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Abstract: Structural properties and water dissolution of six sodium–aluminum–phosphate (NAP)
glasses have been investigated before and after irradiation by a gamma-ray source based on 60Co.
Two of these samples were of simple composition, and four samples had a complex composition with
radionuclide simulants representing actinides, fission, and activated corrosion products. Samples of
the simple composition are fully vitreous, whereas samples of the complex composition contained up
to 10 vol.% of aluminum–phosphate, AlPO4, and traces of ruthenium dioxide, RuO2. Based on the
study of pristine and irradiated glasses, it was established that the radiation dose of 62 million Gray
had practically no effect on the phase composition and structure of samples. At the same time, the rate
of leaching of elements from the irradiated samples by water was decreased by about two times.

Keywords: highly radioactive waste; immobilization; matrix; sodium–aluminum–phosphate glass;
properties; irradiation; leaching resistance.

1. Introduction

Nuclear energy is an important source of electricity and a key component of low-carbon energy.
In 2018, 450 nuclear power reactors with a total installed capacity of 396 GW€ generated 10% of all
electricity in the world, including one-third of low-carbon power generation [1]. In OECD countries,
the USA, and Russia, 18–20% of electric energy is produced at nuclear power plants. In France,
the amount increased to over 70% [2]. Nuclear energy also has other applications—production of
isotopes for various purposes [3], heat generation, desalination, etc. Its negative side is associated with
the accumulation of spent nuclear fuel (SNF) and radioactive waste (RW). Up to 12,000 tons of SNF are
produced in the world each year, whereas a PWR-VVER type reactor generates annually 25–30 tons
of SNF [1,4]. By 2014, about 370,000 tons of SNF had already been produced, of which almost a
third was reprocessed [5]. A closed nuclear fuel cycle with SNF reprocessing is being implemented
in Russia, France, United Kingdom, China, whereas in Canada, Sweden and Finland, South Korea,
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Germany, and some other countries, the emphasis is on an open cycle with SNF disposal without
reprocessing [6–8].

The volumes of SNF and RW resulting from the SNF reprocessing will inevitably grow over
time [9]. The reprocessing is accompanied by the generation of liquid radioactive waste, including
high-level waste (HLW) in an amount of 13–31 m3 per ton of SNF [10]; after evaporation, its volume is
reduced to 250 L [3]. Liquid HLW are isolated in vitreous matrices: Sodium–aluminum–phosphate
(Na–Al–P) glasses in Russia [11–15], and alkali-borosilicate (A-B-Si) glasses elsewhere [16–24]. By 2013,
about 30,000 tons of vitrified HLW had been accumulated [6,8,25,26]. Taking into account the current
rates of SNF reprocessing and solidification of liquid HLW, at present, the total volume of nuclear
waste glass can be estimated as 35,000 tons with an approximate weight ratio between Na–Al–P and
A-B-Si glasses of 20% to 80%. SNF and RW management in Russia is described in national reports on
fulfilling obligations arising from the Joint Convention on the Safety of Spent Fuel and Radioactive
Waste Management [27–29]. For SNF reprocessing PUREX technology developed at the end of the
1940s in the USA to extract fissile Pu isotopes for military applications is used [30]. The amount of SNF
in the Russian Federation at the end of 2016 reached approximately 22500 tons, of which about 2/3
were from RBMK and 1/3 was from VVER reactors. The reprocessing of SNF of VVER-440, BN-600 and
research reactors is carried out at the RT-1 “Mayak” reprocessing plant; about 6000 tons of SNF have
been processed to date. Up to 200 tons of the SNF per year is reprocessed now. Recently reprocessing
SNF of VVER-1000 and defective SNF of RBMK-1000 have also been started at this plant. Federal State
Unitary Enterprise (FSUE) “MCC” has a facility for reprocessing of 5 tons VVER-1000 SNF per year
and in 2021 its second stage is expected to launch its productivity to 250 tons of SNF per year [29].
Given the import of SNF from Russian-designed reactors from abroad, the rate of accumulation of
spent nuclear fuel in Russia is much higher than the rate of reprocessing. However, according to the
planned upgrade of the reprocessing plants, it is assumed that by 2030 the rate of reprocessing of SNF
in Russia will exceed the rate of its formation. At the same time, this will greatly increase the volume
of vitrified HLW.

The composition of SNF depends on the type of reactor, the composition of the initial fuel,
its burnup and storage time [5,6,9]. Radionuclides in SNF are represented by fission products, actinides
(uranium and newly formed radioisotopes), activated elements of fuel assemblies and construction
materials involved [6,22,23]. The main fission products include rare earth elements (REE), Zr, Mo, Tc,
Ru, Pd, Cs, Sr, Rh, Te, Xe, Kr, I. Among them, REE accounts for 25 wt.%, Platinoids—16%, Zr—15%,
Mo—12%, Cs—6% [3]. After three years of storage of SNF with a burnup of 33 GWd/t (at 3.5% initial
enrichment of 235U), the content, in kg per ton of SNF, [23] is: alkalis (Cs, Rb)—3, alkaline earths (Sr,
Ba)—2.4, rare earths (mainly light, Ce groups)—10.2, transition 4d-metals (Mo, Zr, Tc)—7.7, noble
metals of the platinum group (Ru, Rh, Pd)—3.9, as well as 0.5 kg of Se and Te, 0.2 kg of I and Br; Ag,
Cd, Sn, Sb make another 0.1 kg. These proportions are largely inherited into liquid HLW after SNF
reprocessing [3,10,17], where various technological impurities are also present. In RW, in particular,
there are [23]—19 wt.% of transition metals (Mo, Zr, Tc, etc.), 18% of REE (La, Ce, Pr, Nd, Sm), 10%
alkaline (Gs, Rb) and alkaline-earth (Sr, Ba) elements, 7% platinoids (Ru, Rh, Pd), 2% of minor actinides
(Np, Am, Cm), up to 1% Se and Te, the remaining 43 wt.% on Fe, Ni, Cr, Na, P, and a number of less
significant elements.

Investigations are underway to support available vitrification technologies and develop improved
borosilicate and aluminum-iron phosphate glasses in order to prove the possibility of reliable
immobilization of HLW. The compositions of the modernized glasses differ from the traditional
ones in the ratio of the main components. They additionally include HLW components such as oxides
of Cs, Sr, Ba, Nd, Cr, Zr, Ru, and U. To determine the suitability of such glasses for immobilization
and disposal of HLW, it is necessary to study their thermal and radiation resistance and influence of
radiation on durability at interaction with water. There are many works on this topic for borosilicate
glass matrices, whereas for sodium–aluminum–phosphate glasses, such data are contained in very few
publications [11].
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The main dose rate from HLW is alpha, beta and gamma rays emitted from the decay of
fission products. To study the resistance of the glasses to gamma radiation, high activity 60Co
sources are used. In this paper, we studied the effect of γ-radiation on properties of nuclear waste
sodium–aluminum–phosphate (NAP) glasses—their structure and resistance to leaching in the water at
25 and 90 ◦C. Effects of irradiation on properties of NAP glasses of various compositions are compared
with previous studies reported in the literature. The aim of this work is to study the effect of radiation
(γ-irradiation from 60Co source) on the structure and properties of two groups of nuclear waste NAP
glasses. Samples of the first group—“simple composition”—comprise only principal components of
the glass matrix (oxides of Na, Al, Fe and P), serving as reference material. Glasses of the second
group—“complex composition”—contain simulants of HLW with respective changes in the content of
the major elements (Table 1).

Table 1. Compositions of the NAP glasses investigated, wt.% (SEM/EDS)*. NAPas0 (NAPcm0)—pristine
glass of simple and complex (in brackets) composition. NAPas1 (NAPcm, NAP1, NAP2)—the same
samples after gamma irradiation up to a dose of 6.2 × 107 Gy by 60Co source.

No. Na2O Al2O3 Fe2O3 P2O5 CaO NiO La2O3 Cr2O3 MnO RuO2 UO2

NAPas0 22.3 9.2 15.6 52.1 - - - - - - -
NAPas1 22.1 9.2 15.2 52.4 - - - - - - -
NAPcm0 26.2 15.6 1.3 53.4 0.9 0.4 0.3 0.3 0.3 0.5 * 1.4
NAPcm 26.4 14.4 1.3 54.2 0.9 0.3 0.5 0.4 0.2 0.5 * 1.3
NAP1 26.7 14.7 1.4 53.8 0.9 0.3 0.4 0.2 0.3 0.5 * 1.3
NAP2 24.9 16.2 1.5 53.6 0.9 0.4 0.4 0.4 0.4 0.5 * 1.2

Mayak 1 23.5 15.8 1.6 53.3 1.0 0.3 0.1 0.4 - - -

* 0.4–0.7 wt% of SiO2 and 0.4–0.5 wt.% K2O are also present in all samples. Dash—not added, the ruthenium content
in the samples according to SEM/EDS is below the detection limit (0.2 wt.%). The value of 0.5 wt.% is estimated
from the data on the area fraction of the RuO2 phase in SEM images, see text. 1 model composition of vitrified HLW
of FSUE “Mayak” [13]. Other elements, in wt.%: 0.5 Cs2O, 0.5 ZrO2, 0.6 Cе2О3, 0.5 Nd2O3, 0.5 MoO3, 0.4 SO2.

2. Materials and Methods

The NAP glasses studied in this work, potentially suitable for isolation of historical (legacy)
HLW of FSUE “Mayak”, were synthesized in corundum crucibles as follows. The glass batch mixture
was heated to 1100 ◦C at a rate of 10–30 ◦C/h; for complete homogenization, the melt was held for
2 hours and quenched. The glass was cooled in the isothermal annealing mode. The compositions of
glasses of simple and complex composition are summarized in Table 1. The composition of simulant
sodium–aluminum–phosphate glass of FSUE “Mayak” [13] is also presented. Glass samples (Figure 1)
are visually translucent, opaque, possess green or dark green color and a conchoidal fracture.
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Figure 1. Photos of samples investigated (monolithic and powdered for analysis): NAPas0, NAPas1, 
NAPcm0—pristine, and NAPcm1, NAP1, NAP2—irradiated. The scale is in cm. 
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Figure 1. Photos of samples investigated (monolithic and powdered for analysis): NAPas0, NAPas1,
NAPcm0—pristine, and NAPcm1, NAP1, NAP2—irradiated. The scale is in cm.

The radiation durability of HLW glasses is one of the important criteria for acceptability of
high-level radioactive waste for geological disposal (Class 1 in Russian classification, vitrified HLW
of FSUE “Mayak” and Mining and Chemical Combine). Radiation durability is the maximum dose
at which there is practically no change in the structure, chemical and mechanical strength of the
immobilized RW. For instance, after gamma irradiation with a dose of 108 Gy, the glass uniformity
should be maintained in the volume of the glass block as controlled by X-ray phase analysis, and changes
in the content of the main components in the glass composition should be less than 10% [31].

In order to verify compliance with regulatory requirements, the glass samples were irradiated
with a dose of 6.2 · 107 Gy, which is close to that specified by regulatory requirements [31], at the
RHM-gamma installation of FSUE “RADON”. The dose rate of irradiation was 1 · 104 Gy/h. No thermal
(overheating) effects were observed during or after irradiation. Analyses of both unirradiated (pristine)
and irradiated samples were performed on a GSM 5610LV scanning electron microscope (SEM)
equipped with energy dispersive (EDS) detector.

The phase composition of unirradiated and irradiated NAP glasses were studied by the
X-ray diffraction method, infrared and Raman spectroscopy and scanning electron microscopy.
X-ray diffraction measurements were performed in the Bragg—Brentano geometry (“reflection”) on an
EMPYREAN diffractometer using Ni filtered CuKα radiation. An X’Celerator linear semiconductor
detector was used. Samples were mechanically grounded and placed on a zero-background holder
made of single-crystal silicon. No binders were not used; the samples were wetted with ethanol
to prevent loss during the measurements. HighScore software and PDF2 database (International
diffraction data center, ICDD) were used for data analysis.

Raman spectra of the samples investigated were recorded on a Senterra (Bruker) spectrometer;
for excitation laser with a wavelength of 532 nm was used. Infrared spectra were obtained on a
SpectrumOne IR® spectrometer (Perkin Elmer). For some samples, spectra were also recorded using
an AutoImage IR microscope. To record the absorption spectra in the infrared region, the powders
were pressed into KBr tablets.

Chemical resistance of NAP glasses was analyzed using standard Russian test protocols [32,33].
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3. Structural Properties of the Glasses before and after Irradiation

3.1. SEM/EDS Data

Samples of simple composition (NAPas0, NAPas1) before and after irradiation are composed only
of the glassy phase, the composition of which does not change as a result of irradiation. According to
SEM/EDS analysis, they comprise (in descending order): P2O5, Na2O, Fe2O3, Al2O3, the amount of
SiO2 and K2O oxides is at the detection limit, that is, their presence in the samples shall be checked by
more accurate methods. Samples of NAPas0 and NAPas1 glasses are homogeneous with only vitreous
phase seen (Figure 2), whereas in samples of the complex composition (NAPcm0, NAPcm, NAP1,
and NAP2) in addition to glassy phase, there are crystalline phases: aluminum orthophosphate and
ruthenium dioxide (Figures 3 and 4).
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Figure 3. SEM images of the samples: (a) NAPas1 glass that is seen practically homogeneous; (b) NAPcm
glass with gray areas that belong to vitreous phase, dark gray—to aluminum orthophosphate (AlPO4,
phosphotridimite), and small white particles—to ruthenium dioxide, RuO2. These phases are confirmed
by joint data of SEM/EDS analysis and XRD investigation.

The compositions of the glassy phase of samples NAPas0 and NAPas1, measured in rectangular
areas like those, as shown in Figure 2, are given in Tables 2–4. The detection limit of elements
is 0.3–0.5 wt.% in light elements (Na, K, Al, Si) and 0.1–0.2 wt.% in heavy elements (Ru, Ln, U).
No ruthenium was detected in the glass matrix (its amount is below the detection limit, 0.2 wt.%).
Due to very low solubility in the glass [11,20], the main fraction of this element formed oxide precipitates.
These particles, as well as Mo-based grains, can merge into large aggregates and settle to the bottom of
the furnace, eventually leading to failure of the electrodes of the industrial vitrification furnace EP-500
at FSUE “Mayak”. They can also serve as centers for phosphate phases (monazite) crystallization in
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the glass matrix of HLW during storage and heating, due to the decay of short-lived radionuclides of
fission products (Cs, Sr, Ln, etc.).
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Na2O 22.3 22.4 22.4 22.3 22.6
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Table 3. Composition of NAPas1 glass (after irradiation), SEM-EDS data (Σ = 100 wt.%).

Oxide, wt.% Spectrum 1 Spectrum 2 Spectrum 3 Spectrum 5 Spectrum 6

Na2O 22.1 22.4 22.4 22.3 22.8
Al2O3 9.2 9.4 9.3 9.3 9.3
SiO2 0.7 1.2 0.3 0.4 0.2
P2O5 52.4 51.8 51.8 51.9 51.5
K2O 0.5 0.4 0.5 0.5 0.6

Fe2O3 15.2 14.8 15.7 15.7 15.6

Table 4. Composition of NAPcm0 glass (before irradiation), SEM-EDS data (Σ = 100 wt.%).

Oxide, wt.% Spectrum 15 Spectrum 16 Spectrum 17 Spectrum 18 Spectrum 19

Na2O 26.2 26.7 26.1 26.7 26.7
Al2O3 15.6 15.0 15.2 15.1 14.9
SiO2 bdl * bdl bdl 0.3 bdl
P2O5 53.4 53.7 53.9 53.4 53.2
CaO 0.9 0.9 0.8 1.0 1.1

Cr2O3 0.3 0.2 0.3 0.4 0.3
MnO 0.3 0.4 0.3 0.4 0.3
Fe2O3 1.3 1.2 1.2 1.2 1.4
NiO 0.4 0.4 0.4 0.4 0.4

La2O3 0.3 0.3 0.5 0.3 0.6
UO2 1.4 1.2 1.3 1.0 1.1

* bdlbelow detection limit (0.3 wt.%).
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The composition of aluminum orthophosphate phase in the initial (unirradiated) glass NAPcm0,
as shown in Figure 4a, is given in Table 5.

Table 5. Composition of orthophosphate phase particles in NAPcm0 glass (before irradiation).

Oxide, wt.% Spectrum 20 Spectrum 21 Spectrum 22 Spectrum 23 Spectrum 24

Na2O 0.4 0.3 0.2 0.2 0.4
Al2O3 41.8 41.4 42.1 42.0 41.5
P2O5 57.4 58.2 57.5 57.8 57.8
Fe2O3 0.3 0.2 0.2 0.0 0.3

On the EDS spectra of ruthenium-rich particles (Figure 4b), low-intensity peaks of other elements
of—C, Na, Al, P—are observed. Carbon is associated with its deliberate deposition on the surface of
samples for analysis, whereas the presence of other elements is associated with a partial capture of
the surrounding glass matrix by the electron beam. Oxygen is a component of these particles; that is,
the ruthenium phase is represented by its oxide. This conclusion is confirmed by the XRD results.
SEM investigations have not revealed any structural (Figure 5) and compositional (Table 6) difference
between unirradiated and irradiated glasses.
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Figure 5. SEM images of the irradiated NAP1 and NAP2 glasses: (a) NAP1 glass, where gray—glass,
dark—AlPO4 (phosphotridimite), small white particles—ruthenium dioxide; (b) NAP2 glass with
white colored RuO2 particles in gray glass. Rectangles indicate measurements areas.

Table 6. Compositions of irradiated NAP1 (Spectra 27–31) and NAP2 (Spectra 55–58) glasses, SEM/EDS
data (Σ. = 100 wt.%).

Oxide, wt.% Sp. 27 Sp. 28 Sp. 29 Sp. 30 Sp. 31 Sp. 55 Sp. 56 Sp. 57 Sp. 58

Na2O 26.7 26.8 26.7 26.9 26.5 24.9 25.2 25.0 24.9
Al2O3 14.7 14.8 14.9 14.6 14.9 16.2 16.7 16.0 16.5
P2O5 53.8 53.7 53.9 53.4 53.2 53.2 53.2 53.2 53.2
CaO 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.0

Cr2O3 0.2 0.4 0.4 0.3 0.3 0.4 0.3 0.4 0.3
MnO 0.3 0.3 0.3 0.2 0.3 0.4 0.3 0.3 0.3
Fe2O3 1.4 1.3 1.2 1.5 1.2 1.5 1.4 1.5 1.2
NiO 0.3 0.3 0.3 0.5 0.4 0.4 0.4 0.4 0.5

La2O3 0.4 0.7 0.6 0.5 0.5 0.4 0.5 0.2 0.5
UO2 1.3 1.3 1.3 0.9 1.4 1.2 1.4 1.3 1.2

Thus, the main difference in the structure of the initial (unirradiated) glasses of simple (NAPas0)
and modified (NAPcm0) compositions is that the latter, in addition to the glass matrix, contains
crystalline phases: aluminum–phosphate and ruthenium–oxide. The crystalline phases are clearly
visible on the cleaved surface of the glass.
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According to SEM studies, both samples of simple composition—pristine (NAPas0) and irradiated
(NAPas1) are composed of homogeneous glass phase only. The modified compositions are characterized
by the appearance of a small amount (<10 vol.%) of two crystalline phases—phosphotridmite (dominant)
and ruthenium dioxide. The appearance of the latter is due to the extremely low solubility of this element
in the studied aluminum–phosphate glass. The study of the evolution of the molten ternary system
Na2O–Al2O3–P2O5 on cooling [34] showed the possibility of the formation of several polymorphs of
the AlPO4 phase with different structures: P-cristobalite, P-tridimite, berlinite. Crystallization of AlPO4

can begin in the melt in the furnace with a Na2O content of less than 5 mol% and then continue when
the melt (glass) cools down after pouring into canisters. In general, phosphotridimite and alkaline
aluminum (iron) phosphates are typical products arising from the partial or complete crystallization
of phosphate glass matrices [35–45]. At high contents of light rare earths (the Ce group), lanthanide
phosphate with the structure of monazite appears, REE solubility in the aluminum–phosphate melt is
determined as few wt.% [11,42,43].

Differences in the structure of irradiated (NAPas1, NAPcm) and unirradiated (NAPas0, NAPcm0)
glasses of the same composition were not observed by scanning electron microscopy. The appearance
of aluminum–phosphate and RuO2 is also characteristic of these glasses of the complex composition,
both pristine (initial) and irradiated as well.

3.2. X-ray Diffraction

Despite adequate measurements duration and averaging over two or more independent
experiments, the signal-to-noise ratio for most samples is relatively poor, which is explained by
the small volume fraction of crystalline phases. High background signal level increasing with the
diffraction angle is due to fluorescence of the iron admixture.

From the XRD data, the samples studied can be confidently divided into two groups. The first
group includes glasses of simple composition—NAPas0 and NAPas1, in which no crystalline phases are
observed. There is no noticeable difference between the irradiated and initial samples. All other samples
with complex composition contain both an amorphous component (glass) and crystalline phases.
Composition of the crystalline phases is the same for all studied samples (Figure 6). The predominant
phase is orthorhombic AlPO4 (phosphotridimite) (ICDD card 00-048-0652); the second crystalline
phase is ruthenium oxide (RuO2) (card 01-070-2662).Sustainability 2020, 12, x FOR PEER REVIEW  9 of 23 
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In general, according to the XRD data, no significant differences between glasses of the same
composition before and after irradiation were revealed.
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3.3. Raman and Infrared Spectroscopy

Both Raman and infrared spectra have revealed no differences between the spectra obtained on
nonirradiated and irradiated samples, which indirectly indicates sufficiently high radiation stability of
the material. Details are given in Appendix A.

4. Leaching and Dissolution

4.1. Hydrolytic Durability

Hydrolytic stability of aluminum–phosphate glass matrices was reported in References [11,44–47].
However, very few publications are devoted to the effect of self-irradiation of the glasses on structure
and properties [11]. Therefore, analysis of the effect of irradiation on the leaching of glass matrices is
the most important part of this work. To assess the chemical (hydrolytic) stability of glasses of different
compositions, leaching experiments were performed. The leaching of glass samples (NAPas0, NAPas1,
NAPcm0, NAPcm1, NAP1 and NAP2) was carried out in the water in autoclaves at 90◦C; the solution
was changed after 1, 3, 7, 10, 14, 21, and 28 days. Besides, similar leaching tests were carried out for
samples NAPcm0 and NAPcm1 at 25◦C. Due to the small amount of material and difficulties in the
preparation of monolithic cubic or parallelepiped specimen, the samples were crushed. The particle
size fraction in each sample was selected using sieves with mesh sizes of 0.16 mm and 0.071 mm.
From average particles size, the surface area of the powdered glass (S) in runs was estimated to be
200 cm2.

Analysis of solutions after experiments on interaction with glass was carried out by inductively
coupled plasma mass spectrometry on an X-Series instrument at the GEOKHI RAS (Vernadsky Institute
of Geochemistry and Analytical Chemistry of Russian Academуof Sciences).

Let us denote the time at which the water was replaced (and the aliquot of the solution for analysis
was taken) as {ti, i = 1, ..., 7}; t0 = 0. Then, for the time interval between ti−1 and ti, the differential
dissolution rate of the glass, normalized by one of its main structural elements, is determined as

JEl =
CElV

S(ti − ti−1)mEl
, (1)

where CEl is the concentration of the glass element, which determines the normalized dissolution rate;
V is the volume of the autoclave; S is the total surface area of the particles, mEl is the mass fraction of
the element El in the glass. Since JEl is the average value of the normalized dissolution rate in the time
interval between ti−1 and ti, when determining the function JEl(t), it is approximately attributed to the
middle of this interval, i.e., at time τi = (ti−1 + ti)/2, since the smooth function is assumed.

Data on integral dissolution rates of the glasses investigated are presented in Appendix B. A typical
dependence of the normalized dissolution rate of glasses on time is shown in Figure 7.

In general, all values of JEl decrease with time, which is consistent with the simplest diffusion
models for the advancement of the leach front. However, at τi = 8.5 days, a local maximum occurs.
Such jumps in JEl values were noted in many studies on the leaching of borosilicate glasses [26,48–52];
they are termed as leaching resumption stage. The presence of these events is typically explained by
redeposition of sparingly soluble matrix components as secondary phases. The formation of these
phases circumvents the protective effect of the altered glass layer, which acts as a barrier against
leaching [53,54]. However, this explanation cannot be considered exhaustive, since in many works,
the effect of leaching recovery was not observed, although secondary phases were also deposited on
the glass surface. An alternative explanation is the formation of micro-cracks on glass surface [26].
In the case of investigated NAP glasses, the presence of the local maximum is neither an artifact nor a
random deviation, as proved by maxima of JEl(t) in experiments with other glasses (Figure 8).
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In all the samples studied the mass fraction of phosphorus is approximately the same. In addition
to the presence of modifiers in samples NAPcm, NAPcm0, NAP1 and NAP2, significant differences of
these four types of glasses from samples NAPas0 and NAPas1 relate only to the ratio of mass fractions
of sodium and aluminum. Analysis of values of JEl (t) in these two groups of glasses shows that
glasses with a higher mass content of aluminum dissolve more slowly in water, i.e., have smaller JEl(t)
(Figure 8).
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Analysis of JEl(t) over the entire range of time values shows that for all t, the ratio JEl(t) for sample
NAPas1 and samples NAPcm, NAPcm0, NAP1, and NAP2 for all elements for which the normalized
dissolution rate was calculated, has close values apart from the unreliable value of JEl(t) for NAPcm0.
The dependence of JEl(t) on the ratio of sodium and aluminum in phosphate glasses has the form

JEl(t) = J0
El(t)f(mNa/mAl), (2)

where J0
El(t) is a function that does not depend on the ratio mNa, mAl, e.g., mass fractions of sodium

and aluminum in glasses.
Dependences JEl(t) are satisfactorily approximated by power functions of the form (see Figure 7):

JEl(t) =
A

t0.6 , (3)

where A is a coefficient depending on a certain element by which the normalized dissolution rate
of the glass is calculated, and on the ratio of the mass fractions of sodium and aluminum in the
glass composition. Values of normalized dissolution rates calculated for different elements satisfy the
inequalities:

JAl(t) < JP(t) < JNa(t). (4)

This seems to be well justified: Sodium passes into solution more easily than phosphorus, and that,
in turn, is easier leached compared to aluminum. If values of JNa(t) are used in the estimate of the safety
of repositories to calculate leaching rates, then this estimate will be conservative (i.e., pessimistic).
In this regard, it seems appropriate to find such a form of the analytic function Jappr

Na (t) that approximates
with satisfactory accuracy (with the mean-squared error of about 30%) the dependences obtained from
experiments in the entire range of ratios mNa and mAl studied. Accounting for Equation (2), we seek
this analytical approximating dependence in the form

Jcalc
Na (t, mNa/mAl, a, b) =

a
t0.6 exp

{
b(mNa/mAl − 2.5)

}
, (5)

where a, b are unknown parameters that we will determine by the least-squares method [55] from
the condition

Φ(a, b) =
∑

mNa/mAl

5∑
n=1

[
Jcalc
Na (tn, mNa/mAl, a, b)/Jexper

Na (tn, mNa/mAl) − 1
]2
→ min (6)

The procedure for finding the minimum of the function Φ was carried out by the gradient method
with the control of convergence as follows [53]. The initial approximation was set: a0 = 9 · 10−5, b0 = 0.8
Then, with the known n-th approximation—an, bn—the (n+1)-th approximation was determined by
the formulae

an+1 = an −
∂Φ
∂a

δn, bn+1 = bn −
∂Φ
∂b

δn (7)

Here we have
δn =

1
2m min

{
|an|

|∂Φ/∂a|
,

|bn|

|∂Φ/∂b|

}
(8)

where m is the minimum positive integer under which the condition for convergence of the method
is satisfied:

Φ(an+1, bn+1) < Φ(an, bn) (9)



Sustainability 2020, 12, 4137 12 of 23

The minimum function Φ (a,b) found in this way from the data on the leaching rate of Al is
reached at a = 1.183·10−4, b = 0.75. Therefore, if we substitute these values of the parameters into
dependence (5), it will have the form

Jcalc
Na (t, mNa/mAl, a, b) =

0.0001183
t0.6 FNa,Al (10)

where [JNa] = g/cm2
· day, [t] = day, FNa,Al = exp{0.75mNa/mAl − 1.875}. The calculated dependence (9)

is compared with the experimental data on the leaching of glasses (Figure 9) and shows a satisfactory
accuracy of the approximation of experimental data by power functions.

The temperature has a significant effect on the leaching of sodium–aluminum–phosphate
glasses [54]. A comparison of the JEl(t) dependences obtained on the NAPcm0 sample in experiments
at 90 ◦C and 25 ◦C for different structural elements of glass is shown in Figure 10.

The dependence of leaching rates on temperature, as well as the intensity of many chemical
reactions, can be described by the Arrhenius formula:

JEl(T) = J· exp
{
−

Ea

RT

}
, (11)

where Ea is the activation energy, and R is the gas constant (R = 8.3 J/(mol · K)).
As noted above the final portion of JEl(t) dependences of NAPcm0 can be ignored. Thus,

for calculating the JEl(t) ratios at different temperatures, only two time points remain, e.g., 5 and
8.5 days. The values of the relations JEl(t) at different temperatures T at these points are given in Table 7.
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(6) NAP2.
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Table 7. JEl(t) ratios at temperatures of 90 ◦C and 25 ◦C for NAPcm0 glass.

Element t = 5 Days t = 8.5 Days

Al 4.07 3.30
Na 3.51 4.50
P 3.12 3.23

The average value over Table 7 is 3.62. Then we get from expression (11) ln 3.62 = Ea
R

(
−

1
363 + 1

298

)
,

therefore for glass NAPcm0 we obtain Ea = 17.7 кJ/(mol · К). In a similar manner, we consider the
JEl(t) ratios at temperatures of 90 ◦C and 25 ◦C of NAPcm1 glass. These data are given in Table 8.
The average over Table 8 value of the ratio of leaching rates at 90 ◦C and 25 ◦C, in this case, is 3.92.
Hence, the activation energy of dissolution of glass NAPcm1 is Ea = 18.9 kJ/(mol · K). This value is close
to the previously calculated value of 17.7 kJ/(mol · K) for NAPcm0, which supports the correctness of
the results. Note, however, that these activation energies are significantly lower compared with those
in borosilicate nuclear waste glasses, which are more durable in water [56].

Table 8. JEl(t) ratios at temperatures of 90 ◦C and 25 ◦C for NAPcm1 glass.

Element t = 5 Days t = 8.5 Days t = 12 Days

Al 4.83 4.85 5.04
Na 3.80 3.75 3.28
P 3.35 3.06 3.30

4.2. Effect of γ-Radiation on Dissolution of Glass

Effects of irradiation of glasses on their dissolution behavior remain insufficiently studied,
but recent works on International Simple (borosilicate) Glass showed that it is indeed necessary to take
into account radiation damage effects in the prediction of water-glass interaction in HLW repository [57].
The absolute majority of irradiation experiments employ much higher dose rates than is expected in
real HLW. Whereas, the dose-rate effect is difficult to estimate consistently, one can reasonably expect
that higher rates may alter the mechanism of radiation damage (e.g., cascade overlap vs. defects



Sustainability 2020, 12, 4137 14 of 23

accumulation) and influence recovery kinetics. Presumably, in most cases, the influence of high dose
rates on dissolution in irradiation experiments will be larger than in real HLW glasses.

Only very few studies addressed the effects of irradiation on properties of aluminum–phosphate
glasses. In Reference [58] it was shown that during electron irradiation of aluminum–phosphate glass
gas bubbles were formed even at low doses (0.8 · 1023 electrons/m2). As the absorbed dose increases,
the bubbles grow, and they move towards the glass surface. At a dose of 2.2 · 1026 electrons/m2

(6.6 · 1011 Gy) all bubbles leave the glass sample. With further exposure of the glass to a dose of
4.5 · 1026 electrons/m2, areas enriched in Al and P appeared. Sodium–aluminum–phosphate glasses
were irradiated to a dose of 108 Gy (electrons and γ-photons), and up to 2 · 1018 α-decays/cm3 [11].
These values are close to the radiation dose that real vitrified HLW will receive in 10,000 years. Study of
the irradiated glass samples by X-ray diffraction analysis, nuclear magnetic resonance and electron
paramagnetic resonance, showed absence of changes in the matrix structure [11]. It was also found
that in experiments lasting one day, the rate of Na leaching at room temperature increases with the rise
of radiation dose up to 108 Gy, but its value remains constant or slightly decreases after 30 days of
interaction, amounting to 4 · 10−7 g/(cm2

·day). The damage during gamma-irradiation is mostly due to
Compton electrons, thus, the studies employing electrons mentioned above are fully relevant.

A comparison of data on the dissolution of NAPas0 and NAPas1 glass samples is shown in
Figure 11. On a logarithmic scale, the dependency graphs JEl(t) for the same structural elements
obtained on samples NAPas0 and NAPasa1 run approximately parallel to each other. This suggests
that over the entire time range, the ratio JEl(t) obtained for the initial and irradiated glasses remains
roughly the same. The ratios of values of JEl(t) obtained on samples of the pristine NAPas0 and
irradiated NAPas1 glasses at 90 ◦C are given in Table 9. The average value over the whole table is 2.03;
the data of Tables 8 and 9 compared in Figure 11.Sustainability 2020, 12, x FOR PEER REVIEW  15 of 23 
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Table 9. Ratios of dissolution rates JEl(t) of nonirradiated NAPas0 and irradiated NAPas1 glasses.

Element t = 0.5 Days t =2 Days t = 5 Days t = 8.5 Days t = 12 Days

Al 1.98 2.51 1.63 1.64 1.44
Na 1.51 2.41 1.98 2.48 2.22
P 1.74 2.41 1.98 2.51 2.08

Figure 12 shows that the JEl/JEl0 ratios obtained on samples NAPas0 and NAPas1 remain close to
2 through the entire studied range of duration of runs.
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Thus, as a result of γ-irradiation, the leaching rate of the sodium–aluminum–phosphate glass has
averagely decreased by about 2 times. This can be caused by undetectable structural changes such as
radiation-induced annealing that occurs in some other type of glasses [22]. Much higher effect on the
deterioration of properties of the aluminum–phosphate vitreous waste form, including their solubility
in hot water, is observed due to glass crystallization in temporary storage and after ultimate disposal
in deep underground repository [11,14,15,36–40,43–45].

5. Conclusions

Six samples of glasses used in Russia for HLW immobilization were investigated before and
after irradiation. The studied sodium–aluminum–phosphate glasses studied are divided into two
compositional groups: Group 1—samples NAPas0 and NAPas1, which are glasses of simple
composition (i.e., only principal oxides); group 2—samples NAPcm0, NAPcm, NAP1, NAP2—glasses
of a modified composition with additives of radionuclide simulants. Each group contains one
unirradiated sample and the same samples after their irradiation to a dose of 62 MGy at the gamma
source of FSUE RADON.

Using SEM/EDS, XRD, Raman, and infrared spectroscopy, it was established that samples of
the simple composition of group 1 are composed only of the glass matrix. In samples of group 2,
in addition to dominating glass matrix, precipitates of the crystalline phases (up to 10 vol.%) of
aluminum–phosphate, and a small amount (a fraction of vol.%) of ruthenium dioxide are observed.
Dissolution behavior of glasses was analyzed at 25 and 90 ◦C. According to the results of comparison of
pristine and irradiated glasses, it was found that irradiation with a dose of 6.2 · 107 Gy had practically
no important effect on the structure and composition of samples. Simultaneously, it was found that the
rate of leaching of elements from irradiated samples decreased by approximately two times.
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Appendix A. Raman and Infrared Spectra of Sodium–Aluminum–Phosphate Glasses Investigated

Appendix A.1. Raman Spectroscopy

Raman spectra are shown in Figure A1. The measurements were performed in quasi-backscattering
geometry without sample preparation on macroscopic glass samples. The size of the laser spot on the
sample was 2–3 micrometers.
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Figure A1. Raman spectra of the initial and irradiated samples: (A) With a simple composition
(AS0—initial, AS1—after irradiation); (B) with a complex composition (CM0—initial, CM1—irradiated);
(C) No1 and No2)irradiated).

The spectra contain bands because of the vibrations of the aluminum–phosphate groups.
Narrow peaks due to crystalline phases are observed in many spectra, but their amount is small.
There is no difference between the spectra obtained in these measurements, which indirectly indicates
sufficiently high radiation stability of the material.

Appendix A.2. Infrared Spectroscopy

Infrared spectra of samples are shown in Figure 8. The rise in the background with increasing
wave number is due to light scattering by glass particles in the salt matrix. As for the Raman spectra,
vibrational bands of Al–P groups are observed at the IR spectra of the glasses. The data obtained allow
us to conclude that difference between the initial and irradiated glasses is not observed (Figure A2).
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Figure A2. Infrared absorption spectra: (A) NAPas0—AS0 initial, AS1 after irradiation;
(B) NAPcm0—CM0 initial and NAPcm1 (CM1)—irradiated; (C) NAP1 (No1) and NAP2
(No2)—irradiated. The narrow peak at 1384 cm−1 is due to KBr matrix.

Appendix B. Integral Dissolution Rates of Sodium–Aluminum–Phosphate Glasses Investigated

Table A1 presents the integral leaching rate (LR) of elements from samples NAPas0, NAPas1,
NAPcm0, NAPcm, NAPcm1, NAP1, and NAP2. LR for contents below the detection limit were
calculated for a value equal to the detection limit (Table A2). Ru was not detected.
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Table A1. The integral leaching rate of elements from NAP glasses investigated, g/(cm2
· day).

Sample Time, d Na Al Fe P Ca Cr Mn Ni La U

NAPas0
(90◦C)

1 2.41 × 10−4 1.52 × 10−4 1.75 × 10−6 1.61 × 10−4

3 1.94 × 10−4 9.64 × 10−5 7.09 × 10−7 1.22 × 10−4

7 1.29 × 10−4 5.14 × 10−5 3.49 × 10−7 7.91 × 10−5

10 1.20 × 10−4 4.17 × 10−5 2.89 × 10−7 7.28 × 10−5

14 1.04 × 10−4 3.25 × 10−5 2.83 × 10−7 6.24 × 10−5

21 7.99 × 10−5 2.29 × 10−5 2.05 × 10−7 4.98 × 10−5

28 6.72 × 10−5 1.80 × 10−5 1.55 × 10−7 4.32 × 10−5

NAPas1
(90◦C)

1 1.60 × 10−4 7.67 × 10−5 1.34 × 10−5 9.24 × 10−5

3 1.01 × 10−4 4.37 × 10−5 6.12 × 10−6 5.89 × 10−5

7 6.63 × 10−5 2.49 × 10−5 3.03 × 10−6 3.88 × 10−5

10 5.84 × 10−5 2.09 × 10−5 2.40 × 10−6 3.41 × 10−5

14 4.99 × 10−5 1.68 × 10−5 1.83 × 10−6 2.93 × 10−5

21 3.88 × 10−5 1.23 × 10−5 1.32 × 10−6 2.38 × 10−5

28 3.25 × 10−5 1.01 × 10−5 1.13 × 10−6 2.04 × 10−5

NAPcm0
(90◦C)

1 1.57 × 10−4 6.28 × 10−5 4.53 × 10−5 7.98 × 10−5 5.90 × 10−5 6.30 × 10−5 6.98 × 10−5 5.40 × 10−5 2.50 × 10−5 8.07 × 10−5

3 9.93 × 10−5 3.86 × 10−5 2.43 × 10−5 5.17 × 10−5 2.31 × 10−5 3.83 × 10−5 3.13 × 10−5 3.37 × 10−5 1.42 × 10−5 5.11 × 10−5

7 6.04 × 10−5 2.29 × 10−5 1.36 × 10−5 3.16 × 10−5 2.88 × 10−5 2.25 × 10−5 1.50 × 10−5 1.99 × 10−5 7.57 × 10−6 3.15 × 10−5

10 5.47 × 10−5 1.93 × 10−5 1.02 × 10−5 2.78 × 10−5 6.81 × 10−5 1.74 × 10−5 1.24 × 10−5 1.84 × 10−5 6.10 × 10−6 2.74 × 10−5

14 3.94 × 10−5 1.39 × 10−5 7.44 × 10−6 2.01 × 10−5 6.42 × 10−5 1.25 × 10−5 9.02 × 10−6 1.32 × 10−5 4.42 × 10−6 2.04 × 10−5

21 3.20 × 10−5 1.05 × 10−5 5.23 × 10−6 1.81 × 10−5 4.28 × 10−5 8.40 × 10−6 6.10 × 10−6 9.43 × 10−6 2.99 × 10−6 1.52 × 10−5

28 2.76 × 10−5 8.67 × 10−6 4.21 × 10−6 1.62 × 10−5 3.21 × 10−5 6.34 × 10−6 4.64 × 10−6 7.51 × 10−6 2.41 × 10−6 1.25 × 10−5
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Table A1. Cont.

Sample Time, d Na Al Fe P Ca Cr Mn Ni La U

NAPcm0
(25◦C)

1 2.23 × 10−5 8.16 × 10−6 7.37 × 10−6 1.31 × 10−5 9.72 × 10−5 1.14 × 10−6 7.86 × 10−6 7.03 × 10−6 6.25 × 10−6 1.19 × 10−5

3 1.34 × 10−5 4.64 × 10−6 3.96 × 10−6 7.67 × 10−6 5.09 × 10−5 7.58 × 10−7 4.82 × 10−6 4.21 × 10−6 2.40 × 10−6 7.94 × 10−6

7 1.08 × 10−5 3.56 × 10−6 2.93 × 10−6 6.30 × 10−6 2.83 × 10−5 4.87 × 10−7 4.90 × 10−6 4.40 × 10−6 1.17 × 10−6 5.10 × 10−6

10 1.04 × 10−5 3.46 × 10−6 2.86 × 10−6 6.16 × 10−6 2.67 × 10−5 4.55 × 10−7 6.34 × 10−6 5.20 × 10−6 1.48 × 10−6 4.76 × 10−6

14 9.24 × 10−6 3.13 × 10−6 2.56 × 10−6 5.63 × 10−6 2.75 × 10−5 4.06 × 10−7 6.14 × 10−6 4.91 × 10−6 1.41 × 10−6 4.25 × 10−6

21 7.78 × 10−6 2.67 × 10−6 2.08 × 10−6 5.13 × 10−6 1.85 × 10−5 3.25 × 10−7 5.84 × 10−6 4.50 × 10−6 9.84 × 10−7 3.40 × 10−6

28 6.93 × 10−6 2.38 × 10−6 1.80 × 10−6 4.73 × 10−6 1.40 × 10−5 2.84 × 10−7 5.77 × 10−6 4.24 × 10−6 7.73 × 10−7 2.98 × 10−6

NAPcm
(90◦C)

1 1.40 × 10−4 6.96 × 10−5 3.85 × 10−5 7.67 × 10−5 4.31 × 10−6 6.26 × 10−5 3.40 × 10−5 8.89 × 10−5 2.89 × 10−5 6.01 × 10−5

3 8.68 × 10−5 4.21 × 10−5 2.05 × 10−5 4.76 × 10−5 3.36 × 10−4 3.79 × 10−5 1.67 × 10−5 5.49 × 10−5 1.49 × 10−5 3.89 × 10−5

7 5.26 × 10−5 2.48 × 10−5 1.10 × 10−5 2.88 × 10−5 1.48 × 10−4 2.16 × 10−5 8.14 × 10−6 3.20 × 10−5 8.14 × 10−6 2.38 × 10−5

10 4.55 × 10−5 2.13 × 10−5 8.70 × 10−6 2.48 × 10−5 1.04 × 10−4 1.83 × 10−5 6.17 × 10−6 2.74 × 10−5 6.61 × 10−6 2.06 × 10−5

14 3.87 × 10−5 1.77 × 10−5 6.78 × 10−6 2.09 × 10−5 1.01 × 10−4 1.51 × 10−5 4.40 × 10−6 2.26 × 10−5 5.13 × 10−6 1.73 × 10−5

21 2.95 × 10−5 1.32 × 10−5 4.73 × 10−6 1.65 × 10−5 6.73 × 10−5 1.09 × 10−5 3.04 × 10−6 1.63 × 10−5 3.48 × 10−6 1.25 × 10−5

28 2.48 × 10−5 1.09 × 10−5 3.82 × 10−6 1.43 × 10−5 5.06 × 10−5 8.96 × 10−6 2.31 × 10−6 1.34 × 10−5 3.03 × 10−6 1.02 × 10−5

NAPcm1
(25◦C)

1 2.13 × 10−5 8.53 × 10−6 7.96 × 10−6 1.26 × 10−5 5.56 × 10−5 1.09 × 10−6 6.06 × 10−6 1.04 × 10−5 2.76 × 10−6 9.92 × 10−6

3 1.29 × 10−5 5.02 × 10−6 4.63 × 10−6 7.75 × 10−6 5.29 × 10−5 7.25 × 10−7 3.88 × 10−6 5.98 × 10−6 1.09 × 10−6 6.61 × 10−6

7 9.57 × 10−6 3.55 × 10−6 3.13 × 10−6 5.83 × 10−6 2.38 × 10−5 4.66 × 10−7 2.73 × 10−6 4.60 × 10−6 5.43 × 10−7 4.25 × 10−6

10 9.02 × 10−6 3.29 × 10−6 2.82 × 10−6 5.57 × 10−6 1.71 × 10−5 4.35 × 10−7 2.85 × 10−6 5.08 × 10−6 4.32 × 10−7 3.97 × 10−6

14 8.32 × 10−6 2.86 × 10−6 2.38 × 10−6 4.95 × 10−6 1.73 × 10−5 3.88 × 10−7 3.03 × 10−6 5.13 × 10−6 3.46 × 10−7 3.54 × 10−6

21 6.62 × 10−6 2.21 × 10−6 1.79 × 10−6 4.19 × 10−6 1.17 × 10−5 3.11 × 10−7 2.55 × 10−6 4.12 × 10−6 2.55 × 10−7 2.83 × 10−6

28 5.74 × 10−6 1.87 × 10−6 1.35 × 10−6 3.80 × 10−6 8.93 × 10−6 2.72 × 10−7 2.31 × 10−6 3.65 × 10−6 2.10 × 10−7 2.48 × 10−6
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Table A1. Cont.

Sample Time, d Na Al Fe P Ca Cr Mn Ni La U

NAP1

1 1.67 × 10−4 7.31 × 10−5 5.49 × 10−5 9.11 × 10−5 4.17 × 10−6 9.61 × 10−5 5.40 × 10−5 7.45 × 10−5 3.34 × 10−5 1.13 × 10−4

3 1.01 × 10−4 4.25 × 10−5 2.90 × 10−5 5.58 × 10−5 2.78 × 10−6 5.73 × 10−5 2.54 × 10−5 4.42 × 10−5 1.44 × 10−5 6.40 × 10−5

7 6.02 × 10−5 2.43 × 10−5 1.58 × 10−5 3.33 × 10−5 3.75 × 10−5 3.35 × 10−5 1.22 × 10−5 2.52 × 10−5 7.11 × 10−6 3.72 × 10−5

10 5.31 × 10−5 2.10 × 10−5 1.25 × 10−5 2.92 × 10−5 3.28 × 10−5 2.85 × 10−5 8.95 × 10−6 2.08 × 10−5 5.42 × 10−6 3.21 × 10−5

14 4.53 × 10−5 1.76 × 10−5 1.05 × 10−5 2.52 × 10−5 3.21 × 10−5 2.42 × 10−5 7.34 × 10−6 1.67 × 10−5 4.93 × 10−6 2.66 × 10−5

21 3.44 × 10−5 1.26 × 10−5 7.20 × 10−6 2.02 × 10−5 2.16 × 10−5 1.72 × 10−5 4.95 × 10−6 1.17 × 10−5 3.31 × 10−6 1.90 × 10−5

28 2.91 × 10−5 1.00 × 10−5 5.41 × 10−6 1.78 × 10−5 1.64 × 10−5 1.35 × 10−5 3.75 × 10−6 9.10 × 10−6 2.51 × 10−6 1.50 × 10−5

NAP2
(90◦C)

1 1.78 × 10−4 8.75 × 10−5 5.01 × 10−5 9.77 × 10−5 1.21 × 10−5 7.95 × 10−5 4.58 × 10−5 6.98 × 10−5 1.68 × 10−5 7.76 × 10−5

3 1.12 × 10−4 5.59 × 10−5 3.12 × 10−5 6.34 × 10−5 4.03 × 10−6 5.18 × 10−5 2.90 × 10−5 4.69 × 10−5 1.56 × 10−5 5.05 × 10−5

7 6.51 × 10−5 3.15 × 10−5 1.60 × 10−5 3.68 × 10−5 1.73 × 10−6 2.85 × 10−5 1.44 × 10−5 2.64 × 10−5 7.78 × 10−6 2.94 × 10−5

10 5.59 × 10−5 2.67 × 10−5 1.27 × 10−5 3.15 × 10−5 1.69 × 10−5 2.40 × 10−5 1.10 × 10−5 2.24 × 10−5 6.01 × 10−6 2.55 × 10−5

14 4.77 × 10−5 2.25 × 10−5 9.82 × 10−6 2.67 × 10−5 2.13 × 10−5 1.97 × 10−5 8.38 × 10−6 1.85 × 10−5 4.69 × 10−6 2.14 × 10−5

21 3.55 × 10−5 1.63 × 10−5 6.81 × 10−6 2.04 × 10−5 1.48 × 10−5 1.41 × 10−5 5.64 × 10−6 1.33 × 10−5 3.16 × 10−6 1.54 × 10−5

28 2.93 × 10−5 1.33 × 10−5 5.37 × 10−6 1.72 × 10−5 1.12 × 10−5 1.12 × 10−5 4.27 × 10−6 1.06 × 10−5 2.55 × 10−6 1.23 × 10−5
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Table A2. The limits of detection of elements by ICP-AS and ICP-MS, in mg/kg of water (10−4 wt.%).

Al Ca Cr Fe La Mn Na Ni P Ru U

0.01 0.01 0.001 0.01 0.001 0.001 0.01 0.001 0.02 0.05 0.05
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