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Abstract: The residue generated by the black soldier fly (Hermetia illucens, BSF) during the processing
of organic waste is considered a suitable crop fertilizer. However, no detailed studies have investigated
the fertilizer value of the residue obtained from processing household organic waste. In this study,
experimental household organic waste (EHOW) was processed by BSF at 200 mg of EHOW per head
for 15 days at 27 ◦C. To evaluate the fertilizer value of the obtained BSF larvae production residue
(BSFR), the chemical composition and microbiota were analyzed, and Komatsuna (Brassica rapa var.
perviridis) cultivation tests were conducted. BSFR results demonstrated higher ammonium nitrogen
and lower nitrate nitrogen, and the highest above-ground dry matter weight of Komatsuna. Although
the relative abundance of Escherichia was low, the relative abundance of Xanthomonadaceae, which
contains a genus that causes disease in plants, was high. Therefore, the presence of plant pathogens
in the BSFR microbiota should be considered. Finally, the effects of BSFR on the external environment
requires more detailed investigation.

Keywords: organic fertilizer; Hermetia illucens; compost; household organic waste; microbiota profile;
principal component analysis

1. Introduction

The concept of using fly larvae for processing organic waste was initially proposed almost 100
years ago [1]. More recently, the black soldier fly (BSF), which is raised on animal manure or household
organic waste (HOW) as feed for livestock, is being considered as an efficient way to recycle unutilized
resources in a sustainable manner [2]. However, due to restrictions from sanitary laws and a lack of
public acceptance for processing HOW for this purpose [3], several companies currently raise BSF
larvae on cereal byproducts. Subsequently, the BSF larvae meal is sold as feed for animals [4] and BSF
larvae production residue (BSFR) is sold for fertilizer.

Although using only cereal byproducts for BSF larvae production will maintain the safety of feed
for livestock, this regulation may inhibit the possibility of sustainable resource recycling technology.
The BSFR could be used as an organic fertilizer because BSF larvae can use livestock manure and HOW
as a food source [5,6], which is typically disposed of as organic waste [6]. However, most previous
studies on BSF larvae production have been conducted to develop efficient organic waste treatment
conditions for BSF larvae production.
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A previous study on the density of BSF larvae reported that a larval density of 1.2 larvae/cm2

and a feeding rate of 163 mg/larva/day (dry base) were optimal for ideal organic waste disposal [7].
Although, in the case of one feeding, the individual larvae weight was more affected by the nutrient
concentration of the feed than the density of larvae [8].

Efficient BSF larvae production methods are currently being investigated; however, very few
studies currently exist on the fertilizer value of BSFR made from HOW. In a recent study, a mixture of
municipal solid organic waste from factories and households was treated with BSF larvae [6]. This
study reported that the heavy metal content in municipal solid organic waste was reduced and the
heavy metal content in the residue was below the threshold for fertilizer use [6]. However, the study
did not investigate microorganisms in the residue and evaluate its effects on plants. Therefore, a
detailed evaluation of the HOW-derived BSFR has still not been conducted. Although some microbial
benefits of BSF larvae production have been reported, in particular a reduction in Escherichia coli in
livestock manure [9,10], it appears that only one study has investigated the microbiota of BSFR [11].
Furthermore, to date no detailed studies that analyzed the fertilizer value of BSFR exist. Thus, this
present study aimed to better explain the nutrient composition and suitability of BSFR as a fertilizer in
comparison with commercial compost.

2. Materials and Methods

2.1. Preparation of BSF Larvae and Experimental Household Organic Waste

BSF eggs were obtained from an adult breeding department in a laboratory (Research Institute
of Environment, Agriculture and Fisheries, Osaka Prefecture) and the larvae were reared for seven
days following the methods described by Nakamura et al. [12]. Experimental household organic waste
(EHOW) was created according to a previous study [13]. Specifically, the composition of EHOW was
17% cabbage, 17% carrot, 16% potato, 10% horse mackerel, 8% ground pork, 5% apple pomace, 5%
banana peel, 4% grapefruit pomace, 4% orange pomace, 3% rice, 3% bread, 3% wheat noodle, 3%
Chinese noodle, and 2% eggshell. These ingredients were finely chopped using a food processor
and uniformly mixed to create EHOW. EHOW was frozen and stored at −20 ◦C until required for
the experiments.

2.2. Chemical Composition of BSFR and Commercial Compost

The seven-day-old BSF larvae were placed on EHOW (200 mg/larvae, dry base) at 27 ◦C for
15 days to create BSFR. A composition analysis was undertaken to compare BSFR to cow, horse, and
poultry waste composts in order to clarify the value of BSFR as fertilizer and commercial compost.

Concentration of total organic carbon (TOC), total nitrogen (TN), carbon to nitrogen ratio (C/N),
ammonium nitrogen (NH4

+-N), nitrate (NO3-N), phosphorus (P), potassium (K), sodium (Na), copper
(Cu), calcium (Ca), iron (Fe), magnesium (Mg), zinc (Zn), manganese (Mn), crude ash, pH, and
electrical conductivity (EC) were measured. The concentration of carbon in each sample was analyzed
using a CHN analyzer (MT-6, YANACO, Tokyo, Japan) according to the manufacturer’s instructions.
Water content (950.01), total nitrogen (955.04), ammonium nitrogen (920.03), nitrate nitrogen (930.01),
phosphorus (958.01), potassium (983.02), sodium (965.09), copper (965.09), calcium (965.09), iron (965.09),
magnesium (965.09), zinc (965.09), and ash (955.03) within the samples were analyzed according to the
Official Methods of Analysis of the Association of Official Agricultural Chemists (AOAC) [14]. The
value of pH and EC were measured using a pH meter (pH-22B, HORIBA, Tokyo, Japan) and an EC
meter (EC-33B, HORIBA, Tokyo, Japan) according to the manufacturer’s instructions, respectively.

2.3. Analysis of Microbiota in BSFR and Commercial Compost by Amplicon Sequencing

DNA was extracted from EHOW, BSFR, and three commercial composts (cow, horse, and
poultry composts) using a Fast DNA SPIN kit for soil (MP Biomedicals, California, CA, USA),
according to the manufacturer’s instructions. The variable region V3-V4 of bacterial 16S rRNA
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genes were amplified using universal primers 341F (5′-CCTACGGGNGGCWGCAG-3′) and 805R
(5′-GACTACHVGGGTATCTAATCC-3′) [15]. The polymerase chain reaction (PCR) mixture was
composed of 10 µM forward primer, 10 µM reverse primer, 2 × KAPA HiFi HotStart ReadyMix (KAPA
BIOSYSTEMS, MA, USA), and the extracted fecal DNA template. The first set of PCR conditions were
as follows: initial denaturation at 94 ◦C for 3 min, followed by 25 cycles of 94 ◦C for 30 s, 55 ◦C for 30 s,
and 72 ◦C for 30 s, and a final extension step at 72 ◦C for 10 min. The second set of PCR conditions for
index attachment were initial denaturation at 98 ◦C for 30 s, followed by 8 cycles of 98 ◦C for 30 s, 60 ◦C
for 30 s, and 72 ◦C for 30 s, and a final extension step at 72 ◦C for 5 min. The amplicons were purified
using AMPure XP beads (Beckman Coulter, Brea, CA, USA). Paired-end sequencing of all libraries was
performed on an Illumina MiSeq sequencer (Illumina, San Diego, CA, USA) using a MiSeq Reagent kit
v3 (600 cycles; Illumina) according to the manufacturer’s instructions.

2.4. Plant Cultivation Test 1

This experiment was conducted according to the methods issued by the Food and Agricultural
Materials Inspection Center [16]. For the experiment, pots (113ϕ × 65 mm) without drainage holes
were used. Each compost was used as a fertilizer and 250 g of soil sod (moisture 33.09%, TN 0.42%,
NH4

+-N 0.00%, NO3-N 0.09%, K 0.05%, P 0.00%, ash 56.94%, pH 7.0, and EC 0.5 mS/cm) was sterilized
by an autoclave, placed in a plastic bag and stirred for 1 min. The TN content of each pot was adjusted
to 100 mg and 200 mg in each pot for two treatment groups—A group (n = 3) and B group (n = 3),
respectively. Thirty Komatsuna (Brassica rapa var. perviridis) seeds were sown in each pot. To prevent
the premature death of the Komatsuna, a 25 mg equivalent of chemical fertilizer (i.e., ammonium
sulfate, phosphorus pentoxide, and potassium oxide) was added to all groups. Table 1 shows the
fertilization amount in each treatment group and the contents of total nitrogen, available phosphoric
acid, and potassium in each group. After sowing the Komatsuna seeds, the plants were cultivated in a
constant temperature room at 25 ◦C and 70% humidity for a 14-h light period and a 10-h dark period
for 21 days. To prevent the soil drying out, watering was undertaken once per day after germination.
The germination rate on day 5 and the fresh and dry weight of the above-ground portion on day 21
were measured.

Table 1. Fertilization amount for the cultivation test 1.

Group EHOW BSFR Cow Horse Poultry

A

Amount Applied (g) 10.25 4.72 6.44 14.72 3.09
Nitrogen a (mg) 100.00 100.00 100.00 100.00 100.00

Phosphorus a (mg) 6.54 2.34 5.99 3.62 3.41
Potassium a (mg) 267.28 89.68 90.14 1020.77 20.22

B

Amount Applied (g) 20.50 9.43 12.87 29.43 6.19
Nitrogen a (mg) 200.00 200.00 200.00 200.00 200.00

Phosphorus a (mg) 13.08 4.69 11.99 7.24 6.83
Potassium a (mg) 534.56 179.37 180.28 2041.55 40.43

a Calculated amount. EHOW—experimental household organic waste, BSFR—black soldier fly residue.

2.5. Plant Cultivation Test 2

This experiment was conducted according to the methods issued by the National Agriculture
and Food Research Organization [17]. The amounts of compost and sod applied from each group
are displayed in Table 2. The amount of poultry compost was decreased to half of the level of other
compost types to avoid excessive application of nitrogen. Unsterilized compost and 250 g of the
soil sod was placed in a plastic bag and stirred for 1 min. Then, mixed soil was placed into pots
(113ϕ × 65 mm) without drainage holes. Sixteen Komatsuna seeds were sown in each pot (n = 5).
After sowing, the plants were cultivated in a constant temperature room at 25 ◦C and 70% humidity
for a 14-h light period and a 10-h dark period for 21 days. To prevent the soil drying out, watering was
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undertaken once per day after germination. The germination rate on day 5 and the fresh weight of the
above-ground portion and total leaf number on day 21 were measured.

Table 2. Fertilization amount for the cultivation test 2.

Group Control BSFR1 BSFR2 BSFR3 Cow Horse Poultry

Amount applied (g) 0.00 25.18 12.60 8.33 25.20 25.52 12.49

2.6. Statistical Analysis

The chemical composition and the results of the cultivation tests were statistically analyzed by
one-way analysis of variance (ANOVA), Games– Howell nonparametric post-hoc tests, Spearman
rank-order correlation coefficients (Spearman’s rho), and principal component analysis (PCA) on
the correlation matrix of the chemical composition using Statistical Product and Service Solutions
(SPSS) software (SPSS Statistics 25, International Business Machines Corporation, Armonk, NY,
USA). PCA was also performed using the statistical software PAST4.0 [18] and a biplot diagram was
created. The analysis of the microbiota data was performed according to the method described in
Kawasaki et al. [13].

3. Results

3.1. Chemical Composition of BSFR and Commercial Compost

The chemical composition of each sample is shown in Table 2. The chemical composition of the
samples was significantly different between groups, excluding the value of K (Table 3). BSFR had the
highest concentration of NH4

+-N and highest EC value among the samples. The moisture content of
BSFR was lower than that of EHOW but higher than found in livestock manure. The C/N was lower
than EHOW and similar to the cattle manure. The nitrogen content of BSFR was similar to the poultry
manure. The nitrate nitrogen content of BSFR was the next highest, and the nitrate nitrogen content of
BSFR was the lowest among the composts. The P content of BSFR was almost equal to the EHOW.
BSFR had the highest value of Ca, but when compared to the livestock manure, the mineral content
of BSFR had lower values of all minerals. The ash content of BSFR was higher than EHOW but not
livestock. The pH of BSFR was neutral.

Table 3. Chemical composition of EHOW and fertilizers (dry matter basis).

Items EHOW BSFR Cow Horse Poultry SEM p-Value

Moisture (%) 78.01a 55.60b 39.98c 27.80d 14.21e 5.93 <0.01
C (%) 45.43a 35.84b 25.34c 35.12d 27.40e 1.90 <0.01
N (%) 0.98ad 2.16b 1.55ac 0.68d 3.23bc 0.25 <0.01
C/N 48.09 16.61a 16.31a 53.88 8.58b 5.22 <0.01

NH4
+-N (%) 0.07a 0.88b 0.08a 0.25c 0.48d 0.08 <0.01

NO3-N (%) 0.04a 0.10b 0.57c 0.15ab 1.25d 0.12 <0.01
P (%) 0.06a 0.05b 0.09c 0.02d 0.11e 0.01 <0.01
K (%) 0.12a 0.07 0.18 0.16b 0.19 0.02 0.12

Na (%) 0.04a 0.08 0.10b 0.11b 0.09b 0.01 <0.01
Cu (%) 0.00a 0.01b 0.03c 0.14d 0.06e 0.01 <0.01
Ca (%) 0.09a 1.00b 0.13c 1.25b 2.14b 0.21 <0.01
Fe (%) 0.03a 0.24b 1.15c 7.15d 1.04c 0.71 <0.01
Mg (%) 0.02a 0.09b 0.13c 0.20abc 0.21bc 0.02 <0.01
Zn (%) 0.00a 0.01a 0.17b 0.44c 0.36d 0.05 <0.01
Mn (%) 0.00a 0.01a 0.23b 0.14c 0.29b 0.03 <0.01
Ash (%) 1.04a 12.65b 18.00c 33.74d 38.74d 3.70 <0.01

pH 6.20a 7.40a 9.10a 8.17b 8.30ab 0.26 <0.01
EC (mS/cm) 3.67a 9.67b 5.53c 2.30d 7.27e 0.70 <0.01

Different alphabet characters indicate significant difference (Games–Howell nonparametric post-hoc test, p < 0.05).
SEM—standard error of the mean. p-values were computed by one-way ANOVAs and represent the significant
differences in the results.
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3.2. PCA of the Chemical Composition

The PCA plot is shown in Figure 1. The correlation coefficients between each chemical component
are shown in Supplementary Table S1. The PCA on the correlation matrix of the chemical composition
showed four components with eigenvalues higher than 1 (Supplementary Table S2). The contributing
rate of each principal component (PC) was PC 1, 47.55%; PC 2, 28.90%; PC 3, 13.02%; PC 4, 6.10%;
and the total contributing rate of the three components was 95.57%. BSFR plotted between EHOW and
cow in PC 1, plotted close to poultry in PC 2, plotted close to horse in PC 3, and plotted close to cow
and horse in PC 4.
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3.3. Relative Abundance in Microbiota of BSFR and Commercial Compost

Up to 10 highly abundant bacteria were identified for each study group (Table 4). The most
abundant bacteria for BSFR was Bacillaceae, similar to poultry. However, Sporosarcina and
Xanthomonadaceae, which recorded the second and third highest abundance in the microbiota of
BSFR, did not show high abundance of microbiota in any other group. Lactobacillales, Carnobacterium,
and Escherichia, were observed in high abundance within the microbiota of EHOW, but were not found
in high abundance in BSFR. Corynebacterium, Bacillus, Virgibacillus, and Aerococcaceae were detected in
BSFR and also in horse, poultry, or both. Trichococcus, Natronobacillus and Erysipelotrichaceae were
detected only in BSFR.
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Table 4. The 10 most abundant microbial taxonomic groups (relative abundance, %) in the samples.

No.
EHOW BSFR Cow Horse Poultry

Taxonomy (%) Taxonomy (%) Taxonomy (%) Taxonomy (%) Taxonomy (%)

1 Lactobacillales 31.33 Bacillaceae 22.91 Halomonas 15.27 Bacillales 16.52 Bacillaceae 51.31
2 Carnobacterium 21.55 Sporosarcina 13.21 Georgenia 10.27 [Weeksellaceae] 9.61 Bacillales 21.69
3 Escherichia 16.68 Xanthomonadaceae 9.82 Bacillaceae 7.75 Pseudomonas 6.64 Corynebacterium 5.79
4 Enterococcus 11.16 Corynebacterium 9.49 Sphingobacteriaceae 7.20 Jonesiaceae 4.41 Yaniella 4.99
5 Lactococcus 5.06 Bacillus 8.05 Flavobacteriaceae 6.68 Bacillus 3.45 Aerococcaceae 2.55
6 Vagococcus 3.63 Virgibacillus 6.22 Promicromonosporaceae 4.73 Corynebacterium 3.34 Virgibacillus 2.15
7 Lactobacillus 2.54 Trichococcus 4.54 Marinimicrobium 3.42 Porphyromonadaceae 3.32 Bacillus 1.93
8 Proteus 1.47 Aerococcaceae 4.51 KSA1 2.83 Alcaligenaceae 3.04 Lactobacillus 0.94
9 Pseudomonas 1.18 Natronobacillus 3.39 Clostridia 2.83 Georgenia 2.49 Salinicoccus 0.88
10 Enterococcaceae 1.06 Erysipelotrichaceae 2.92 Bacillales 2.39 Bacillaceae 2.17 Lentibacillus 0.65

Total 95.66 85.05 63.36 54.99 92.88

Microbial classification at the lowest possible taxonomic level and their relative abundance in the microbiota of the samples (n = 4).
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3.4. Analysis of Microbial Diversity for between Groups

When α-diversity (Chao 1 index: richness, Shannon index: evenness) was compared among the
groups, no significant difference among groups was observed for any α-diversity index (Figure 2).
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Figure 2. Alpha diversity indices (Chao1 and Shannon) of microbial communities in the groups (n = 4).
ANOVA—analysis of variance.

Regarding β-diversity based on unweighted and weighted UniFrac distance, BSFR and poultry
were closely clustered in the principal coordinate analysis (PCoA) plots of the first three axes (axes
1, 2, and 3; Figure 3). BSFR data were located away from those of EHOW and Cow. Permutational
multivariate analysis of variance (PERMANOVA) indicated that the β-diversity in the microbiota of
the groups had differences among groups (PERMANOVA < 0.05; Figure 3).

3.5. Plant Cultivation Test 1 (Same Amount of Nitrogen)

On day five of the experiment, the germination rate for the Komatsuna seeds was lower in all
groups when starting N was 200 mg, compared to 100 mg (Table 5). BSFR showed the highest value
when starting total nitrogen was 100 mg, while horse showed the highest value for the above-ground
fresh weight of Komatsuna when starting total nitrogen was 200 mg on day 21. BSFR showed the
highest above-ground dry weight of Komatsuna regardless of the starting N amount (p < 0.05). There
was no difference in the physical appearance of Komatsuna on day 21 in A group, but EHOW revealed
smaller leaves and one pot with a low germination rate was recorded for horse (Figure 4).
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Table 5. Results of the cultivation test 1 showing germination rate, fresh weight, and dry weight
of Komatsuna.

Group EHOW BSFR Cow Horse Poultry SEM p-value

A
Germination rate (%) 72.22 70.00 67.78 72.22 70.00 3.01 0.99

Fresh weight (mg/strain) 141.36 172.10 157.49 171.49 129.60 7.41 0.29
Dry weight (mg/strain) 9.35 11.45 10.96 8.67 8.71 0.40 0.04

B
Germination rate (%) 42.22 42.22 51.11 32.22 44.44 2.59 0.25

Fresh weight (mg/strain) 68.71a 149.98bc 124.41bc 156.41c 99.48ab 9.05 <0.01
Dry weight (mg/strain) 5.09a 11.45b 9.16 10.30 7.97 0.65 <0.01

Groups A, B: Starting total nitrogen in each group was (A) 100 mg and (B) 200 mg. Different alphabet characters
indicate significant difference (Games–Howell nonparametric post-hoc test, p < 0.05). SEM—standard error of the
mean. p-values were computed by one-way ANOVAs and represent the significant differences in the results.

3.6. Plant Cultivation Test 2

On day five of the experiment, the germination rate for the Komatsuna seeds was lower in BSFR1
and poultry (p < 0.05). The total leaf number of Komatsuna on day 21 revealed the highest value for
BSFR2, while BSFR1 recorded the lowest value. On day 21, the fresh weight of the above-ground
Komatsuna plant material was highest for BSFR2, while BSFR1 and poultry recorded the lowest values
for fresh weight above-ground (Table 6). BSFR2 was the most frequently observed in Komatsuna
material on day 21 (Figure 5).
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Figure 4. Plants on day 21 of the cultivation subjected to the two N levels ((A) = 100 mg, (B) = 200 mg)
and the tested organic matrices (EHOW, BSFR, cow manure compost, horse manure compost, poultry
manure compost) (plant cultivation test 1).

Table 6. Results of the cultivation test 2 showing germination rate, total leaf number, and fresh weight
of Komatsuna.

Group Control BSFR1 BSFR2 BSFR3 Cow Horse Poultry SEM p-value

Germination rate (%) 85.00 53.75 a 73.75 75.00 78.75 86.25 b 57.50 ac 2.57 <0.01
Total leaf number 30.40 a 17.50 ab 49.20 c 47.60 c 41.80 cd 35.60 ad 10.20 b 2.50 <0.01

Fresh weight (g/plant) 1.05 a 0.60 ac 4.53 b 3.51 b 2.77 b 1.54 ac 0.39 c 0.27 <0.01

Different alphabet characters indicate significant difference (Games-Howell nonparametric post-hoc test, p < 0.05).
SEM—standard error of the mean. p-values were computed by one-way ANOVAs and represent the significant
differences in the results.
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4. Discussion

The final chemical composition of BSFR differed from EHOW and other commercial composts,
and was distanced from the other groups in the PCA plots. BSFR had a higher N and ash in its
chemical composition compared to EHOW because BSFR includes larval feces and molted residues.
Moreover, P and K were slightly lower which is possibly due to their use for larval growth. Since
BSFR was produced only by larval processing and air-drying, its final composition was similar to
poultry manure composts. However, the concentration of NO3-N in the poultry manure was higher
than NH4

+-N because it had been processed through the animal, deposited, and subsequently dried.
Conversely, BSFR showed a higher concentration of NH4

+-N than NO3-N, which is likely as BSFR
was only treated by larvae and did not experience the microbial fermentation process associated
with animal digestion and deposition. Previous reports indicate that the application of fertilizers
and manures derived from livestock excrement containing high levels of NO3-N have led to the
accumulation of NO3-N in vegetables and drinking water, resulting in health risks [19]. However, BSFR,
unlike conventional livestock manures, may be a new fertilizer with less concern of potential NO3-N
accumulation. Moreover, since higher cation exchange capacity (CEC) soil can retain ammonium ions
in the soil colloids [20,21], BSFR may be suitable in higher CEC soil. However, NH4

+-N can volatilize
as ammonia when it comes into contact with the alkaline soil, and volatilize as nitrite gas when it
comes into contact with acidic soil [20–22]. This gas can cause injury to plants (e.g., tomato, green
pepper, or eggplant) [23,24]. Hence, the application method for BSFR would be a future concern.

In the PCA, a positive correlation was observed among the analyzed properties excluding moisture,
C, C/N ratio, and EC in PC 1. Thus, PC 1 could be considered in the evaluation of the main fertilizer
nutrients for plants, such as N, P, and K. Moreover, a positive correlation was also recorded for pH,
which is acidic in the early stages of composting due to organic acids, but gradually mineralizes and
becomes alkaline [25,26]. This might indicate that the concentration of fertilizer nutrient compositions
in the samples increased as the PC value increased positively, and the pH tended to be alkaline.
Whereas, the negative values were larger in the samples with a higher C/N ratio due to the abundance
of organic matter. In general, organic wastes have high moisture and high organic matter, and if
they are applied as fertilizer without fermentation by composting, the germination of plants will be
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inhibited and their growth will be damaged [27]. Thus, higher negative PC values would indicate
that the sample is close to the unfermented condition and does not sufficiently work as a fertilizer.
In PC 2, negative correlations were found for TN, P, and EC, while positive correlations were found
for C/N ratio, Cu, and Fe. These results indicate that for PC 2, when the value of the PC increased
negatively, the sample was rich in TN and P, and the EC value was also high; when the value of the PC
increased positively, the C/N ratio was high and the Cu and Fe content were high. In PC 3, there was a
positive correlation with ammonium nitrogen, which suggests that the concentration of NH4

+-N was
higher when the PC value was positively increased. In PC 4, each sample plotted in approximately the
same position, a situation that also makes it difficult to characterize the other PC. PC 1 represents the
compost characteristics of each sample, and PCs 2 and 3 represent the detailed compost characteristics
that support PC 1.

The livestock manures are plotted at different locations in the plots of PC 1 and 2 due to their
corresponding characteristics. Despite this, they are considered ready for use as fertilizer. The plots
demonstrated that EHOW was plotted at a farther distance from the livestock manures and is not
ready for use as a fertilizer in its original condition. Although BSFR is closer to livestock manures
than EHOW, it had high moisture and a high EC value for the conditions used in this study. Therefore,
BSFR can be better processed for fertilizer use by increasing the period of larval processing, drying,
and reducing the organic matter.

The top 10 microbiota for BSFR in terms of relative abundance were similar to those in poultry, but
the structure of BSFR demonstrated a distinct composition. Unlike poultry manure, BSFR is not subject
to composting for a long period of time, which was evident from its chemical composition. This may
occur because BSFR is a dry product of animal feces. Sporosarcina, which exhibited a high abundance of
BSFR microbiota was also detected in the BSF larvae and the feed residue [11]. Hence, this suggests that
Sporosarcina originated from larvae. In the α diversity, BSFR did not show any significant differences
with other commercial composts, indicating that the diversity of constituent bacteria was similar to
commercial composts. In the β diversity, BSFR plotted at far distances from EHOW, which suggests
that changes in the constituent bacteria were caused by larval processing. Moreover, although BSFR
plotted near horse, it was plotted closest to poultry, indicating that the microbiota of BSFR was closest
to that of poultry manure, similar to the results of the top 10 bacterial composition.

It is important to determine whether BSFR is safe for plant and human health when considering
its use as a fertilizer. The abundance of Escherichia in EHOW was reduced by larval processing, which
confirms that BSFR can be used as a fertilizer, in addition to a commercial compost. However, caution
should be taken in the application of BSFR as a fertilizer for vegetables of Brassicaceae, vineyards, or
citrus orchards, as Xanthomonadaceae was recorded in high abundance in the microbiota of BSFR.
This family includes two genera Xanthomonas and Xylella which can cause disease in plants [28–31].

In the Komatsuna cultivation test, there was no difference in the germination rate for standard
condition A when fertilizer was applied to a starting total of 100 mg of total nitrogen per pot. Although
BSFR contains Xanthomonadaceae, which includes a potentially disease-causing bacteria, no pathogens
were observed in the Komatsuna during the cultivation test and they appeared to grow normally.
Moreover, under condition A, the highest values for the fresh and dry weights of the Komatsuna were
from BSFR. Hence, BSFR can be applied as a commercial fertilizer if the amount of nitrogen is adjusted
to standard application levels. The conversion of organic waste into BSFR by BSF larvae is better than
using organic waste as fertilizer directly as the germination rates of EHOW and the BSFR Komatsuna
were almost the same under condition B. However, the fresh and dry weights for the day 21 EHOW
and BSFR Komatsuna were more than twice as high in the initial BSFR group. The common fertilizer
values (nitrogen, phosphorus, and potassium) and the values of other chemical compositions that were
altered by larval processing may have affected Komatsuna growth. This is strongly suggested by the
weakly acidic pH that is suitable for growing plants but was only recorded in EHOW [16], as well as
the fresh weight which was the lowest of all groups. Therefore, rather than directly using the organic
waste as a fertilizer it is beneficial in plant production to use organic waste as feed for BSF larvae and
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then use the residue as fertilizer. Under the conditions of the present study, it is evident that if BSFR is
applied at 1/20 of the amount of soil, then there is no yellowing of leaves due to nitrogen deficiency,
which was observed in the horse group. This result was also apparent when BSFR was applied at 1/30
of the amount of soil. The germination of Komatsuna was inhibited when 1/10 of the amount of BSFR
was applied to the soil. These results indicate that applying such a large amount of BSFR to the soil is
not recommended. This recommendation is further reinforced as BSFR recorded the highest EC value.

5. Conclusions

In summary, BSFR derived from EHOW could be an incomplete compost based on its chemical
composition for short term larval processing. This process mainly focuses on larvae production, but it
contains a significant amount of ammonium nitrogen which could be an effective N source for plant
nutrition. This may reduce environmental pollution of nitrates in the soil, which is typical of several
composts that are not properly stabilized. However, the presence of plant pathogens in the BSFR
microbiota needs to be considered. The effects of BSFR on the environment, soil microbial community,
and plant productivity require more detailed investigation in a mid-term experiment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/12/4920/s1.
Table S1: Spearman rank-order correlation coefficients of the chemical composition of the samples. Table S2:
Component Matrixa of the variables.
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