CH2 m; m; m;

1.95 acetate α−CH3 s
1.47 alanine β−CH3 d

1.38 monoterpenoid acid
(only in polyfloral honeys) -C(CH3)2OH; s

1.32 lactate β−CH3 d
1.17 ethanol CH3 t

1.03; 2.28 valine γ−CH3; β−CH d; m;
1.00 isoleucine γ-CH3; d

0.97; 1.7 leucine δ-CH3; γ-CH d; m;

* [12,43].
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A typical 1H-NMR spectrum of honey sample dissolved in deuterated water as indicated in the
Material and Methods section is reported in Figure 1.
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Figure 1. Representative 1H NMR (600 MHz) spectra of Salento honey samples in aqueous solution.
Expanded areas in the range of (a) (0.9–3 ppm), aliphatic region; (b) (3–6 ppm) sugars region;
(c) (6–10 ppm) aromatic region. Assignment of the main metabolites is indicated.

From visual inspection of the expansions, three regions could be identified, corresponding to
the region of amino acids (0–3 ppm) (Figure 1a), the region of sugars (3–6 ppm) (Figure 1b), and the
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aromatic region (6–10 ppm) (Figure 1c). The most intense and dominant signals in the spectrum are
represented by sugars, typically α–and β−glucose and fructose. Moreover, as already reported in the
literature, signals of other sugars, e.g., disaccharides such as sucrose, maltose, isomaltose, and turanose,
and trisaccharides such as raffinose, could be identified [3]. These signals were identical in all the
honey samples analyzed with minimal intensity variations, as already observed in the literature [19,22].
The resonances of the minor components, which play important roles in honey differentiation were
less intense (for example, amino acids, organic acids, etc.). In particular, the minor signals were
ascribable to organic carboxylic acids (such as citric acid, acetic acid, and succinic acid) and both
aliphatic (alanine, valine, leucine, isoleucine, lysine, proline) and aromatic (phenylalanine and tyrosine)
amino acids. Proline, which might originate from bees, is the prevalent honey amino acid and makes
up to 50–85% of the amino acid fraction [44]. Organic acids are present in honey at low concentrations
(< 0.5%) and they are related to colour, flavor, and other honey physical–chemical properties, such
as pH, acidity, and electrical conductivity. Moreover, organic acids can synergistically enhance the
antioxidant action of phenolic compounds by chelating metals [1,6]. Acetic acid and ethanol are
known to be used as fermentation indicators whereas formic acid is used for the treatment of Varroa
infestation [45]. Interestingly, specific resonance (1.38 ppm, s) of methyl groups from a monoterpenoid
acid, cyclohexa-1,3-diene-1-carboxylic acid, and as very minor component its (1-O-gentiobiosyl) ester
derivative were observed in both light and dark polyfloral honeys. The proton and carbon assignments,
obtained by 2D hsqc and hmbc NMR experiments confirmed that the (1.38 ppm, s) signal was ascribable
to the known linden honey monoterpenoid acid marker [20,21,27]. Furthermore, a significant number
of other compounds (formic acid, ethanol, trigonelline) and other aromatic signals could be observed
by NMR, with variations in intensity according to the honey samples. Trigonelline is a plant hormone
typical of herbaceous species, identified for the first time in Corsican honeys [46]. Another important
observed signal is related to hydroxymethylfurfural (HMF), a furan derivative produced by sugar
degradation. HMF is considered an indicator of overheating and long storage conditions [1,22],
being an intermediate in the Maillard reaction [47], which links the concentration of HMF to aging
and heating processes [48]. HMF levels are used to evaluate honey freshness, although its presence
could naturally occur in honey of warm climatic areas, such as tropical and subtropical countries [12].
Typical signals of kynurenic acid (KYNA) (8.22, 7.86, 7.55, 6.94 ppm), often associated with chestnut
honeys [21], were also observed in the analyzed samples, although only in the dark honey from a
specific producer. Kynurenic acid is known to have beneficial properties in various diseases of the
gastrointestinal tract [49], although other authors suggested that an increase in the levels of kynurenic
acid in the brain could be linked to some neuropathologies [50]. Further studies regarding the effects
of kynurenic acid (KYNA) are needed in order to better understand its role in human health [12].
Honeydew 1H NMR spectra showed intense aliphatic resonances in the range 0.90–1.65 ppm and a
diagnostic doublet at 5.70 ppm. These signals are according to the reported resonances characteristic
of honeydew honeys [21]

Finally, a not intense but clear signal at 5.90 ppm was observed only in the orange and citrus
honey 1H NMR spectra and it could be ascribable to a diagnostic resonance of 8-hydroxylinalool,
a specific marker of citrus honey [20,27]. In all the studied samples, none of the representative signals
indicating the presence of neonicotinoid pesticides [51] could be detected.

2.2. Unsupervised and Supervised Discriminant Analyses

A preliminary unsupervised multivariate analysis (PCA) (three components, R2X = 0.891;
Q2 = 0.826) was performed on the bucket-reduced spectra for the studied samples to obtain an
overview of the data and reveal a possible data grouping of observations without any a priori-defined
class. No specific outliers were detected in the scores plot and a general natural tendency of the
samples clustering according not only to technical replicates (Figure S1a) but also to specific honey
features (dark, light, honeydew) and producers was observed. In particular, the same unsupervised
PCA showed a “naturally” clear clustering [52] of the honey samples into two groups according to the
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declared colour (dark- and light-coloured honeys) (Figure S1b). A summer honeydew, a honeydew,
a summer polyfloral honey, and two summer polyfloral honeys clustered into a group characterized
by dark colour. On the other hand, citrus, acacia, orange, three spring polyfloral, and two polyfloral
honey samples grouped together in the light-coloured class. The distinctive observed colour and
clustering showed the occurrence of all the summer- and spring-collected samples in the dark- and
light-coloured groups, respectively. This is probably ascribable to a specific relation between collection
season and colour already reported in the literature [53]. We refined the separation analysis between
the two observed macro-classes, dark and light samples, by pair-wise supervised OPLS–DA aimed to
specify the discriminating molecular components responsible for the observed clear discrimination
between the light- and dark-coloured honey groups—Figure 2a,b.
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Figure 2. (a) Orthogonal Partial Least Square-Disciminant Analysis (OPLS–DA) t[1]/t[2] scores
plot (t[1]/t[2] contribute: R2X = 0.793; R2Y = 0.98; Q2 = 0.97) for light and dark honey samples.
(b). Loading scatter plot for the model coloured according to the correlation-scaled coefficient
(* p(corr) ≥ |0.5|). The colour bar associated with the plot indicates the correlation of the metabolites
discriminating among classes.

We obtained a model with good fit and prediction parameters (1 + 2 + 0 gave R2X 0.874; R2Y 0.956;
Q2 = 0.939; p[cv]—ANOVA = 4.87 × e−18). As observed from the S-line for the model, the loadings
ascribable to the sugar signals characterized both macro groups. Interestingly, the signals in the aliphatic
region (proline, succinate, lactate, monoterpenoid acid) and those related to aromatic compounds
(tyrosine, phenylalanine, KYNA, formate) characterized only dark-coloured honeys according to the
literature data [10,18,26]. Thus, discriminating information between dark and light honeys could be
found specifically in the signals of the minor components [19]. Moreover, in the OPLS–DA score plot
(Figure 3) the light and dark honeys were also separated into different subgroups, according to the
producers, along the first orthogonal component (intra-class variation).

This observed clustering clearly indicates that the honey intraclass variability was producer
dependent and related to both dark and light products obtained from the same farm.
Moreover, the OPLS-DA data of Figure 3 confirmed the hint of further grouping according to producers
observed in the PCA scores plot (Figure S1). Therefore, the whole honey sample set was further studied
with supervised analysis aimed at discrimination of the different producers. A supervised PLS–DA
was performed, according to different producer classes, considering dark and light honeys separately.
Furthermore, chemometric methods were applied to the different spectral regions of the aliphatic
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(from 0 to 3.14 ppm) and the aromatic (6 to 10 ppm) areas in order to identify and characterize the
functional groups of the molecules (organic acids, amino acids, aromatic molecules) responsible for
samples discrimination. The possible presence of low-intensity signals of potential discriminating
markers for the analyzed honeys and their contribution to samples differentiation were evaluated by
excluding the sugar signals region in the statistical analysis [19].Sustainability 2020, 12 2 of 21 
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2.3. Aliphatic Region

In the case of light honeys, the supervised PLS–DA resulted in a model with very good
descriptive and predictive parameters (four components gave R2X = 0.915; R2Y = 0.945, Q2 = 0.889;
p[cv] - ANOVA= 1.015 × e−12) (Figure 4).

The scores plot for the model revealed a clear separation between the samples according to
considered membership class (Producer) (Figure 4a). The light honey samples from Producer B
(samples 5, 6, and 13, depicted as red stars) could be observed at positive values of the main component
t1, clearly separated from the samples of Producer A, placed at values close to 0 of the main component.
Moreover, samples of producers C and D could be observed, such as two closely related groups,
placed at negative values of the main component t[1]. The loading scatter plot (Figure 4b) for the
model revealed a higher relative content of lactate and proline characterizing light honey samples from
Producers C and D, while the presence of ethanol characterized samples from Producer A.

The PLS–DA, carried out on dark honey samples also revealed in this case a clear separation among
the Producer-defined sample classes. Thus, the resulting model was characterized by excellent parameters
(four components gave R2X = 0.909; R2Y = 0.915, Q2 = 0.752; p[cv]—ANOVA = 8.91 × e−2) (Figure 5).

By visual inspection of t[1]/t[2] scores-plot (Figure 5a), the samples of producers A and D could
be observed as two closely related groups at positive values of component t[1], separated from
the Producer B samples along the t[1] component, at positive and negative values, respectively.
Honeydew honey samples from Producer C were located at t[2] negative values and values close to 0
of the main component t[1]. The discriminating metabolites, identified from the loading scatter plot for
the model were lactate (1.32 ppm) and succinate (2.56 ppm) for producer A and D and monoterpenoid
acid derivatives (1.38 ppm) for Producer B. The observed higher relative content of organic acid in
honeydew samples from Producer D was already reported in the literature [42]. Honeydew samples
from producer C were characterized by a higher relative content of proline (2.34 ppm) (Figure 5b) as
already observed for honeydews from different geographical origins [54,55]. Interestingly, the proline
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content was recently reported as a possible indicator of honey ripeness as it constantly decreases
during storage [54].
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w*c[1] and w*c[2] axes represented the weighted correlation vectors.
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Figure 5. (a) PLS–DA t[1]/t[2] scores plot (t[1]/t[2] contribute: R2X= 0.705; R2Y= 0.603; Q2= 0.459)
for dark honey samples from different producers (black triangles, Producer A; red five-point stars,
Producer B; grey circles, Producer C; blue five-point stars, Producer D. (b) Loading scatter plot for
the model coloured according to the correlation-scaled coefficient (*p(corr) ≥ |0.5|). The colour bar
associated with the plot indicates the correlation of the metabolites that discriminated the classes.
w*c[1] and w*c[2] axes represented the weighted correlation vectors.
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2.4. Aromatic Region

The multivariate statistical analysis was then applied to all 39 honey samples considering the
spectral region between 6 and 10 ppm, characteristic of aromatic protons. The supervised discriminant
analysis (PLS–DA) was therefore carried out for the aromatic region, considering separately the light
and dark honeys, according to the membership class (Producer). The PLS–DA applied to the light
honey samples gave a four-component model with descriptive and predictive parameters equal to
R2X= 0.936, R2Y = 0.708, Q2 = 0.514; p[cv] - ANOVA= 2.35 × e−6 (Figure 6).
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Figure 6. (a) PLS–DA t[1]/t[2] scores plot (t[1]/t[2] contribute: R2X= 0.572; R2Y= 0.6; Q2= 0.461) for light
honey samples from different producers (black triangles, Producer A; red five-point stars, Producer
B; grey circles, Producer C, blue five-point stars, Producer D). (b) Loading scatter plot for the model
coloured according to the correlation-scaled coefficient (* p(corr)≥|0.5|). The colour bar associated with
the plot indicates the correlation of the metabolites that discriminated the classes. w*c[1] and w*c[2]
axes represented the weighted correlation vectors.

Once again from the score plot (Figure 6a), a separation of the samples based on the class producer
could be observed. The loading scatter plot for the model described the molecular components
underlying this separation. Specifically, the samples of Producer B, placed at negative values
of component t1, were characterized by the highest relative content of formate (8.42–8.46 ppm).
Although this compound is normally present in honeys, a possible use of this organic acid in the
treatment against an ectoparasitic mite (Varroa) could not be excluded [45]. Samples from Producer A
were characterized by a higher phenylalanine content (7.42, 7.38, and 7.32 ppm) while the samples of
Producers C and D were basically grouped in a single cluster, with positive values of the t[2] component,
characterized by the presence of higher tyrosine (7.19 and 6.90 ppm) and other unidentified aromatic
molecules (8.62 ppm). Interestingly, the latter (bucket at 8.62) was also observed but not identified in
Finnish lingonberry honey as a specific signal at 8.60 ppm [42]. A possible attribution to niacin could
be suggested according to the established presence of this metabolite in honey [56].

Finally, the PLS–DA was conducted on the aromatic region of dark honey samples, considering the
different producers (Figure 7).
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Figure 7. (a) PLS–DA t[1]/t[2] scores plot (t[1]/t[2] contribute: R2X= 0.715; R2Y= 0.543; Q2= 0.384)
for dark honey samples from different producers (black triangles, Producer A; red five-point stars,
Producer B; grey circles, Producer C, blue five-point stars, Producer D. (b) Loading scatter plot for
the model coloured according to the correlation-scaled coefficient (*p(corr) ≥ |0.5|). The colour bar
associated with the plot indicates the correlation of the metabolites that discriminated the classes.
w*c[1] and w*c[2] axes represented the weighted correlation vectors.

Separation among groups was also observed in this case. The model derived from the analysis
was a good descriptive and predictive model (four components gave R2X = 0.896, R2Y = 0.935 and
Q2 = 0.803. p[cv] - ANOVA = 8.5 × e−4) characterized by a good separation among the samples from
the different producers (Figure 7a). The class of dark honey samples from Producer B were observed in
the score plot at negative values of the t1 component The observed deviation for one of the Sample
4 technical replicates occurred only for the t[2] component and could be ascribed to the intrinsic
sample inhomogeneity (the reason for preparing and analyzing technical replicates). Nevertheless,
the residual variability was associated with decreases in the standard deviation as observed in the
contribution plot (data not shown) and therefore the Sample 4 remained in the model. On the other
hand, the three Sample 4 replicates appeared closely related to each other in the aliphatic region
(Figure 5), and in the overall samples PCA (Figure S1), Producer B group was characterized by a higher
content of formate (8.42–8.46 ppm) as already observed for light samples from the same Producer B
and typical signals of kynurenic acid (KYNA) (8.22, 7.86, 7.55, 6.94 ppm) [21]. Signals of phenylalanine
(7.42, 7.38, and 7.32 ppm), an aromatic amino acid, characterized the dark honeys of producers A and
D. Honeydew honey from Producer C was characterized by variables (loadings) corresponding to the
NMR signals at 7.28 and 6.18 ppm typical of nucleoside derivatives (Figure 7b).

2.5. Metabolites Comparison

The variation in discriminating metabolites content for light and dark honeys, among the observed
groups (Producer classes) was calculated by the integration of selected distinctive unbiased NMR
signals. In particular, signals corresponding to proline, monoterpenoid acid derivative, lactate, ethanol,
phenylalanine and lysine were integrated for light honey samples, whereas formate, monoterpenoid
acid derivatives, proline, lactate, phenylalanine, nucleoside derivatives, succinate, and KYNA were
integrated for dark honeys. Metabolites that showed a significant variation among groups were
validated by one-way ANOVA with the HSD post-hoc test and are reported as the mean and standard
deviation of integrals for each group in Table 2 (Figures S2 and S3).
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Table 2. Quantitative comparison of light and dark honey discriminant metabolites.

Metabolite Chemical
Shift (ppm) F Value 1 P-Value 2 FDR 3 Tukey’s HSD 4

Light honeys

Proline 2.34 100.38 3.1531 × e−12 1.4709 × e−11 C–A; D–A;C–B; D–B; D–C;
monoterpenoid acid 1.37 97.344 4.2025 × e−12 1.4709 × e−11 C–A; C–B; D–C;

Lactate 1.34 37.096 2.3111 × e−8 5.3937 × e−8 C–A;D–A; C–B;D–B;
Ethanol 1.17 16.166 1.4282 × e−5 2.4993 × e−4 B–A; C–A; D–B; D–C;

Phenylalanine 7.42 6.8538 2.3633 × e−3 3.3087 × e−3 C–B; D–B;
Lysine 2.90 3.5899 3.1792 × e−2 3.7091 × e−2 B–A

Dark honeys

Formate 8.45 3239.5 1.2559 × e−12 7.937 × e−12 B-A; C–A; D–A; B–C; B–D;
monoterpenoid acid 1.37 2811.2 1.9843 × e−12 7.937 × e−12 B–A; C–A; C–B; B–D; C–D;

Proline 2.34 172.71 1.3075 × e−7 3.4866 × e−7 C–A; C–B; C–D;

Lactate 1.34 96.224 1.2871 × e−6 2.5742 × e−6 A–B; A–C; D–A; C–B; D–B;
D–C;

Phenylalanine 7.42 64.339 6.0743 × e−6 9.7188 × e−6 A–C; A–D; B–C; B–D; D–C;
Nucleoside
Derivatives 6.18 57.138 95529 2 × e−6 1.2737 × e−5 B–A; C–A; C–B; C–D;

Succinate 2.54 4.3187 4.3517 × e−2 4.4375 × e−2 D–B; D–C;
KYNA 6.94 4.2827 4.4375 × e−2 4.4375 × e−2 B–A; C–A; B–D;

1 F value = Variance of the group means (Mean Square Between)/mean of the within group variances (Mean Squared
Error);2 Statistical significance was set at p-value < 0.05 with the 95% confidence level;3 False Discovery Rate (FDR);
4 Tukey’s Honestly Significant Difference (HSD) post hoc test. Adjusted p-value (FDR) cutoff: 0.05.

According to the obtained data, although limited to a relatively low sample number,
but representing small-scale emerging production, the Salento honey shows at the molecular
level, a range of specific characteristics features. These features are analogous to those exhibited
by similar products originating elsewhere and well established in the literature [1,8,11,22,42,46].
Moreover, metabolic fingerprinting allowed us to clearly differentiate the studied production according
not only to the macroscopic season-related character but also to the specific producer. High levels
of proline, representing a quality criterion with respect to sugar adulteration, were also observed,
although not equally distributed in the samples [54]. Therefore, the suggested use of neonicotinoids [32]
to control the insect-vectored bacterium Xylella fastidiosa (subsp. pauca) should also take into account
the need for preserving this emerging local foodstuff product.

3. Materials and Methods

3.1. Sampling

A total of 13 samples of monofloral and polyfloral honeys and honeydew characterized by different
colours were analyzed. Samples were obtained from thirteen different commercial jars supplied by
four trusted honey producers located in the Apulia Region (Lecce and Taranto provinces). The studied
honeys included eight polyfloral, three monofloral (one acacia, one orange, and one citrus sample),
and two honeydew samples. The botanical origins were assigned according to the trusted producers’
declarations. Since polyfloral honeys can be considered a miscellaneous pool of samples of various
botanical origins [57], whenever possible, the reliability of the declarations for monofloral samples was
confirmed by the identification of 1H NMR signals of specific markers of botanical origin [20,21,23,27].
Nevertheless further melissopalynological analysis was necessary in order to characterize the pollen
types in the studied samples. The different honey colours were assigned according to the trusted
producers’ declarations. The different colours were also checked by visual comparison supported by
unsupervised PCA without any a priori-defined class (including colour differentiation) scores plot
(Figure S1a,b,) and pair-wise supervised analysis (OPLS–DA) (Figure 3). All honeys were stored at
room temperature and in the dark before spectral analysis. In order to minimize possible sample
inhomogeneity, each honey sample consisted of three technical replicates obtained from a single
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specific commercial honey jar. Honey descriptions and pesticide-free area production according to
the producers (A, Margarito; B, Selvaggi; C, Greco; D, Salento Miele) are reported in Table 3. In order
to check any possible variability in the sugar content for the different honey productions, the caloric
content (as Kcal/100 g) of different producers’ honey samples (Figure S4) was determined using an
adiabatic calorimeter bomb (IKA C7000, Staufne, Germany).

Table 3. Origin declaration and detailed description of honey samples.

Sample Producers Description Colour Area Production

1 A summer polyfloral dark Ugento (Lecce Province)

2 A spring polyfloral light Ugento (Lecce Province)

3 1 B polyfloral dark Taranto Province

4 1 B polyfloral dark Taranto Province

5 B polyfloral light Trepuzzi (Lecce Province)

6 B monofloral (orange) light Taranto Province

7 C spring polyfloral light Copertino (Lecce Province)

8 C summer honeydew dark Copertino (Lecce Province)

9 C spring polyfloral light Nardò Copertino (Lecce
Province)

10 D monofloral (acacia) light Surbo (Lecce Province)

11 D polyfloral light Surbo (Lecce Province)

12 D honeydew dark Surbo (Lecce Province)

13 B monofloral (citrus) light Trepuzzi (Lecce Province)
1. Although with a similar description supplied by the producer, these samples refer to different production batches.

3.2. Sample Preparation for NMR Analysis

Each of the 13 supplied honeys was used to prepare three technical replicates for a total of
39 samples. Each sample was obtained by dissolving 100 mg of honey in 600 µl of deuterated water
(D2O) containing the standard 3-trimethylsil-2,2,3,3-d4 propionic acid (TSP), 0.5 mM. The pH of aqueous
solution honey samples was not corrected for slight deviations as the buckets could be adjusted in the
processing step in order to include possible chemical-shift deviations [12,58]. The final solution was
placed in an NMR tube (0.5 mm diameter).

3.3. 1H-NMR Spectra Acquisition and Processing

All spectra were acquired at a constant temperature (300 K) on a Bruker Avance III 600 MHz
Ascend NMR Spectrometer (Bruker Italia, Milano, Italy), operating at 600.13 MHz, equipped with
a TCI cryoprobe (inverse Triple Resonance Cryoprobe Prodigy), incorporating a z axis gradient coil
and automatic tuning-matching (ATM). Experiments were acquired in automation mode after loading
individual samples on an integrated Bruker Automatic Sample Changer, interfaced with IconNMR
software (Bruker). For each sample, a 1H NMR spectrum was acquired with water signal suppression
(Bruker pulseprogram zgcppr), in a spectral window of 20.0276 ppm (12019.230 Hz), with 64 scans and
a 90◦ pulse of 7.620 µsec. After the acquisition, the standard FID processing procedures were carried
out, by using TopSpin 3.5 (Bruker, Biospin, Italy), such as Fourier transform (mathematical operation
that converts signals into a frequency spectrum), phase and baseline correction, and 0.3 Hz line
broadening. All NMR spectra were calibrated with respect to the internal standard TSP (δ = 0.00 ppm).
The characterization of the metabolites was determined by the analysis of two-dimensional homo-
and heteronuclear NMR spectra (2D 1H J-resolved, 1H COSY, 1H-13C HSQC, and HMBC) and by
comparison with the literature data [1,3,11,18,21,22,24,46]. The NMR spectra were converted to a
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suitable form for multivariate analysis by Amix 3.9.15 (Analysis of Mixture, Bruker BioSpin GmbH,
Rheinstetten, Germany) software. Specifically, each NMR spectrum was segmented into areas or
histograms, with a fixed base width of 0.04 ppm normal rectangular bucketing”). The bucket tables
thus obtained were subjected to a standardization procedure, in order to minimize the possible
differences in the concentration of the various metabolites due to sample preparation and/or acquisition
conditions. Subsequently, the data matrices (buckets) were subjected to centering and scaling operations:
The Pareto scaling method, obtained by dividing each variable by the square root of the variable
standard deviation centered around the mean value, was applied [59]. The total sum normalization
was applied to minimize small differences due to metabolites concentration and/or experimental
conditions among samples [59]. The data table, generated by all aligned buckets row-reduced spectra,
was used for further multivariate data analysis. Each bucket row represents the entire NMR spectrum,
with all the molecules in the sample. Moreover, each bucket, in a buckets row-reduced spectrum, is
labeled with the value of the central chemical shift for its specific 0.04 ppm width. The variables used
as descriptors for each sample in chemometric analyses are the buckets.

3.4. Multivariate Statistical Analysis

After the data processing step, an exploratory and discriminating analysis was performed,
using a multivariate statistical approach, with the help of Simca-P version 14 (Sartorius Stedim
Biotech, Umeå, Sweden) software. In particular, Principal Components Analysis (PCA), Partial Least
Squares Discriminant Analysis (PLS–DA), and Orthogonal Partial Least Squares Discriminant Analysis
(OPLS–DA) were performed. Unsupervised methods such as principal component analysis (PCA)
represent the first step in data analysis. Principal component analysis is a chemometric technique aimed
at extracting the maximum possible information from a multivariate data structure, summarizing
it in a few linear combinations of the variables themselves [60]. PCA is frequently used in the first
data processing step in order to obtain a general description of the samples distribution and possible
grouping in homogeneous clusters [61]. The possible correlation between the clusters distribution
of the analyzed samples and the considered classes is carried out with the subsequent analyses.
By PCA, it is also possible to identify outliers (samples showing characteristics of variability of the
data particularly different from the others). The assessment of the correlation between the clusters
distribution of the analyzed samples (observed by PCA) and the considered classes (such as variety
and/or geographical origin) is therefore carried out by using supervised multivariate statistical analyses
such as PLS–DA(Projections to Latent Structures Discriminant Analysis, PLS - DA) and OPLS–DA
(Orthogonal Partial Least Squares Discriminant Analysis). In the present case, discriminating analysis of
the PLS–DA type was performed to classify the honey samples and find indications for maximizing the
separation among the classes (inter-class variability) while minimizing the dispersion within each class
(intra-class variability). The PLS–DA technique is currently the most widely used for the discrimination
of samples with different characteristics (by treatment, species, origin). The PLS–DA is performed
in order to refine the separation between groups of observations, rotating the main components,
i.e., the axes that express the variance of the data, so as to obtain a maximum separation between the
classes and information on the variables responsible for this separation [62]. OPLS–DA is a modification
of the PLS–DA method which filters out variation not directly related to the focused discriminating
response. This is accomplished by separating the portion of the variance useful for predictive purposes
from the non-predictive variance (which is made orthogonal). The result is a model with improved
interpretability [63]. Validation of statistical models was performed and further evaluated by using the
internal cross-validation default method (7-fold) and with permutation test (20 permutations) available
in SIMCA-P software [64]. R2, Q2, and p[CV - ANOVA] parameters was used to describe the quality
of the model. The first (R2) is a cross validation parameter defined as the portion of data variance
explained by the models and indicates the goodness of fit. The second (Q2) represents the portion
of variance in the data predictable by the model. The minimal number of components required can
be easily defined since R2(cum) and Q2(cum) parameters display completely diverging behavior as



Sustainability 2020, 12, 5009 14 of 18

the model complexity increases [65]. Cross-validated analysis of variance (p[CV - ANOVA]) provides
a p-value indicating the level of significance of group separation in PLS–DA and OPLS–DA [63,65].
The variables responsible for the observed discrimination were identified by using the statistical tool
loading scatter plot. This tool creates a scatter plot of the loading vectors for the first two components.
The change in discriminating metabolite content among the observed groups was determined by
analyzing the integrals of selected distinctive unbiased NMR signals after spectra normalization (to the
total spectrum excluding the residual water region) [24,25]. Results, as mean intensities and standard
deviation of the selected NMR signals, were validated by analysis of variance (one-way ANOVA) with
Tukey’s honestly significant difference (HSD) post-hoc test by using MetaboAnalyst software [66].
Statistical significance was set at least at an adjusted p-value < 0.05. The use of chemometric methods,
both of an exploratory nature and of a discriminating or classifying nature, of the metabolic components
present in the samples, to verify the ”clustering” of the samples. The metabolomics based on Nuclear
Magnetic Resonance (NMR) spectroscopy, allows to simultaneously detect a wide range of structurally
different metabolites, bringing useful information to the discrimination of the samples.

4. Conclusions

In this work, the application of chemometric methods to 1H NMR spectra allowed us to preliminary
characterize and discriminate the honeys produced by four different producers in a sub region
(Salento, Lecce and Taranto Provinces), of Apulia, in South-East Italy. To the best of our knowledge,
this research, based on an 1H-NMR fingerprinting approach, represents the first study applied to
honeys from the Salento area within the Apulia Region. The suggested use of harmful neonicotinoids
in the Xylella fastidiosa-infected area represents a serious risk for biodiversity and the ecosystem;
these chemicals are highly toxic to insects such as bees, species of vital importance to humans [33].
Thus, the present preliminary study of Salento honeys demonstrated the need to protect this local
natural food which could be clearly and profitably characterized as similar products reported in the
literature. The unsupervised PCA showed among the other feature-related natural clustering, a clear
separation of the samples into two macro classes according to the light and dark colour of the samples.
We refined the separation analysis between the two observed macro-classes, dark and light samples,
by a pair-wise supervised OPLS–DA aimed to specify the molecular components responsible for the
observed differences. Interestingly, in accordance with literature data, the signals in the aliphatic
region and those related to the phenolic compounds characterized specifically only the dark samples.
The two macroclasses were analyzed separately, by discriminant analysis (PLS–DA), considering
aliphatic and aromatic regions, in order to observe the distribution of the samples according to the
specific local producer. Signals of molecules responsible for the discrimination among the different
local producers were clearly identified, and the differences among discriminant metabolites were
quantified and statistically validated. Among these, high levels of proline, representing a quality
criterion with respect to sugar adulteration, were also observed, although not equally distributed
in the samples. This approach, based on the combination of NMR spectroscopy with unsupervised
(PCA) and supervised analysis (PLS–DA) was confirmed as a high efficiency tool to characterize
naturally complex honey samples. Thanks to the possibility of automation and the low cost per
analysis required for screening, 1H-NMR profiling has already confirmed the potential for foodstuff

traceability and authenticity assessment for commercial use. Although further investigations such as
melissopalynological analysis are needed to better characterize this local product, the obtained data
provide useful information to gain knowledge about Salento honeys. Composition features arising
from this NMR–chemometric study as those exhibited by similar products originating elsewhere could
be proficiently used as a starting point for a complete characterization of local honey production.
Therefore, the impact on this production should be carefully considered when suggesting extensive
use of pesticides for Xylella fastidiosa vectors fighting purposes.
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content (mean ± S.D.; n = 3) of different producers’ honey samples.
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