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Abstract: Buildings portion in global energy consumption is 40%, and in the building envelope,
the roof is a crucial point for improving indoor temperature, especially in the last and second last
floors. Studies show that green roofs can be applied to moderate roof temperature and affect the
indoor temperature in summer and winter. However, the performance of green roofs depends
on several parameters such as climate, irrigation, layer materials, and thickness. In this context,
the present research deals with a comprehensive experimental analysis of different thermal impacts of
green roofs in summer and winter in a Mediterranean climate. Measurements carried out in one year
in three different types of green roofs with different thicknesses, layers, and with and without the
insulation layer. The analysis determined the possible period that indoor cooling or heating might
be required with and without green roofs and demonstrated the positive impact of green roofs in
moderating the roof temperature and temperature fluctuations, which in summer was remarkable.
In conclusion, since in the Mediterranean climate, the thermal differences between green roofs and
conventional roofs in summer are much higher than winter, it seems that the green roof without
an insulation layer would show better performance.
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1. Introduction

Buildings are responsible for about 40% of global energy consumption [1,2]. The green roofs
known as a natural cooling system have a high potential in reducing energy consumption and
mitigating the heat island effect through different mechanisms such as a decrease in solar radiation
since a significant portion is absorbed for the biological functions of the plants, decreasing roof
temperature, and decreasing surface temperature fluctuations [3]. The studies show the critical impact
of water content on the cooling performance of green roofs. However, during the summer in a dry
climate, water demands cannot rely on precipitation, and in some cases, irrigation might be required [4].
The impact of green roofs is not only for cooling in summer but also for heating performance in
winter. In winter, the use of precipitation by the system can also be useful in urban runoff or flood
management [5–9].

Green roofs are classified into two major categories, including extensive (soil layer less than
200 mm) with minimal maintenance and intensive (soil layer more than 200 mm) and with longer root
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length plants [7]. The studies showed the significant impact of green roofs in moderating temperature
fluctuations, mainly during the warmest hours of the day [10]. The roof surface temperature can
decrease significantly by green roofs in summer. The analysis of an extensive green roof in a tropical
and humid climate proved a notable decrease in roof temperature. The maximum temperature of the
bituminous roof reached 73.5 ± 1.4 ◦C, while the maximum average temperature in the green roof
reached 34.8 ± 0.6 ◦C, [11]. Green roofs can also decrease the thermal load of the buildings [12,13].
The analysis showed that green roofs could decrease the energy consumption for cooling purposes.
The reduction of the load for the floor under the roof could be up to 58% and for the whole house
between 15 and 39%. For heating purposes in the winter, the reduction of the load could be between 5%
and 17% for the floor under the roof and whole house between 2% and 8% [14]. The results of another
study showed that the green roof decreased the heat and cooling load by about 45% while the insulated
roof 0–9% [3]. The evapotranspiration of the plants plays an essential role in energy reduction by green
roofs. The analysis showed the significant impact of the water content and irrigation on the cooling
performance of green roofs in summer. Moreover, the amount of energy reduction by latent heat can
also be among 6% to 13% of the incident solar radiation [15]. The analysis of an irrigated, non-vegetated
green roof with a depth of 80 mm showed daily temperature reduction of up to 8 ◦C in the summer by
the evaporative cooling effect of the green roofs. The values for the non-irrigated scenario was about
4 ◦C [16]. The analysis showed that the green roof layers decrease the impact of sunshine and can be
used as thermal insulation since it could absorb heat at the roof slab [17,18]. The studies showed that
many factors are essential in the operation of green roofs in the Mediterranean climate, such as plant
density [19], the height of the plants, soil thickness, insulation [20,21], and irrigation level [22].

The analysis showed that among all sections in the building envelope, the roof of a building is
a key point for improving the indoor temperature since the surface temperature generally is the highest
in that place, and the heat transfer of the roofs is maximum in the summer, [10]. The analysis showed
that the role of green roofs on cooling load reduction was at a maximum (about 60%) for the last floor
and the second last floor (about 58%), in results in the whole building about 2 to 39% of the total load
depends on the number of floors, and less in high-rise buildings [14,23,24].

The insulation of the roofs can reduce heat transfer and improve the indoor temperature and
therefore counted as a valuable strategy for building sustainably [25]. The analysis of thermal insulation
in different types of green roofs show an energy reduction of about 20% in an extensive, 60 to 70% in
a semi-intensive and 45 to 60% in an intensive [20]. The hypothesis of buildings with poor thermal
insulation combined with green roofs in a humid-tropical climate showed that the roofs with poor
thermal insulation but low substrate thickness, and low density planting could not achieve a high
amount of indoor cooling. Therefore, the insulation, plant density, and thickness of the layers all are
essential in optimizing the passive cooling by green roofs in a humid-tropical climate [26]. The use of
cork insulation, natural material for insulation instead of polymeric insulation, shows that the natural
material can be used for insulation of the green roofs besides improving the drainage performance of
the green roofs [27–30]. Moreover, the analysis showed that the cork insulation could lose thermal
capacity after wet, counting as an advantage in summer [31].

The elements that receive and transfer heat or cold in the building are the walls and roof and
depend on the material used or insulation. Moreover, the roofs also expose to solar radiation and can
absorb or reflect the thermal energy by long-wave radiation heat [32]. During summer, daily solar
radiation is the highest, and there are negative heat fluxes through the roof, which means from the
outside to inside. During winter, the heat fluxes through the roof are generally positive and upward,
which means from inside to outside [33].

In the energy consumption of the buildings, one of the vital factors is thermal comfort that
shows the occupants’ satisfaction [34,35]. The suggested minimum indoor temperature to protect
the health presented by the World Health Organization (WHO) for cold climates is 18 ◦C [36].
The suggested thermostat heating set point, according to the Energy Star recommended by the United
States Environmental Protection Agency (EPA), is about 21 ◦C for heating in winter and 25.5 ◦C for
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cooling in summer [37]. The ideal indoor temperature depends on several factors such as the climate,
air temperature, relative humidity, seasons, mean radiant temperature, air velocity, type of cloths and
activity level (metabolic rate), and the usual thermal comfort range from 18 to 25 ◦C [38–41].

The background study shows in summer, the direct solar radiation to the roof causes high roof
temperatures and is one of the main causes of high indoor temperatures. In winter, low roof insulation
can cause the loss of heat and decrease the indoor temperature. By changing heat transfer from the
building’s roof, the indoor temperature will change. The usual methods for this purpose are insulation,
green roofs, and change in roof color. In this regard, the green roof as a natural system to decrease
the thermal requirement of buildings has been analyzed in this research. In this context, since the
green roof can be in different layers, thicknesses, with and without the insulation layer, the present
research deals with a comprehensive experimental analysis of different impacts of green roofs in
summer and winter in a Mediterranean climate. Measurements carried out in one year to determine
the impact of three different types of green roofs on average roof temperature and indoor heating
or cooling periods. In fact, the main difference of this study from the other similar documents is its
consideration of temperature analysis in three different types and three layers of green roofs under the
same climatic conditions. Moreover, it has attempted to investigate the monthly average differences
between roof temperature in conventional roofs and green roofs and the impact of green roofs in
maximum and minimum roof temperatures and temperature fluctuations. In addition, the advantages
and disadvantages of using the insulation layer with green roofs in the Mediterranean climate have
been investigated.

2. Materials and Methods

The method is based on the experimental data of 2016 and by comparison between temperatures
of a conventional roof as a reference, three types of green roofs, and ideal temperature in summer and
winter. The gathered data is per minute and from an extensive green roof. Furthermore, the impact of
different thickness in green roof layers has been analyzed. The ideal indoor temperature for different
seasons in the current study is according to Table 1.

Table 1. The Ideal Indoor Temperature for Winter and Summer [34–41].

Northern Hemisphere Start End Ideal Indoor Temperature [T]

Spring 1 March 31 May 23
Summer 1 June 31 August 26

Autumn 1 September 30
November 23

Winter 1 December 28 February 20

2.1. Case Study

The experimental site situated in the south of Italy and on the roof of one of the buildings at the
University of Calabria, Figure 1.

The green roof areas are different in order to cover completely the room volumes located beneath
the floor. However, in this analysis, since the central thermal system for all the floor is the same,
the comparison among different plots has been done. The type of green roof is extensive, with a soil
layer equal to 80 mm covered with native Mediterranean plant species. The layers in three green roofs
and the places where temperature sensors were considered are shown in Figures 2–4. In all three plots,
lightweight concrete with a density of 400 kg/m3 and a thickness of 75 mm has been added to the
conventional roof to create a 1% sloop on the roof for the rainfall collection system.



Sustainability 2020, 12, 359 4 of 13

Sustainability 2020, 12, x FOR PEER REVIEW 3 of 13 

temperature, relative humidity, seasons, mean radiant temperature, air velocity, type of cloths and 
activity level (metabolic rate), and the usual thermal comfort range from 18 to 25 °C [38–41]. 

The background study shows in summer, the direct solar radiation to the roof causes high roof 
temperatures and is one of the main causes of high indoor temperatures. In winter, low roof 
insulation can cause the loss of heat and decrease the indoor temperature. By changing heat transfer 
from the building’s roof, the indoor temperature will change. The usual methods for this purpose are 
insulation, green roofs, and change in roof color. In this regard, the green roof as a natural system to 
decrease the thermal requirement of buildings has been analyzed in this research. In this context, 
since the green roof can be in different layers, thicknesses, with and without the insulation layer, the 
present research deals with a comprehensive experimental analysis of different impacts of green roofs 
in summer and winter in a Mediterranean climate. Measurements carried out in one year to 
determine the impact of three different types of green roofs on average roof temperature and indoor 
heating or cooling periods. In fact, the main difference of this study from the other similar documents 
is its consideration of temperature analysis in three different types and three layers of green roofs 
under the same climatic conditions. Moreover, it has attempted to investigate the monthly average 
differences between roof temperature in conventional roofs and green roofs and the impact of green 
roofs in maximum and minimum roof temperatures and temperature fluctuations. In addition, the 
advantages and disadvantages of using the insulation layer with green roofs in the Mediterranean 
climate have been investigated. 

2. Materials and Methods 

The method is based on the experimental data of 2016 and by comparison between temperatures 
of a conventional roof as a reference, three types of green roofs, and ideal temperature in summer 
and winter. The gathered data is per minute and from an extensive green roof. Furthermore, the 
impact of different thickness in green roof layers has been analyzed. The ideal indoor temperature 
for different seasons in the current study is according to Table 1. 

Table 1. The Ideal Indoor Temperature for Winter and Summer [34–41]. 

Northern Hemisphere Start End Ideal Indoor Temperature [T] 
Spring 1 March 31 May 23 

Summer 1 June 31 August 26 
Autumn 1 September 30 November 23 
Winter 1 December 28 February 20 

2.1. Case Study 

The experimental site situated in the south of Italy and on the roof of one of the buildings at the 
University of Calabria, Figure 1. 

 

Figure 1. The Experimental Green Roofs Located at the University of Calabria in a Mediterranean 
Climate. 

Figure 1. The Experimental Green Roofs Located at the University of Calabria in
a Mediterranean Climate.

Sustainability 2020, 12, x FOR PEER REVIEW 4 of 13 

The green roof areas are different in order to cover completely the room volumes located beneath 
the floor. However, in this analysis, since the central thermal system for all the floor is the same, the 
comparison among different plots has been done. The type of green roof is extensive, with a soil layer 
equal to 80 mm covered with native Mediterranean plant species. The layers in three green roofs and 
the places where temperature sensors were considered are shown in Figures 2–4. In all three plots, 
lightweight concrete with a density of 400 kg/m3 and a thickness of 75 mm has been added to the 
conventional roof to create a 1% sloop on the roof for the rainfall collection system. 

 
Figure 2. The Different Layers in Plot 1 (P1) and the Places of the Considered Sensors. 

 

Figure 3. The Different Layers in Plot 2 (P2) and the Places of the Considered Sensors. 

 

Figure 4. The Different Layers in Plot 3 (P3) and the Places of the Considered Sensors. 

Figure 2. The Different Layers in Plot 1 (P1) and the Places of the Considered Sensors.

Sustainability 2020, 12, x FOR PEER REVIEW 4 of 13 

The green roof areas are different in order to cover completely the room volumes located beneath 
the floor. However, in this analysis, since the central thermal system for all the floor is the same, the 
comparison among different plots has been done. The type of green roof is extensive, with a soil layer 
equal to 80 mm covered with native Mediterranean plant species. The layers in three green roofs and 
the places where temperature sensors were considered are shown in Figures 2–4. In all three plots, 
lightweight concrete with a density of 400 kg/m3 and a thickness of 75 mm has been added to the 
conventional roof to create a 1% sloop on the roof for the rainfall collection system. 

 
Figure 2. The Different Layers in Plot 1 (P1) and the Places of the Considered Sensors. 

 

Figure 3. The Different Layers in Plot 2 (P2) and the Places of the Considered Sensors. 

 

Figure 4. The Different Layers in Plot 3 (P3) and the Places of the Considered Sensors. 

Figure 3. The Different Layers in Plot 2 (P2) and the Places of the Considered Sensors.

In plot 1, the total thickness of the layer is about 220 mm, and in plot 2 with different types
of a drainage layer, it is about 201 mm. Plot 3 is similar to plot 1, but under the drainage layer,
an insulation layer added, and the total thickness of the layer is 248 mm. The vegetation of plot 1 and
plot 2 is Mediterranean types, and plot 3 is spontaneous plants. These two plots have received the
same number and typology of plants; moreover, the surface temperature, detected by pyranometers,
has shown the same mean temperature values denoting the same vegetation composition. Plot 4 is
used as a reference, and it is a conventional roof, and the temperature of this plot has been compared
with other plots. The employed temperature sensors include four wires RTD PT100 class1/3 with
an accuracy of ±0.1 ◦C at 0 ◦C and ±0.27 at 100 ◦C installed inside the soil and different layers.
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2.2. Assumptions

Since the role of roofs in indoor temperature is essential, the comparisons have been made by
considering the roof temperature with or without green roofs. It must be mentioned that the indoor
temperature is not equal to the temperature of the roof, but the indoor temperature is also affected by
the interface temperature; therefore, the reduction of the gap between the last two values (indoor and
interface) denotes the achievement of better comfort conditions.

• According to the ideal indoor temperature, as presented in Table 1, the use of heating or cooling
has been suggested.

• The role of the heat island is not the topic of this paper and not considered in the analysis.
• Since all of the comparisons have been made for three green roofs situated in the roof of one

building, therefore, the impact of the roof type under the green roof on the heat transfer between
outdoor and indoor is the same, and is not considered in the analysis.

• Green roofs mostly affect the temperatures of the last and second last floors; therefore, it is not
correct to refer the results to the whole building fabric, such as tall or high-rise buildings.

3. Results and Discussions

3.1. The Impact of the Green Roof on Average Roof Temperature

The temperature at different green roof layers in plot 1 has been shown in Figure 5. The average
daily temperature in the conventional roof and at the bottom of green roofs (green layers) in the
summer and winter of 2016 has been shown in Figures 6 and 7.
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Figure 6. Average Daily Temperature in Conventional Roof and under Green Roofs, Summer 2016.
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Figure 7. Average Daily Temperature in Conventional Roof and Green Roof, Winter 2016.

The analysis shows temperature differences among different layers in the green roof.
The differences are more in the inner layer and maximum at the bottom of the green roof. The analysis
of the summer and winter determined that using the green roof would change the roof surface
temperature in a way to be closer to the ideal indoor temperature, especially in summer.

3.2. The Impact of the Green Roof on Indoor Heating or Cooling Period

By analysing the differences among the temperature under green roofs and ideal temperature
(Ideal T) as presented in Table 1., and since the impact of roof temperature on indoor temperatures is
important, the period that cooling or heating might be required has been determined and shown in
Figure 8. As can be seen from the graph, the impact of all three green roofs in moderating the roof
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temperature in summer is remarkable. However, even in winter, the green roofs moderated severe
cold weather waves.Sustainability 2020, 12, x FOR PEER REVIEW 7 of 13 
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Figure 8. The Periods that Indoor Cooling or Heating Might be Required.

3.3. The Monthly Average Differences between the Green Roof and Conventional Roof

The monthly average roof temperature differences between the green roofs and the conventional
roof have been presented in Table 2. The values show that in winter, the temperature under the green
roof was higher, and differences varied from 4.6 to 0.2 ◦C. In summer, the temperature under the green
roof was lower and differences varied from 5 to 11.3 ◦C

Table 2. The Monthly Average Differences between the Green Roof and Conventional Roof
(TPlot–TConventional Roof).

Month
Differences [T ◦C]

Month
Differences [T ◦C]

P1 P2 P3 P1 P2 P3

January 1.1 −0.2 2.2 July −11.2 −11.3 −7.9
February −0.3 −1.5 1.0 August −7.1 −7.9 −5.0

March −1.5 −2.8 0.1 September −4.9 −5.0 −3.6
April −5.3 −5.6 −3.8 October −3.1 −3.2 −1.6
May −7.9 −7.5 −6.4 November 0.3 −0.4 1.5
June −7.4 −6.5 −6.4 December 2.9 1.1 4.6

The differences among temperatures under three types of green roofs have been shown in Figure 9.
As it is clear, the impact of plots 1 and 2 in summer are similar and perform better in comparison with
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plot 3. In winter, the impact of the green roof in plot 1 was better than plot 2. However, plot 3 shows
better results in winter.
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3.4. The Role of Green Roof in Maximum and Minimum Roof Temperature

The maximum and minimum daily temperature in the conventional roof and three types of
green roofs have been presented in Figure 10. The first clear trend is the temperature fluctuations in
conventional roofs in comparison with green roofs. The second important point is the maximum roof
temperature on the conventional roof that measured 72.2 ◦C while under the green roofs are less than
35 ◦C, which means a difference of about 37 ◦C. The minimum temperature on the conventional roof
was −8.6 ◦C while under the green roofs, it was about 7.3 ◦C that shows a difference of about 16 ◦C.
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The comparisons among average monthly temperature fluctuations in conventional and green
roofs have been shown in Figure 11. As can be seen from the graph, the average roof temperature
fluctuations decreased significantly by green roofs, and the temperature fluctuations in all three green
roofs are less than 2 ◦C.
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Figure 11. The Differences between Maximum and Minimum Temperatures in Conventional and
Green Roofs.

The differences among maximum and minimum roof temperatures after using three types of
green roofs have been shown in Table 3, and Figure 12. The graph shows the same trend for all three
green roofs. The green roof in plot 3 shows better results in min temperature, but the impact of plot 1
and plot 2 was more in maximum roof temperature. However, the differences among them are less
than 4 ◦C.

Table 3. Differences among Maximum and Minimum Roof Temperatures after Using Green Roofs.

Month Max
P1–Max cr

Max
P2–Max cr

Max
P3–Max cr

Min
P1–Min cr

Min
P2–Min cr

Min
P3–Min cr

January 11.37 12.48 10.25 −7.86 −6.58 −9.08
February 16.46 17.57 15.28 −8.65 −7.31 −9.92

March 18.81 19.82 17.19 −9.00 −7.65 −10.71
April 28.02 27.92 26.60 −9.28 −8.74 −10.85
May 30.87 30.07 28.91 −8.01 −8.09 −8.94
June 30.63 29.34 29.70 −10.46 −11.10 −11.41
July 38.76 38.52 35.37 −8.89 −8.46 −12.20

August 33.47 34.16 31.44 −9.60 −8.53 −11.69
September 25.87 25.83 24.62 −8.78 −8.49 −10.10

October 20.54 20.54 19.16 −7.44 −7.16 −8.89
November 13.45 14.00 12.33 −7.65 −6.88 −8.85
December 12.69 14.3 11.05 −11.53 −9.61 −13.33
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3.5. The Impact of Green roof Thickness, Layers, and Insulation on Roof Temperature

The differences among the temperature of the conventional roof, soil media, under the drainage
layer and under the lightweight concrete are apparent in both summer and winter, as presented in
Figure 5. However, in summer, the temperature under the drainage layer and under the green roof with
adding a 7 mm membrane plus a 75 mm lightweight concrete is close together. It represents that the
role of evapotranspiration in cooling the temperature is significant in summer, and the temperature of
layers under the drainage layer is nearly equal to the roof temperature. In the winter, the temperatures
under the drainage layer are less than the temperature under the lightweight concrete (under the
green roof), and the temperature was increasing by going downside toward the roof surface. These
differences show the heat transfer of indoor and outdoor temperatures by the roof in the winter.

In summer, as it is clear from Figures 6 and 9, the differences among plot 3 with adding a 30 mm
insulation layer and plot 1, and plot 2 without an insulation layer, are distinct, and the insulation layer
negatively affected the performance of the green roof in decreasing roof temperature. The opposite
trend exists in winter, as shown in Figure 7, and after adding a 30 mm insulation layer, the performance
of the green roof improved in comparison with plot 1 and plot 2 and the temperature of the roof surface
in the winter increased. The result shows the remarkable impact of the insulation layer with a thickness
of even 30 mm. Moreover, plot 1 with higher thickness than Plot 2, due to the use of a different drainage
layer with lower thickness shows better thermal performance

As a result, the experimental data demonstrate that in the Mediterranean area, the lack of insulation
layers improves the energy performance in summer, and this effect prevails despite a slight worsening
of the heating demands in winter. Therefore, in the Mediterranean area, by not using insulated green
roofs, the evapotranspiration would help cool the structure passively. Moreover, the favorable outdoor
air temperatures in winter would not increase the heating demand significantly.

4. Conclusions

The results show the positive performance of green roofs in moderating roof surface temperature
that in summer is more remarkable than winter, and as a result, the reduction of the gap between the
indoor and interface (roof) denotes the achievement of better comfort conditions. By comparing the
differences among the roof temperature and ideal temperature, the times that indoor cooling or heating
might be required have determined and demonstrated that by using the green roof without an insulation
layer, the roof temperature in summer would be near a comfortable temperature. The impact of green
roofs in moderating the roof temperature in the winter was less than in summer. However, even in the
winter, the green roof moderated cold weather waves.

The investigations of the monthly average values show that in winter, the temperature under the
green roof was higher, and differences varied from 4.6 to 0.2 ◦C. In summer, the temperature under
the green roof was lower, and differences varied from 5 to 11.3 ◦C. The observed roof temperature
fluctuations in the conventional roof were among 20 to 48.5 ◦C, and the analysis shows the average
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roof temperature fluctuations decreased significantly by green roofs, and the temperature fluctuations
in all three green roofs are less than 2 ◦C. Moreover, the maximum roof temperature in 2016 on the
conventional roof measured 72.2 ◦C while under the green roofs were less than 35 ◦C that means
a difference of about 37 ◦C. The minimum temperature on the conventional roof was −8.6 ◦C while
under the green roofs, it was about 7.3 ◦C that shows a difference of about 16 ◦C.

The analysis of green roofs in the summer shows that adding the thickness of green roofs by layers
such as a lightweight concrete would have a limited effect on the thermal result. However, adding just
a 30 mm insulation layer affected the performance of the green roof in decreasing roof temperature
negatively. The analysis of green roofs in the winter shows indoor and outdoor heat transfer by the
roof without an insulation layer, and the thermal performance of the green roof in winter improved by
adding a 30 mm insulation layer. Moreover, the green roof plot 1 with a higher thickness shows better
thermal performance than plot 2 with lower thickness. It must be mentioned that the main differences
between plot 1 and plot 2 were the type and size of the drainage layer.

In conclusion, the experimental analysis shows the positive impact of green roofs on decreasing
the energy consumption of the building. Moreover, since in the Mediterranean climate, the differences
between green roofs and conventional roofs are much higher in summer, it seems that the green roof
without an insulation layer would show better performance.

5. Recommendations

One solution to improve the performance of green roofs in both summer and winter might be
the use insulation of type, whose thermal capacity due to wet and dry situations can change such as
natural insulation, and is therefore recommended for future investigations.
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