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Abstract: Technological innovations are regarded as the tools that can stimulate economic growth
and the sustainable development of technology. In recent years, as technologies based on the internet
of things (IoT) have rapidly developed, a number of applications based on IoT innovations have
emerged and have been widely adopted by various public and private sectors. Applications of
IoT in the manufacturing industry, such as manufacturing intelligence, not only play a significant
role in the enhancement of industrial competitiveness and sustainability, but also influence the
diffusion of innovative applications that are based on IoT innovations. It is crucial for policy makers
to understand these potential reasons for stimulating IoT industrial sustainability, as they can
facilitate industrial competitiveness and technological innovations using supportive means, such as
government procurement and financial incentives. Therefore, there is a need to ascertain different
factors that may affect IoT industrial sustainability and further explore the relationship between
these factors. However, finding a set of factors that affects IoT industrial sustainability is not easy.
Recently, the robustness of a theoretical framework, termed the technological innovation system (TIS),
has been verified and has been used to explore and analyze technological and industrial development.
Thus, it is suitable for this research to use this theoretical model. In order to find out appropriate
factors and accurately analyze the causality among factors that influence IoT industrial sustainability,
this research presents a Bayesian rough Multiple Criteria Decision Making (MCDM) model based on
TIS functions by integrating random forest (RF), decision making trial and evaluation (DEMATEL),
Bayesian theory, and rough interval numbers. The proposed analytical framework is validated by an
empirical case of defining the causality between TIS functions to enable the industrial sustainability
of IoT in the Taiwanese smart manufacturing industry. Based on the empirical study results, the cause
group consists of entrepreneurial activities, knowledge development, market formation, and resource
mobilization. The effect group is composed of knowledge diffusion through networks’ guidance of
the search, and creation of legitimacy. Moreover, the analytical results also provide several policy
suggestions promoting IoT industrial sustainability that can serve as the basis for defining innovation
policy tools for Taiwan and late coming economies.

Keywords: sustainability; internet of things (IoT); technological innovation system (TIS); decision
making trial and evaluation laboratory (DEMATEL); rough set theory; Bayesian rough MCDM model

1. Introduction

In the era of cloud computing, Internet applications have ubiquitously influenced our daily
lives. By using advanced Internet technology and other combinations of technology, communication
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between people and machines will become even more diverse. Such features are called the internet
of things (IoT), which can be conceptually defined as a dynamic global network infrastructure with
self-configuration capabilities [1]. According to IDC, one of the leading market research institutes in
the world, the IoT market is expected to reach 1.2 trillion by 2022, with an annual growth rate of 13.6%
during 2017 to 2022 [2]. IoT will be the next dominant information technology (IT) that will significantly
influence the welfare of human beings in areas, such as healthcare, supply chain management, energy
savings, smart control, intelligent buildings, product lifecycle management, and many others.

With the fast-growing development of IoT technology, a variety of technological applications
are currently shaping different aspects of industrial development. For example, the realization of
unmanned factories relies on the IoT to connect robotics and machine learning. Such IoT-based
systems will save lots of resources, such as manpower. From the long-term perspective, industrial
IoT development will be sustainable whereas most related technological applications and industries
will significantly change. Thus, the sustainable development of the IoT industry has become an
indispensable task for advanced countries and emerging economies, as it will be capable of influencing
industrial competitiveness and national economic growth. This also implies that national governments
of leading and emerging economies must effectively promote IoT development and enable IoT industrial
sustainability by supportive means, such as financial incentives. However, prior to defining a set of
innovation policies to help novel technology innovation, understanding the key factors that influence
IoT industrial sustainability is indispensable. By figuring out the intertwined relationships between
factors that influence IoT industrial sustainability, policy makers will be able to clearly design effective
innovation policies to solve current challenges in technological and industrial development. Hence, it
is necessary to define different factors that may enable industrial sustainability of IoT and to explore
the causality between these factors.

Sustainability is defined as the capability to endure and maintain development in terms of
environment, economic, and social responsibilities. Activities related to sustainability are seen as
transition processes that include sustainable technological transitions, industrial transformation,
and socio-technical change [3]. Socio-technical change is stimulated by the mutual facilitation of
technical changes and social changes; technological changes always co-evolve with changes in the
social system. Technological innovation is a key process of sustainable socio-technical change, which
determines industrial sustainability [4]. The technological innovation system (TIS) is an important
theoretical framework that plays a critical role in analyzing technological innovation. The TIS is defined
as a network of agents interacting in economic or industrial areas under a particular institutional
infrastructure that is involved in the generation, diffusion, and utilization of technology [5]. In the
TIS theoretical model, seven key factors, termed systemic functions, are necessary for the build-up
of a TIS framework [6–10]. These systemic functions not only provide a basis to researchers for
analyzing technology innovation, but also provide a foundation for analyzing the sustainability of the
technological industry [11–13].

Industrial IoT is currently influencing the development of manufacturing industries. In many
countries with emerging economies, industrial IoT is at an initial stage of development. This means that
significant effort is needed to promote IoT industrial development in order to reach sustainability. Based
on past literature, the majority of studies have focused on how TIS can enable technological innovations,
while only a few studies aid our understanding of how TIS influences industrial sustainability [10,14–17].
In order to fill this gap, this research aims to discover and determine appropriate factors from TIS models
and to explore the influential relationship between these factors toward IoT industrial sustainability.

An analysis and evaluation of these systemic factors that influence technological innovation and
industrial sustainability can generally be recognized as a complex multiple criteria decision making
(MCDM) issue involving the effects of feedback and interdependence between factors. Hence, a
comprehensive evaluation process is one in which multiple requirements with uncertain conditions
are considered simultaneously. According to previous studies, partial information in MCDM issues
is provided in the form of linguistic descriptions, in terms of subjective judgments without an
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objective assessment [18–21]. Imprecise information derived from experts’ assessment will lead to
bias and vagueness in a decision-making process. Thus, many integrated MCDM methods have been
developed for treating vague circumstances. The fuzzy and grey theories are representative examples.
The incorporation of these two theories into the MCDM model has been used to solve a great number
of issues, such as project selection [22], performance evaluation [23], evaluation of renewable energy
resources [24], and selection of sustainable recycling partners [25]. Rough interval numbers, which
recently have received much more attention, is another effective approach that can be utilized to
deal with imprecise numeric values in decision data and subjectively collective judgments without
defining membership function. Moreover, the Bayesian model can be used to enhance the precision of
evaluation, as this method can be used to obtain a precise result by integrating two different situations
into one, based on calculations that do not consider the data set distribution of events. Additionally,
the evaluation process in decision analysis is often conducted in a way that neglects prior and posterior
conditions of event occurrence that can also contribute to inaccurate assessments. Thus, taking into
account the Bayesian concept, the evaluation process can be rational and appropriate.

Based on the above statements, the purpose of this research is to propose an integrated evaluation
framework based on the TIS model for exploring the systemic functions that impact IoT industrial
sustainability. The proposed integrated model, termed BR-DEMATEL, is constituted by hybridizing
the random forest (RF), Bayesian theory, and rough interval number and decision making trial and
evaluation (DEMATEL), which not only determines the appropriate systemic functions, but also
illustrates the causality given to these systemic functions for facilitating the sustainable development
of the IoT industry. In addition, this model is also capable of efficiently treating ambiguity in human
judgments. The operation of the proposed integrated model can be split into several steps. First, the
feasible systemic functions are extracted from the TIS theoretical model. To determine whether these
systemic functions and their systemic criteria are suitable for use in this paper, the RF technique is used
to conduct feature selection. RF is an ensemble method that has been extensively applied to regression
prediction, classification, and feature selection. After selecting the appropriate systemic functions and
criteria, the next step is to define a causal relationship network using the BR-DEMATEL approach that
is based on systemic criteria. Finally, empirical results and related policy recommendations are derived.
To demonstrate the effectiveness of our proposed framework, an empirical case study based on IoT
innovation in the Taiwanese smart manufacturing industry is introduced. Fifteen experts with more
than 15 years of related engineering and management experiences are invited to help this investigation.

The paper proceeds as follows. Section 2 reviews the literature on TISs for industrial sustainability.
Section 3 outlines the methodologies used for analyzing systematic functions that influence IoT industrial
sustainability. Section 4 describes the background of IoT development in Taiwan, data collection,
operation procedures, and empirical study results. Section 5 discusses policy implications, and Section 6
concludes the paper with observations, summaries, and recommendations for future studies.

2. Literature Review

The literature review is divided into two parts. In the first part, the authors briefly introduce the
literature related to industrial sustainability; in the second part, the authors focus on the review of the
literature regarding the TIS model.

2.1. Industrial Sustainability

Sustainability is defined as the capability to endure. Activities related to sustainability are seen
as transition processes and include sustainable technological transitions, industrial transformation,
and socio-technical change [3]. Socio-technical change is stimulated by the mutual facilitation of
technical change and social change, and technological change always co-evolves with changes in the
social system. Technological innovation is a key process in sustainable socio-technical change, which
determines industrial sustainability [4].
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In general, in the context of industry, there are three issues of sustainability that have
been extensively discussed: Corporate sustainability, manufacturing sustainability, and industrial
sustainability [26]. Corporate sustainability represents the actions of strategies; manufacturing
sustainability is associated with the production system; and industrial sustainability refers to the
plant level in manufacturing industries that involves various actions comprised of materials, products,
process, plants, and production systems [27]. Therefore, industrial sustainability can be seen as a
unique form of sustainability that completely incorporates the above-mentioned actions.

To ensure and promote industrial sustainability, certain supportive measures should be performed
by government sectors and enterprises. However, defining a set of measures to facilitate industrial
sustainability is not easy. Before determining policies to encourage sustainability in the industry,
government and industrial sectors need to understand what kind of factors influence industrial
sustainability and technology development. Subsequently, policy makers can propose corresponding
measures for supporting industrial sustainability.

The process of transitioning from traditional manufacturing to smart IoT manufacturing is
faced with many challenges, including insufficient ability to integrate technology and lack of talent.
Thus, there is a need to understand the factors that influence IoT industrial sustainability and, further,
to propose recommendations for government sectors and policy makers to determine feasible policies
for facilitating IoT industrial sustainability. In this research, an evaluation model will be proposed by
the authors to explore what kinds of factors influence sustainability of IoT in manufacturing industries
and to analyze the interrelationships among these factors.

2.2. Theoretical Framework of TIS

The TIS, derived from many studies of innovation systems based on economic theories, has been
broadly applied to a great variety of domains for the analysis of emerging technologies and, based
on the analytical results, to design innovation polices to help the sustainable development of specific
technologies [6,8,9,28–30]. Thus, this TIS approach is often used to explore technology utilization,
diffusion, and development in terms of the levels, including nations, regions, and sectors [31].

The primary purpose of the TIS approach is to detect the advantages and weaknesses of an
innovation system by drawing on structural and functional analyses. The structural analysis is
built up around a specific technology through three structural components of the innovation system:
Actors, networks, and institutions [32]. Actors includes universities, research institutes, manufacturing
firms, consumers, government sectors, and interest groups from the industry [6]. Networks are
built by the production and value chain and by collaboration between universities and industries [6].
Institution stands for formal laws, regulations, rules, standards, culture, and routines [6]. The functional
analysis can be seen as a tool for exploring system performance and problems based on structural
components. In addition, this analytical method has been successfully used in a broad range of
academic studies where either the current situation is novel technological sustainable development or
historical dynamics of technological innovations [28,30,33]. In general, TIS analysis relies on seven
pivotal systemic functions: Entrepreneurial activities, knowledge development, knowledge diffusion
through networks, guidance of search, market formation, resource mobilization, and creation of
legitimacy [6,17].

The usefulness of the TIS framework in studies of technological and sustainability innovations
has been demonstrated. For example, Suurs and Hekkert [34] analyzed the interactions between
biofuel innovation development and systemic functions in the Netherlands based on historical events.
According to this analysis, they found that the TIS framework is able to identify cumulative causation
within biofuel innovation systems. Reichardt, Negro, Rogge, and Hekkert [16] studied emerging
technologies, such as wind technologies, in the domain of sustainability transitions by the TIS model.
The potential system barriers that harm the development of innovation systems were first identified in
their research, and related policy recommendations were then derived from the perspective of actors
and the historical literature. Edsand [35] evaluated the systemic functions of TIS and landscape factors



Sustainability 2019, 11, 2342 5 of 34

and relied on the viewpoints of experts and historical event data in order to explore the reasons for
the diffusion of wind power in Colombia. Based on the results of their analysis, policy suggestions
were presented to solve possible barriers among systemic functions. Haley [36] proposed an extended
model using a validation case regarding renewable electricity in Canada that integrated TIS and
structural tensions to understand how the evolution of a focal technology induces technological
complementarities and creates a need to continuously re-design policy. These empirical analyses
offer a basis to academic scholars who can use such TIS frameworks to study emerging innovative
technologies and their sustainable development. In the following section, several systemic functions
and related criteria are introduced.

2.2.1. Entrepreneurial Experiment

Entrepreneurs are important for a well-functioning innovation system [9]. Their role is to transform
the potential of new knowledge, networks, and markets into concrete actions comprised of business
experiments and entrepreneurial ventures [16]. By doing so, more and more business opportunities
can be found. To support entrepreneurial experiments, several indicators can be taken into account,
including experimentation of technological applications, launching pilot projects, entry of firms into
markets, and incubation systems [6,16,17,31,37].

2.2.2. Knowledge Development

This function is represented by several elements consisting of knowledge creation, knowledge
exchange, and knowledge facilitation. Knowledge development often has a dominant influence in
the early development process of a specific technology [6]. Knowledge can be turned into applicable
technologies in practical or commercial environments through two important learning types: Learning
by searching and learning by doing [38]. In addition, knowledge development and promotion can be
affected by different types of knowledge; e.g., scientific technological, production, market, logistics and
design, and sources of knowledge, such as R&D. In general, knowledge development can give rise
to several indicators to understand the degree of knowledge development in a specific industry or
technology, including assessment criteria, conducting feasibility studies, technology market research
and assessment, development of complementary technology and network of technology, and research
cooperation [6,16,17,31,37].

2.2.3. Knowledge Diffusion through a Network

Compared to knowledge development, knowledge diffusion represents the facilitation and
diffusion of knowledge by networks in which stakeholders are involved and provide information and
knowledge to each other. The diffusion of knowledge often takes place in the formation of partnerships
or in meetings, such as workshops and conferences [7]. Based on knowledge diffusion through networks,
related technological innovations and technology commercialization can be effectively developed [39].
According to past TIS studies, assessment criteria, including training professionals, conducting
promotion campaigns, organizing meeting and seminars, and demonstrations and exhibitions, can be
used to evaluate knowledge diffusion through the network function [4,6,17,31,34,37].

2.2.4. Guidance of Search

Guidance of search is defined as incentives or pressures for organizations to enter technological
fields influenced by different actors ‘ visions and expectations [29]. For example, government sectors
provide a set of innovation policies to influence the direction of technological innovation. Given this
action by public sectors, companies and firms will be pushed to aggressively develop technological
innovations accordingly. Therefore, guidance of search plays a significant role in TIS with respect to the
support of emerging technologies or specific technological innovations. The function of guidance of
search gives rise to several criteria, including setting a collective development goal, design of favorable
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rules and regulations, publicizing expectations (disseminating expectations), and providing directional
development [6,11,31,34].

2.2.5. Market Formation

Emerging technologies and novel innovations need to be motivated by supportive means, such as
regulatory reform, technical standards, providing subsidies, and government procurement programs.
This is because such new technologies usually cannot compete with incumbent technologies [29]. Thus,
using policy actions to create favorable environments (niche markets) for the development of emerging
technologies and innovations is indispensable. Moreover, the support of niche market formation
for emerging technology not only represents that a new market is established. Instead, emerging
technologies and innovations can develop in the near future and therefore can form a unique market [8].
The formation of markets can be assessed in terms of several criteria, such as the provision of subsidies,
government procurement, regulatory reform, and technology standards [4,6,17,31,34,37].

2.2.6. Resource Mobilization

Financial, human, and physical resources are necessary basic inputs for technological innovations
in the system of innovation development [9]. Whether the allocation of sufficient resources can
be accomplished will affect novel technology development and innovation. Examples of resources
mobilization include funding scaling up on technology projects, human resources mobilization,
and education programs of specific technologies. In short, without these useful resources to promote
technology development, the innovation system will be hampered. The resource mobilization function
is composed of several criteria, including providing a R&D budget, financial grants and loans, education
program design, mobilizing human resources, and funding scaling up on various projects [6,11,31,34].

2.2.7. Creation of Legitimacy

A certain level of legitimacy is required for actors to commit to a new technology and commit
investments and take adoptive decisions [9]. This function also means that whether the development of
innovative technology can be accomplished depends on the relationship between the advocacy coalition
and policy makers [7]. Political tools, including lobbyists and interest groups, have significantly
impacted public expectations of government sectors. Therefore, the creation of legitimacy can be seen
as a unique form of the guidance of search function [7]. The function of the creation of legitimacy
can be split into several criteria, including the strength of lobbying actions, growth of interest groups,
and social acceptability [6,16,17,31,37].

2.3. Industrial Sustainability and TIS

Based on previous studies, industrial sustainability has verified the relationship between
socio-technology transition and industrial transformation. Technological innovation has also played
an important role in influencing organizational change, industrial upgrading, market formation,
and policy formation. Researchers have implemented many empirical studies to demonstrate
the significance between technological innovation and sustainability. In manufacturing industries,
sustainable development has become an indispensable trend. To facilitate industrial sustainability,
government sectors and policy makers should conduct activities and utilize policy tools to support
industrial development and transition.

Thus, there is a need for government sectors and policy makers to understand the challenges
that firms are facing and what kinds of factors influence industrial development and its sustainability.
In this sense, the TIS framework is suitable for analyzing industrial sustainability. This is because the
TIS framework has been extensively used to analyze innovation policy formulation, technology and
industrial transition, and the sustainability of industries [6,8,9,28–30].



Sustainability 2019, 11, 2342 7 of 34

2.4. Research Gaps

Based on the above literature review results, several research gaps can be identified. First, past
studies have discussed the applications of TIS theory in different contexts [9,14–17]. However, the
causal relationships between the functions of the TIS were seldom discussed. In the real world,
such relationships between functions are dependent. Thus, a derivation of the causal relationships will
be essential to cross the research gap. Further, policy recommendations can be derived accordingly.

Second, analytical frameworks which can help policy makers facilitate the development of
technological innovation and industrial sustainability based on the theory of TIS and systemic
innovation policy instruments were rare [10,14–17]. This research aims to cross the research gap
by defining an analytical framework and process for policy makers to facilitate the development
of technological innovation and industrial sustainability based on the theory of TIS and systemic
innovation policy instruments.

Third, most of the past works of TIS are mainly based on qualitative analysis. Although popular,
traditional qualitative approaches could be subjective and misleading [40]. An analytic framework
based on quantitative methods can cross the research gap.

Finally, in recent years, applications of the TIS theory to the analysis of IoT based manufacturing
industries are still scarce. To face the trend of digital transformation in manufacturing industries of most
catching-up economies (e.g., Taiwan), the introduction of artificial intelligence (AI) and IoT technologies
to stimulate such a digital transformation or industrial upgrading is urgent. Hence, identifying the
factors influencing the introduction and sustainable development of the IoT in manufacturing industries
is important to cross the research gap. The proposed TIS framework can be adopted here as the theoretic
basis for exploring and analyzing factors to develop systemic innovation and policy instruments,
which can enhance the sustainability of IoT in manufacturing industries.

3. Proposed Hybrid Framework for Systemic Factor Evaluation

The promotion of technological innovation development always associates with a wide variety of
factors that can possibly influence the assessment of policy makers. In this research, a novel method is
proposed that integrates Bayesian theory, interval rough number, and DEMATEL. The proposed model
can effectively solve the imprecise information generated from subjective judgment and further derive
the visualization graph of causality among factors. The operation process of the proposed model will
be in the following.

This study first uses the synthetic minority over-sampling technique (SMOTE), a re-sampling
method, to address imbalanced data sets. An imbalanced data set means that the categories (including
universities, industries, research institutes, and government sectors) in the collected data have an
imbalanced distribution. For example, the sample collected from the industry is the majority compared
to other categories. Therefore, it is necessary to address such situations, called re-sample, for use in
subsequent analyses. Then, the settled data set is fed into classification models to understand whether
the re-sampled data set can facilitate the model. Subsequently, the RF is used to derive essential criteria.
The combined approach of BR-DEMATEL is then used to construct a causal relationship network
based on obtained criteria that affect sustainable IoT development. In short, the proposed interactive
evaluation model is used to identify vital factors that will influence sustainable IoT development and
provides valuable suggestions for policy makers so that they can understand which influential variable
needs more attention and analyze the interrelationships among influential variables. The procedure is
described in Figure 1 and the following sections illustrate the methods of the proposed model.
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3.1. SMOTE

The over-sampling method is always used to solve class imbalance problems in data sets.
The primary concept of this method is to randomly replicate the minor classes of the data set and add
these replicated samples into the data set to balance the number of samples in each class. However,
the over-sampling technique does not effectively enhance classification accuracy in the imbalance
class data, which may lead to over-fitting in classification. To solve these aforementioned problems,
the SMOTE was proposed by Chawla et al. [40]. The SMOTE algorithm aims to enlarge the region of
the minority class, which indicates the Cmin, by generating synthetic instances in the feature space.
More specifically, the nearest neighbors will be considered for each sample, xi, in terms of the minority
class data set, Cmin. To generate new data for the imbalanced data set towards the minority class
data, the k nearest neighbors will be determined for each minority class data. Then, the difference
between the minority class sample and the nearest neighbors of the selected sample is obtained. Finally,
the difference multiplies a vector with a random number from [0,1] and adds the xi [40]. In general,
the SMOTE equation can be shown below, based on Han et al. [41]: xsyn = xi + (xk

i − xi) × γ, where xi
is the minority class data and xk

i is data randomly selected from the k-nearest neighbors towards the
data set of xi; γ represents a vector with random values from 0 to 1. By repeating the above equation,
the desired value of synthetic data can be created.
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3.2. The RF Technique

The RF is an ensemble learning algorithm for classification, regression, and related tasks.
In machine learning, RF is regarded as a powerful tool for dealing with various issues of predictions.
The feature of the RF technique is to aggregate results from several trained predictors or classifiers [42].
In general, the RF algorithm is performed as follows:

If n is the number of instances in a data set, then a random sample with a replacement of n
instances from the original data is determined. The obtained bootstrap sample is the training set used
for developing the tree. In order to demonstrate the prediction performance of the RF, a random part of
the data from the bootstrap sample, called observation (or the so called out-of-bag (OOB)) data, is used
for testing the model in terms of the cross-validation mechanism.

If M is the number of features in a data set, then a number, m (m < M), is specified. At each node
of the tree, the feature with the best value among m is used to split the node. In this step, the best split
that minimizes the objective function is selected. As for the problem of classification, suppose the class
is 1, . . . , L, the Gini index of the child nodes stands for the cost parameter. The Gini index of a node,
t, is defined as:

∑L
c=1 m̂c

t

(
1− m̂c

t

)
, where m̂c

t is the probability of observing the class, c, in the node, t.
Each tree is fully developed and not pruned. The new data is predicted by aggregating the predictions
of the n trees (i.e., the majority votes for classification and average for regression). The RF operation
process is shown in Figure 2.

Sustainability 2019, 11, x FOR PEER REVIEW  9  of  35 

the k‐nearest neighbors towards the data set of  ;     represents a vector with random values from 

0 to 1. By repeating the above equation, the desired value of synthetic data can be created. 

3.2. The RF Technique 

The RF  is an ensemble  learning algorithm  for classification,  regression, and  related  tasks.  In 

machine learning, RF is regarded as a powerful tool for dealing with various issues of predictions. 

The feature of the RF technique is to aggregate results from several trained predictors or classifiers 

[42]. In general, the RF algorithm is performed as follows: 

If    is the number of instances in a data set, then a random sample with a replacement of   

instances from the original data is determined. The obtained bootstrap sample is the training set used 

for developing the tree. In order to demonstrate the prediction performance of the RF, a random part 

of the data from the bootstrap sample, called observation (or the so called out‐of‐bag (OOB)) data, is 

used for testing the model in terms of the cross‐validation mechanism. 

If M is the number of features in a data set, then a number, m (m < M), is specified. At each node 

of the tree, the feature with the best value among m is used to split the node. In this step, the best split 

that minimizes the objective function  is selected. As for the problem of classification, suppose the 

class is 1, …, L, the Gini index of the child nodes stands for the cost parameter. The Gini index of a 

node, t, is defined as:   1
ˆ ˆ1

L c c

t tc
m m


 , where    is the probability of observing the class, c, in the 

node, t. Each tree is fully developed and not pruned. The new data is predicted by aggregating the 

predictions of the n trees (i.e., the majority votes for classification and average for regression). The RF 

operation process is shown in Figure 2. 

 

Figure 2. RF operation process. 

The building of the RF method depends on the best split among all predictor features at each 

node when developing an unpruned tree for each bootstrap sample. Although there is no specific 

rule for randomly determining predictors, the predictive performance of the RF method is based on 

past experience that shows its superiority over other benchmark models, including the support vector 

machine (SVM), logistic regression (LR), and gradient boosting (GB) techniques. Additionally, RF has 

several strengths. RF is a non‐parametric approach, which means the values of variables without the 

limitation of any statistical distribution. Additionally, this method is able to prevent overfitting and 

has a significant advantage in terms of computation speed for large data sets [43]. 

 

Figure 2. RF operation process.

The building of the RF method depends on the best split among all predictor features at each
node when developing an unpruned tree for each bootstrap sample. Although there is no specific
rule for randomly determining predictors, the predictive performance of the RF method is based on
past experience that shows its superiority over other benchmark models, including the support vector
machine (SVM), logistic regression (LR), and gradient boosting (GB) techniques. Additionally, RF has
several strengths. RF is a non-parametric approach, which means the values of variables without the
limitation of any statistical distribution. Additionally, this method is able to prevent overfitting and
has a significant advantage in terms of computation speed for large data sets [43].



Sustainability 2019, 11, 2342 10 of 34

3.3. BR-DEMATEL

The decision making trial and evaluation laboratory (DEMATEL) approach is based on matrix
derivation and graph theory and was developed by the Geneva Research Centre of the Battelle
Memorial Institute. This method not only can reflect the degree of relation or the strength of influence,
but can also obtain the relationships between the causality of the criteria in a network map. Thus,
DEMATEL can be seen as an MCDM approach.

Although this approach was used to explain the causal relationship among factors and to derive
enhancement suggestions for decision makers, it may lack a mechanism for manipulating subjective
and vague evaluations of factor interactions [44]. Based on this problem, some famous theories,
such as fuzzy and grey numbers, were introduced and incorporated into the DEMATEL. Indeed, these
extended DEMATEL models are able to address the vagueness and imprecision in many research
issues. However, when determining a proper membership function for fuzzy sets and defining an
appropriate interval number for grey functions, subjectivity will influence the final decision and so
particular attention needs to be paid to it [20]. Apart from the fuzzy and grey theories, the rough set
theory, proposed by Pawlak [45], is another instrument for overcoming uncertainty. Recent studies
have proved that the extension models with rough interval numbers can effectively address complex
human behaviors without a definition of the membership function. Although the rough set theory
is successful for treating uncertainties, it still needs more attention to achieve further improvements.
The purpose of Bayesian theory is to revise the initial information by introducing new information,
which stands for the original message and can be modified so that it will be closer to the real situation.
Given such an advantage, imprecision problems can be handled. The combination of both rough set
and Bayesian theories can be a relatively good way to effectively address uncertainty problems in
collective decision making.

In this research, a novel hybrid MCDM model is developed by incorporating Bayesian theory
and the rough interval number to form the DEMATEL (BR-DEMATEL) method, which will be used to
evaluate the factors that influence the definition of innovation policy in a vague environment. Based on
the previous literature [19,46,47], the following process shows the steps of operating the BR-DEMATEL:

Step 1: Construct the initial group direct matrix, Mα, which contains the direct influences provided
by experts.

For the construction of Mα matrices, including the prior matrix of Mp (previous information
in technology development) and the conditional matrix of Mc (current information in technology
development), q experts are first asked to identify the level of influence from function i to function j,
as indicated by mα

i j, where:

mα
i j =

[
mα1

i j , · · · , mαk
i j , . . . , m

αq

i j

]
(1)

using an integer scale from 0 to 4 (0—no influence, 1—low influence, 2—medium influence, 3—high
influence, and 4—very high influence). Then, the non-negative n × n matrix, DMα

k , based on the
opinions provided by the kth expert’s evaluation is constructed, as illustrated below:

DMα
k =


0 mαk

12 · · · mαk
1n

mαk
21 0 · · · mαk

2n
...

... 0
...

mαk
n1 mαk

n2 · · · 0

, k = 1, · · · , q; α = p, c. (2)
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Here, DMα
k represents kth opinions provided by m experts; p and c indicate the prior and condition

matrix, respectively. Thus, the group initial direct matrix of Aα can be defined as:

Aα =


{0, 0, · · · 0}

{
aα1

12 , aα2
12 , · · · a

αq

12

}
· · ·

{
aα1

1n, aα2
1n, · · · a

αq

1n

}{
aα1

21 , aα2
21 , · · · a

αq

21

}
{0, 0, · · · 0} · · ·

{
aα1

2n, aα2
2n, · · · a

αq
2n

}
...

... {0, 0, · · · 0} · · ·{
aα1

n1, aα2
n1, · · · a

αq

n1

} {
aα1

n2, aα2
n2, · · · a

αq
n2

}
· · · {0, 0, · · · 0}

,α = p, c., (3)

Step 2: Determination of the rough group direct-influence matrix, Z̃α.
Assume that Jσ = [aα1

i j , aα2
i j , · · · , aαm

i j ] is a vector consisting of the opinions provided by the experts

(see Aα matrix), where the opinions are ordered as aα1
i j ≤ aα2

i j ≤ · · · ≤ aαm
i j . U is the universe that includes

all the objects and P is an arbitrary object that is a subset of U. The lower approximation of aαk
i j(l)

and

the upper approximation of aαk
i j(u)

can be defined as follows:

Lower approximation : Apr(aαk
i j(l)

) =
{

P ∈ U|J(P) ≤ rαk
i j

}
(4)

Upper approximation : Apr(aαk
i j(u)

) =
{

P ∈ U|J(P) ≥ rαk
i j

}
(5)

Next, both the lower approximation, aαk
i j(l)

, and the upper approximation, aαk
i j(u)

, are defined by
using the lower and upper limits, which is defined as follows:

Lower limits Lim(aαk
i j(l)

) =
1

nα
i j(l)

ni j(l)∑
m=1

ηαi j (6)

Upper limits Lim(aαk
i j(u)

) =
1

nα
i j(u)

ni j(u)∑
m=1

yαi j (7)

When α = p, the approximation matrix is considered as the prior matrix, Mp. When α = c,
the approximation matrix is considered as the conditional matrix, Mc. ηαi j is the lower approximation

for aαk
i j(l)

and yαi j is the upper approximation for aαk
i j(u)

. nα
i j(l)

and nα
i j(u)

represent the number of objects

included in the lower approximation, aαk
i j(l)

, and upper approximation, aαk
i j(u)

, respectively.
Subsequently, all collected expert opinions are filled into the DMα

k matrices. Each of the matrices
is transformed into a rough interval number using Equations (4) to (7), as follows:

RN(aαk
i j ) = [Lim(aαk

i j(l)
), Lim(aαk

i j(u)
)] = [aαkL

i j(l)
, aαkU

i j(u)
], (8)

where the lower and upper limits are represented as aαkL
i j(l)

and aαkU
i j(u)

, respectively, in RN(aαk
i j ). Moreover,

these two limits depict the level of vagueness. The prior and conditional rough sequences, RN(̃ap
ij) and

RN(̃ac
i j), are derived as follows:

RN(̃ap
ij) =

{
[ap1

i j(l)
, ap1

i j(u)
], [ap2

i j(l)
, ap2

i j(u)
], · · · , [a

pq

i j(l)
, a

pq

i j(u)
]
}

(9)

RN(̃ac
i j) =

{
[ac1

i j(l)
, ac1

i j(u)
], [ac2

i j(l)
, ac2

i j(u)
], · · · , [a

cq

i j(l)
, a

cq

i j(u)
]
}

(10)
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The mean rough interval numbers of the prior and conditional rough sequences are defined as

RN(̃ap
ij) and RN(̃ac

i j), respectively. The two means are generated using the rough derivation equations
defined in Equations (11) to (16), as follows:

RN(̃ap
ij) = [ap

ij(l)
, ap

ij(u)
], (11)

where:

ap
ij(l)

=

 m∑
k=1

apk
i j(l)

/m (12)

ap
ij(u)

=

 m∑
k=1

apk
i j(u)

/m (13)

RN(̃ac
i j) = [ac

i j(l), ac
i j(u)], (14)

where:

ac
i j(l) =

 m∑
k=1

ack
i j(l)

/m (15)

ac
i j(u) =

 m∑
k=1

ack
i j(u)

/m (16)

The rough interval number, [ap
ij(l)

, ap
ij(u)

], represents the prior situation, where ap
ij(l)

and ap
ij(u)

represent the lower and upper limits of the sequence, respectively. In the conditional situation
of [ac

i j(l), ac
i j(u)], ac

i j(l) and ac
i j(u) represent the lower and upper limits of the rough interval number,

RN(̃ac
i j) = [ac

i j(l), ac
i j(u)]. Based on the above calculations, the prior and conditional rough group direct

influence matrices, Z̃
p

and Z̃
c
, are defined as follows:

Z̃
p
=

[
RN(̃ap

ij)
]
n×n

=


[0, 0] [ap

12(l)
, ap

12(u)
] · · · [ap

1n(l)
, ap

1n(u)
]

[ap
21(l)

, ap
21(u)

] [0, 0] · · · [ap
2n(l)

, ap
2n(u)

]

...
...

. . .
...

[ap
n1(l)

, ap
n1(u)

] [ap
n2(l)

, ap
n2(u)

] · · · [0, 0]


(17)

Z̃
c
=

[
RN(̃ac

i j)
]
n×n

=


[0, 0] [ac

12(l), ac
12(u)] · · · [ac

1n(l), ac
1n(u)]

[ac
21(l), ac

21(u)] [0, 0] · · · [ac
2n(l), ac

2n(u)]

...
...

. . .
...

[ac
n1(l), ac

n1(u)] [ac
n2(l), ac

n2(u)] · · · [0, 0]


(18)

Step 3: Calculation of the normalized D̃
α

matrix.
Matrix D̃

α
is derived from the normalized group direct influence matrix, Z̃

α
. During the calculation

of matrix D̃
α
, each element in matrix D̃

α
is designated a value between zero and one. The D̃

α
matrix,

including D̃
p

and D̃
c
, is acquired when each element, RN(̃aαi j), of matrix Z̃

α
is divided by the maximum

value of every rough interval number, as illustrated in Equations (19) to (22):

D̃
p
=

[
RN(d̃p

ij)
]
n×n

=


[0, 0] [dp

12(l)
, dp

12(u)
] · · · [dp

1n(l)
, dp

1n(u)
]

[dp
21(l)

, dp
21(u)

] [0, 0] · · · [dp
2n(l)

, dp
2n(u)

]

...
...

. . .
...

[dp
n1(l)

, dp
n1(u)

] [dp
n2(l)

, dp
n2(u)

] · · · [0, 0]


(19)
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D̃
c
=

[
RN(d̃c

i j)
]
n×n

=


[0, 0] [dc

12(l), dc
12(u)] · · · [dc

1n(l), dc
1n(u)]

[dc
21(l), dc

21(u)] [0, 0] · · · [dc
2n(l), dc

2n(u)]

...
...

. . .
...

[dc
n1(l), dc

n1(u)] [dc
n2(l), dc

n2(u)] · · · [0, 0]


, (20)

where RN(d̃p
ij) and RN(d̃c

i j) are calculated based on the following equations:

RN(d̃p
ij) =

(
RN(̃ap

ij)
)
/k(p), where k(p) = max

1≤i≤n
(

n∑
j=1

ap
ij(u)

) (21)

RN(d̃c
i j) =

(
RN(̃ac

i j)
)
/k(c), where k(c) = max

1≤i≤n
(

n∑
j=1

ac
i j(l)) (22)

Step 4: Establishing the total influence matrix, T̃.
Based on Equation (23), the total influence matrix, T̃

α
, consisting of Tp

(l)
, Tp

(u)
, Tc

(l), and Tc
(u), can be

derived, where I denotes the identity matrix of the n× n rank. The total influence matrix based on the

prior situation can be denoted as T̃
p
=

[
Tp
(l)

, Tp
(u)

]
. Similarly, using the condition situation, the total

influence matrix is depicted as T̃
c
=

[
Tc
(l), Tc

(u)

]
.

Tp
(l)

= (Dp
(l)
) + (Dp

(l)
)

2
+ · · ·+ (Dp

(l)
)
θ
= (Dp

(l)
)(I−Dp

(l)
)
−1

,

Tp
(u)

= (Dp
(u)

) + (Dp
(u)

)
2
+ · · ·+ (Dp

(u)
)
θ
= (Dp

(u)
)(I−Dp

(u)
)
−1

,

Tc
(l) = (Dc

(l)) + (Dc
(l))

2 + · · ·+ (Dc
(l))

θ = (Dc
(l))(I−Dc

(l))
−1, and

Tc
(u) = (Dc

(u)) + (Dc
(u))

2 + · · ·+ (Dc
(u))

θ = (Dc
(u))(I−Dc

(u))
−1, when θ→∞.

(23)

T̃
p
=

[
RN(̃tp

ij)
]
n×n

=


[0, 0] [tp

12(l)
, tp

12(u)
] · · · [tp

1n(l)
, tp

1n(u)
]

[tp
21(l)

, tp
21(u)

] [0, 0] · · · [tp
2n(l)

, tp
2n(u)

]

...
...

. . .
...

[tp
n1(l)

, tp
n1(u)

] [tp
n2(l)

, tp
n2(u)

] · · · [0, 0]


(24)

T̃
c
=

[
RN(̃tc

i j)
]
n×n

=


[0, 0] [tc

12(l), tc
12(u)] · · · [tc

1n(l), tc
1n(u)]

[tc
21(l), tc

21(u)] [0, 0] · · · [tc
2n(l), tc

2n(u)]

...
...

. . .
...

[tc
n1(l), tc

n1(u)] [tc
n2(l), tc

n2(u)] · · · [0, 0]


(25)

After the calculation of the total influence matrix, the next step is to convert these matrices into
the posterior matrix utilizing Equations (24) to (26). The posterior matrix is derived as shown below:

T̃ = β̃× P(T̃
p
∣∣∣∣̃Tc

) = β̃× P(T̃
p
∩ T̃

c
)/P(T̃

c
)

= β̃×
(
P(T̃

c
∣∣∣∣̃Tp

)P(T̃
p
)
)
/

n∑
i=1

n∑
j=1

t̃c′
i j ×̃tp′

i j
(26)

where P(T̃
p
) =

[̃
tp′

i j(l)
, t̃p′

i j(u)

]
n×n

and P(T̃
c
) =

[̃
tc′
i j(l), t̃c′

i j(u)

]
n×n

represent the probability matrices that are

being normalized from the total influence matrices, and β̃ is a parameter acquired through the sum of
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posterior probability matrices. β̃ is used for transforming the posterior probability matrices into the
posterior total influence matrix. The posterior rough total influence matrix of T̃ is shown below:

T̃ =
[
RN(̃ti j)

]
n×n

=


[0, 0] [t

12(l), t
12(u)] · · · [t

1n(l), t
1n(u)]

[t
21(l), t

21(u)] [0, 0] · · · [t
2n(l), t

2n(u)]

...
...

. . .
...

[tn1(l), tn1(u)] [tn2(l), tn2(u)] · · · [0, 0]


(27)

To examine the reliability of the collected data, the inconsistency rate is calculated using
Equation (28):

Inconsistency ratio =
1

n(n− 1)

n∑
i=1

n∑
j=1

∣∣∣∣∣∣∣ t
n
ij − tn−1

i j

tn
ij

∣∣∣∣∣∣∣× 100%, (28)

where ti j = (ti j(l) + ti j(u))/2, tn
ij is the average influence of factor i on j. n denotes the number of

samples. An inconsistency rate that is less than 5% represents the reliability of the collected samples.
Using Equations (29) and (30), row sums and column sums are respectively defined as hi =

[hi(l), hi(u)] (hi(l) and hi(u) are the lower limit and upper limit) and vi = [vi(l), vi(u)] (vi(l) and vi(u) are the

lower limit and upper limit) within the posterior rough total influence matrix, T̃:

hi = [hi(l), hi(u)] = [
n∑

j=1

ti j(l),
n∑

j=1

ti j(u)] (29)

v j = [v j(l), v j(u)] = [
n∑

i=1

ti j(l),
n∑

i=1

ti j(u)] (30)

Then, a de-roughness approach is used to convert the interval rough numbers into crisp values.
By the method of Opricovic and Tzeng [48], vague numbers can be effectively transformed into crisp
values. The de-roughness algorithm is described in the following several steps:

Normalization:
h̃L

i = (hL
i −min

i
hL

i )/∆hmax
hmin

(31)

h̃U
i = (hU

i −min
i

hL
i )/∆hmax

hmin
(32)

ṽL
j = (vL

j −min
i

vL
j )/∆hmax

hmin
(33)

ṽU
j = (vU

j −min
i

vL
j )/∆hmax

hmin
, (34)

where ∆hmax
hmin

= max
i

hU
i −max

i
hL

i and ∆vmax
vmin

= max
i

vU
i −max

i
vL

i , h̃L
i , h̃U

i , ṽL
i , ṽU

i are the normalized scores.

After that, the total normalized crisp values and final crisp values can be computed by Equations (35)
to (38), respectively:

hpi =
h̃L

i × (1− h̃L
i ) + h̃U

i × h̃U
i

1− h̃L
i + h̃U

i

(35)

vp j =
ṽL

i × (1− ṽL
i ) + ṽU

i × ṽU
i

1− ṽL
i + ṽU

i

(36)

ri = min
i

hL
i + hpi∆

hmax
hmin

(37)

c j = min
j

vL
j + vp j∆

vmax
vmin

(38)
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where ri and c j are the final transformed crisp values and i = j.
Using the calculation that obtains crisp values, the causal network can be acquired by mapping

the ordered pairs of (ri + ci,i ri − ci). The horizontal axis (r + c), named “Prominence”, is derived
by adding ri to ci. The vertical axis (r − c), named “Relation”, is derived by subtracting ri from ci.
In the causal network, the horizontal axis, “Prominence”, indicates the strength of the total influences
given and received by some specific criterion and reveals the importance of the criterion. The vertical
axis, “Relation”, divides the criteria into cause and effect groups. When the value (ri − ci) is positive,
the criterion belongs to the cause group where the criterion, i, affects other criteria. If the value (ri − ci)

is negative, the criterion belongs to the effect group, where criterion i is influenced by other criteria.
Thus, the cause-effect diagram visualizes the complicated interrelationship between criteria into a
visible structural network and provides valuable information for problem solving. Furthermore, the
causal network map is suitable for use by decision makers to examine the difference between cause
and effect factors to determine useful strategies and policies.

4. Empirical Study of Evaluating Systemic Factors That Influence IoT Sustainable Development

In this section, the background of an empirical case and problem description is first briefly
illustrated. Then, the data collection is introduced. Finally, empirical results generated by the proposed
model are presented.

4.1. Background and Problem Description

TIS analysis and systemic function evaluation play key roles in the sustainable development
of an emerging technology and industry. The IoT is regarded as a dominant emerging technology
that will influence the next generation of technology in a variety of fields. Thus, many countries
desire to develop IoT technology and applications in order to enhance their economic growth and
industrial competitiveness.

In certain developed economies, national governments have already defined innovation policies
to achieve sustainable development of the IoT. For example, members of the European Union, such as
German and Finland, have implemented a program of smart factories for the support of industrial
upgrades and production platforms of SMEs. However, for emerging economies, including China,
Taiwan, India, Malaysia, Indonesia, Thailand, and South Korea [49], the technology life cycle of IoT
applications are still in the early stages. Taiwan is an example. Although the Taiwan government
adopted industrial policies to help develop the IoT industry (‘Asian Silicon Valley’ project), significant
innovation policy gaps still exist. For example, Taiwan is well-known for manufacturing and production.
However, manufacturing industries in Taiwan are facing a problem in which traditional SMEs and
parts of large companies have to upgrade existing production infrastructure, such as the use of
robotic equipment for human-machine cooperation. Under such situations, the government needs to
propose a useful solution that will help industries to upgrade. Moreover, digital data in the era of
industry 4.0 consist of production and manufacturing related information. If these data can be properly
used and analyzed, production and operation will be more efficient. However, business intelligence,
dataset integration, and machine learning systems have not yet fully been introduced into the SMEs.
This implies that the government needs to put more effort into IoT industrial transformation.

Therefore, understanding possible reasons and exploring feasible factors that influence sustainable
development of the IoT is important in order to help define related innovation policies that can be
used as supportive tools to enhance industrial competitiveness. Through the theoretical framework of
TIS, which has been extensively used to analyze industrial and technology innovation development,
an integrated MCDM framework is proposed for analyzing the systemic factors that influence Taiwanese
IoT development. Furthermore, based on the interrelationships among systemic factors derived by the
proposed framework, policy makers can easily understand how to promote IoT industrial sustainability
in smart manufacturing.
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4.2. Data Collection

Raw data were mainly collected from questionnaires (refer to Appendix A) answered by Taiwanese
experts over a three-month period, from August to October 2017. To construct the questionnaire, the
evaluation criteria (features) and functions (dimensions) were collected from literature on TIS [6,9,10,50].
Seven important functions were introduced: (1) Entrepreneurial activities (F1); (2) knowledge
development (F2); (3) knowledge diffusion through network (F3); (4) guidance of the search (F4);
(5) market formation (F5); (6) resource mobilization (F6); and (7) creation of legitimacy (F7). Moreover,
based on the literature review results, 28 possible criteria that may influence the definition of innovation
policy were also included in the seven functions. Table 1 illustrates the feasible systemic functions
and criteria.

Table 1. Description of crucial systemic analytical factors of TIS.

Functions Symbol Features/Criteria

Entrepreneurial activities (F1)

e1 Experimenting new applications of IoT
e2 Launching pilot IoT projects
e3 Entry of firms to IoT markets
e4 System for innovation and incubation

Knowledge development (F2)

k1 Conducting feasible studies
k2 IoT market research and assessment
k3 Developing complementary technologies
k4 Network of technology and research cooperation

Knowledge diffusion through networks (F3)

d1 Training of professionals
d2 Conducting promotion campaigns
d3 Organizing conference/workshops/seminars/meetings
d4 Demonstrations and exhibitions

Guidance of the search (F4)

g1 Setting collective goals for IoT development
g2 Design of favorable rules and regulations
g3 Publicizing expectations
g4 Providing direction of development

Market formation (F5)

m1 Providing subsidies
m2 Government procurement programs
m3 Regulatory reform
m4 Standardizations

Resource mobilization (F6)

r1 Providing R&D budgets
r2 Providing financial grants and loans
r3 Launching IoT related education programs
r4 Mobilizing human resources
r5 Funding scale up on IoT projects

Creation of legitimacy (F7)
c1 Strength of lobby actions
c2 Rise and growth of interest groups
c3 Social acceptability

Second, the survey was conducted for feature selection in terms of investigating various units
from the government sector, industry, universities, and research institutes. Some of these units mainly
participated in the technology-oriented IoT research and development, and the government units were
from a related IoT development sector. The rest of the other units, which are vendors of IoT devices,
focus on the production of intelligent machines. The questionnaire was placed on the website where
these units were invited to answer how important the evaluation criteria are to this research issue
using a 5-point Likert measure. A total of 150 responses were received and 106 of the surveys were
usable, for a valid response rate of 70.67%. Once valid surveys were confirmed, a tree-based method
was used to select appropriate factors for subsequent analysis. The detailed process is presented in the
following sub-section.

Based on the result of the feature selection, the pair-wise comparison questionnaire (refer to
Appendix B) that was used in this work was designed. In this research, based on the snowball sampling
method [51], 15 potential participants with more than 15 years of experiences in IoT related jobs
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were invited to provide opinions. Background information on the experts is shown in Appendix C.
These experts included top management as well as R&D and technology managers from Taiwanese
IoT-related firms. A list of potential interviewees was planned and the questionnaire survey was
implemented from February 2018 to November 2018. Each questionnaire survey was conducted either
in-person or in an online meeting and took 45 to 60 min.

As for the interview, experts were asked to discuss current and future difficulties that need to
be solved by the Taiwanese government and businesses, and what sort of systemic problems will
hinder IoT development that need to be addressed by policies. Additionally, these experts were asked
to assess IoT innovation policies based on criteria and systemic problems for the construction of a
non-additive hybrid rough decision framework.

4.3. Data Pre-Processing and Feature Selection

Although variables were identified in the TIS literature, the suitability of these variables needs to
be confirmed to be used in this research. Also, each TIS issue has its own specific situation, which means
that IoT industrial sustainability will be different from industrial sustainability of other technologies.
Thus, there is a need to determine a set of applicable variables for this research. A description of data
pre-processing and feature selection is detailed below.

First, in the collected data set, 106 samples belonging to four different categories were introduced to
uncover knowledge by an ensemble algorithm in the classification task. Each category has information
that can facilitate the prediction of new samples. Regarding the data set in this research, the industry
category accounts for a proportion of the total samples. In general, an imbalanced data set, which means
that the majority category exceeds the number of the minority class, will result in poor performance
that will bias the new sample prediction. Thus, such a problem has to be solved. According to
previous studies, the re-sampling technique can be used to solve this problem. From past experience,
an effective approach, called SMOTE, which can both enhance the number of samples in the minority
class and avoid the drawback of over-fitting [40], is very suitable for pre-processing an imbalanced
data set in this research. After processing the data set, the original imbalanced classes (72 for industry,
17 for university, 8 for government sector, and 9 for research institute) were re-sampled as 72 for
industry, 72 for university, 72 for government sector, and 9 for research institute. This will benefit the
classification task.

Second, random sampling is used to split the data into three subsets: Training set, testing set,
and validation set, with respective proportions of 60%, 20%, and 20%. Hence, the number of data
points in the training set, testing set, and validation set were 135, 45, and 45, respectively. To compare
the predictions between the original data set and the re-sampled data set, several algorithms were used,
including RF, logistic regression (LR), linear support vector machine (LS-SVM), radial basis function
kernel SVM (RBF-SVM), and gradient boosting (GB). Table 2 presents the results of this classification
task. As shown in Table 2, the re-sampled classification result is better than the original classification
data set. In addition, for the prediction task, the RF method was also verified for robustness relative
to other algorithms in Table 2. Next, the RF method was used as a feature selection instrument for
filtering useful features.

Table 2. The accuracy of classification between re-sampled data and original data.

Algorithms
Re-Sampled Data Original Data

Training Testing Validation Training Testing Validation

RF 0.756 0.822 0.756 0.699 0.667 0.682
LR 0.698 0.667 0.689 0.573 0.714 0.636

LS-SVM 0.683 0.689 0.667 0.463 0.619 0.727
RBF-SVM 0.750 0.711 0.644 0.699 0.667 0.636

GB 0.712 0.889 0.733 0.601 0.714 0.596
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Finally, in the process of feature selection, the variables were determined by RF with five rounds,
where each round implemented five 5-fold cross-validations in different sizes of data sets comprised of
a training set and testing set for 90/10, 80/20, 70/30, 60/40, and 50/50, respectively. In RF, the estimator
was set to be 10 and the minimum number of leaves in the samples was 1, and ‘gini’ was used as
a criterion for evaluating the features. The results show that the following were excluded from the
evaluation criteria: Launching pilot IoT projects (e2), IoT market research and assessment (k2), network
of technology and research cooperation (k4), conducting promotion campaigns (kd2), and providing
financial grants and loans (r2). It turns out there are 23 criteria that will be used as assessment indicators
for influencing IoT sustainable development and innovation policy definition (see Table 3).

Table 3. Derived criteria within six systemic functions.

Entrepreneurial activities (F1) e1, e3, e4
Knowledge development (F2) k1, k3
Knowledge diffusion through networks (F3) kd1, kd3, kd4
Guidance of the search (F4) g1, g2, g3, g4
Market formation (F5) m1, m2, m3, m4
Resource mobilization (F6) r1, r3, r4, r5
Creation of legitimacy (F7) c1, c2, c3

4.4. The Derivation of the Causal Network via the Bayesian Rough DEMATEL Method

On the basis of the responses from the 15 experts (see Appendix C), causal relationships were
identified in terms of influential relationships. The expert panel consists of one of each of the following:
Executive director, senior technical support engineer, sales manager, R&D director, senior engineer,
product manager, and technical integration manager. The expert panel also contained eight R&D
managers. In order to understand the factors that impact IoT industrial sustainability and to help IoT
policy formulation, these experts were asked to answer a two-part questionnaire (refer to Appendices A
and B). The group direct-influence matrix that relies on the opinions of experts was established using
the following scale: 4, 3, 2, 1, and 0 (4—very high influence, 3—high influence, 2—low influence,
1—very low influence, 0—no influence). In Table 4, the scores on the left side are denoted as the values
of prior situations (matrix) and the scores on the right side represent the values of current conditions
(matrix). Based on the rough theory and the above-mentioned Equations (2) to (19), the initial values
of the group direct-influence matrix were transformed into rough numbers. Each initial matrix was
comprised of 23 criteria that included 15 elements.

Likewise, the rest of the rough interval numbers can be obtained utilizing the above

computing principles. Thus, the group rough direct influence matrices, Z̃
p
=

[
RN(̃ap

ij)
]
23×23

and

Z̃
c
=

[
RN(̃ac

i j)
]
23×23

(see Tables 5 and 6), are constituted. Next, the normalized rough matrices,

including Dp =
[
RN(d̃p

ij)
]
23×23

and Dc =
[
RN(d̃c

i j)
]
23×23

, are derived by Equations (19) and (20),

as depicted in Tables 7 and 8.
Once the average rough matrix is constructed, the rough total influence matrices, T̃

p
and

T̃
c
(see Tables 9 and 10), can be derived using Equations (21) to (23). The network relationship map can

be derived accordingly. In this step, Bayesian theory is also taken into consideration. The posterior
rough total influence matrix, T, can then be derived based on Equations (24) to (26). Based on
Equation (28), the reliability of the collected data can be derived. The inconsistency ratio is 3.75%
(<5%), which means our collected samples are reliable.

In matrix T (see Table 11), by summing each row and column, T̃
p

and T̃
c

can be derived using
Equations (29) and (30). The influential network relationship map and the causal relationships towards
criteria can thus be illustrated.

The next step to deriving the causal relationship is to convert the rough values into the crisp value
based on Equations (37) and (38). Crisp values, r and c, are eventually obtained and are shown in
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Table 12. The total influence relation matrix, the prominence, and relationships of the systemic function
are demonstrated in Table 13. Finally, the causal network can be illustrated by mapping the crisp
values of r + c and r− c (refer to Figure 3). Based on this causal network, policy makers can understand
complex influence relationships among factors, which enhances the priority of the innovation policy
formulation that can then be planned accordingly.

Table 4. The initial influence matrices by decision makers.

DM1

e1 e3 e4 k1 k3 kd1 . . . r5 c1 c2 c3

e1 (0;0), (4;0) (4;4) (4;4) (4;4) (4;4) . . . (4;4) (4;4) (4;4) (4;4)
e3 (4;4) (0;0) (4;4) (4;4) (4;4) (4;4) . . . (4;4) (4;4) (4;4) (4;4)
e4 (3;3) (2;2) (0;0) (3;3) (2;2) (3;3) . . . (4;3) (2;3) (2;3) (2;2)
k1 (4;3) (4;3) (4;4) (0;0) (4;4) (4;4) . . . (4;3) (4;2) (4;2) (4;2)
k3 (4;4) (4;4) (4;4) (3;3) (0;0) (3;3) . . . (3;2) (3;2) (3;2) (3;2)
kd1 (4;4) (4;4) (3;3) (3;3) (2;2) (0;0) . . . (2;4) (3;4) (2;4) (2;4)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r5 (4;4) (4;4) (4;4) (4;4) (4;4) (4;4) . . . (0;0) (1;1) (1;1) (2;1)
c1 (1;2) (1;3) (1;2) (1;2) (3;3) (2;2) . . . (2;2) (0;0) (4;3) (2;2)
c2 (1;2) (1;3) (1;2) (1;2) (3;2) (1;1) . . . (1;1) (4;2) (0;0) (2;2)
c3 (3;3) (4;4) (2;2) (3;3) (2;2) (2;2) . . . (1;1) (4;3) (4;3) (0;0)

...
DM15

e1 e3 e4 k1 k3 kd1 . . . r5 c1 c2 c3

e1 (0;0) (4;4) (4;4) (4;4) (4;4) (4;4) . . . (3;4) (2;4) (2;4) (2;4)
e3 (4;3) (0;0) (4;4) (4;4) (4;4) (4;4) . . . (4;1) (4;1) (4;3) (4;2)
e4 (2;4) (2;4) (0;0) (2;4) (2;4) (4;4) . . . (4;3) (4;3) (4;3) (4;2)
k1 (4;4) (4;4) (2;4) (0;0) (4;4) (4;4) . . . (3;3) (2;2) (2;2) (2;2)
k3 (4;4) (4;4) (4;4) (3;4) (0;0) (4;4) . . . (2;2) (2;2) (2;2) (2;2)
kd1 (4;4) (4;4) (3;3) (4;4) (4;3) (0;0) . . . (1;1) (1;1) (1;1) (1;1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r5 (4;4) (4;4) (3;2) (4;4) (4;4) (4;4) . . . (0;0) (1;1) (1;1) (2;1)
c1 (3;2) (3;3) (3;2) (3;2) (3;3) (1;2) . . . (2;2) (0;0) (4;3) (2;3)
c2 (1;2) (1;3) (1;4) (1;2) (1;2) (1;3) . . . (1;3) (4;3) (0;0) (2;3)
c3 (4;2) (4;3) (3;2) (4;4) (2;2) (1;2) . . . (3;1) (3;4) (4;4) (0;0)

Table 5. The rough direct influence relation matrix, Z̃
p
.

e1 e3 e4 . . . c2 c3

e1 [0.000, 0.000] [4.000, 4.000] [4.000, 4.000] . . . [2.251, 3.229] [2.073, 3.135]
e3 [3.125, 3.793] [0.000, 0.000] [1.026, 2.970] . . . [2.293, 3.322] [2.167, 3.306]
e4 [2.926, 3.470] [2.142, 2.924] [0.000, 0.000] . . . [2.074, 2.760] [1.898, 2.509]
k1 [3.360, 3.840] [3.284, 3.782] [3.742, 3.991] . . . [2.467, 3.404] [1.547, 3.042]
k3 [3.640, 3.960] [4.000, 4.000] [3.640, 3.960] . . . [2.218, 2.716] [1.435, 2.173]
kd1 [3.640, 3.960] [3.871, 3.996] [3.004, 3.129] . . . [1.857, 2.963] [1.367, 2.421]
. . . . . . . . . . . . . . . . . . . . .
r5 [3.871, 3.996] [3.871, 3.996] [3.125, 3.793] . . . [1.018, 1.249] [1.542, 2.328]
c1 [0.808, 2.280] [0.681, 2.098] [0.817, 2.132] . . . [3.360, 3.840] [1.747, 2.640]
c2 [0.538, 1.138] [0.637, 1.233] [0.638, 1.071] . . . [0.000, 0.000] [1.650, 2.350]
c3 [2.542, 3.547] [3.253, 3.947] [1.996, 2.816] . . . [2.381, 3.674] [0.000, 0.000]
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Table 6. The rough direct influence relation matrix, Z̃
c
.

e1 e3 e4 . . . c2 c3

e1 [0.000, 0.000] [3.278, 3.973] [3.871, 3.996] . . . [3.593, 3.982] [3.502, 3.964]
e3 [3.125, 3.793] [0.000, 0.000] [2.059, 3.607] . . . [2.639, 3.617] [2.771, 3.749]
e4 [2.360, 3.253] [1.997, 2.945] [0.000, 0.000] . . . [2.360, 3.253] [2.080, 2.720]
k1 [2.495, 3.463] [2.781, 3.466] [2.799, 3.714] . . . [1.769, 2.363] [2.160, 2.640]
k3 [3.593, 3.982] [3.751, 3.982] [2.128, 3.304] . . . [2.036, 2.498] [2.036, 2.498]
kd1 [2.840, 3.874] [2.840, 3.874] [2.502, 2.964] . . . [1.333, 2.667] [1.519, 3.151]
. . . . . . . . . . . . . . . . . . . . .
r5 [3.871, 3.996] [3.871, 3.996] [1.969, 2.951] . . . [1.000, 1.000] [1.004, 1.129]
c1 [2.354, 3.386] [3.007, 3.651] [2.000, 2.000] . . . [3.000, 3.000] [2.751, 2.982]
c2 [2.320, 3.280] [2.349, 3.130] [2.273, 2.938] . . . [0.000, 0.000] [2.751, 2.982]
c3 [2.672, 3.458] [2.273, 3.308] [2.166, 3.053] . . . [3.198, 3.850] [0.000, 0.000]

Table 7. The normalized rough direct influence relation matrix, Dp.

e1 e3 e4 . . . c2 c3

e1 [0.000, 0.000] [0.049, 0.049] [0.049, 0.049] . . . [0.027, 0.039] [0.025, 0.038]
e3 [0.038, 0.046] [0.000, 0.000] [0.012, 0.036] . . . [0.028, 0.040] [0.026, 0.040]
e4 [0.036, 0.042] [0.026, 0.036] [0.000, 0.000] . . . [0.025, 0.034] [0.023, 0.030]
k1 [0.041, 0.047] [0.040, 0.046] [0.045, 0.048] . . . [0.030, 0.041] [0.019, 0.037]
k3 [0.041, 0.048] [0.049, 0.049] [0.044, 0.048] . . . [0.027, 0.033] [0.017, 0.026]
kd1 [0.044, 0.048] [0.047, 0.049] [0.036, 0.038] . . . [0.023, 0.036] [0.017, 0.029]
. . . . . . . . . . . . . . . . . . . . .
r5 [0.047, 0.049] [0.047, 0.049] [0.038, 0.046] . . . [0.012, 0.015] [0.019, 0.028]
c1 [0.010, 0.028] [0.008, 0.025] [0.010, 0.026] . . . [0.041, 0.047] [0.021, 0.032]
c2 [0.007, 0.014] [0.008, 0.015] [0.008, 0.013] . . . [0.000, 0.000] [0.020, 0.029]
c3 [0.031, 0.043] [0.040, 0.048] [0.024, 0.034] . . . [0.029, 0.045] [0.000, 0.000]

Table 8. The normalized rough direct influence relation matrix, Dc.

e1 e3 e4 . . . c2 c3

e1 [0.000, 0.000] [0.038, 0.046] [0.044, 0.046] . . . [0.041, 0.046] [0.040, 0.045]
e3 [0.036, 0.044] [0.000, 0.000] [0.024, 0.041] . . . [0.030, 0.042] [0.032, 0.043]
e4 [0.027, 0.037] [0.023, 0.034] [0.000, 0.000] . . . [0.027, 0.037] [0.024, 0.031]
k1 [0.029, 0.040] [0.032, 0.040] [0.032, 0.043] . . . [0.020, 0.027] [0.025, 0.030]
k3 [0.041, 0.046] [0.043, 0.046] [0.024, 0.038] . . . [0.023, 0.029] [0.023, 0.029]
kd1 [0.033, 0.044] [0.033, 0.044] [0.029, 0.034] . . . [0.015, 0.031] [0.017, 0.036]
. . . . . . . . . . . . . . . . . . . . .
r5 [0.044, 0.046] [0.044, 0.046] [0.023, 0.034] . . . [0.011, 0.011] [0.012, 0.013]
c1 [0.027, 0.039] [0.035, 0.042] [0.023, 0.023] . . . [0.034, 0.034] [0.032, 0.034]
c2 [0.027, 0.038] [0.027, 0.036] [0.026, 0.034] . . . [0.000, 0.000] [0.032, 0.034]
c3 [0.031, 0.040] [0.026, 0.038] [0.025, 0.035] . . . [0.037, 0.044] [0.000, 0.000]

Table 9. The rough total influence relation matrix, T̃
p
.

e1 e3 e4 . . . c2 c3

e1 [0.082, 0.240] [0.128, 0.281] [0.114, 0.257] . . . [0.083, 0.222] [0.071, 0.218]
e3 [0.106, 0.280] [0.069, 0.232] [0.070, 0.243] . . . [0.074, 0.221] [0.065, 0.217]
e4 [0.106, 0.263] [0.097, 0.252] [0.060, 0.196] . . . [0.074, 0.203] [0.064, 0.197]
k1 [0.111, 0.275] [0.111, 0.270] [0.103, 0.249] . . . [0.078, 0.217] [0.059, 0.210]
k3 [0.111, 0.260] [0.115, 0.257] [0.099, 0.235] . . . [0.073, 0.197] [0.056, 0.188]
kd1 [0.110, 0.239] [0.103, 0.236] [0.083, 0.206] . . . [0.062, 0.184] [0.049, 0.175]
. . . . . . . . . . . . . . . . . . . . .
r5 [0.011, 0.254] [0.111, 0.251] [0.092, 0.228] . . . [0.058, 0.175] [0.056, 0.184]
c1 [0.044, 0.174] [0.043, 0.170] [0.038, 0.155] . . . [0.064, 0.159] [0.040, 0.143]
c2 [0.034, 0.115] [0.035, 0.114] [0.031, 0.102] . . . [0.020, 0.079] [0.036, 0.104]
c3 [0.068, 0.187] [0.076, 0.189] [0.055, 0.162] . . . [0.056, 0.157] [0.022, 0.111]
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Table 10. The rough total influence relation matrix, T̃
c
.

e1 e3 e4 . . . c2 c3

e1 [0.087, 0.170] [0.120, 0.209] [0.111, 0.191] . . . [0.100, 0.167] [0.099, 0.164]
e3 [0.095, 0.200] [0.058, 0.154] [0.071, 0.177] . . . [0.072, 0.155] [0.074, 0.154]
e4 [0.087, 0.181] [0.080, 0.173] [0.047, 0.125] . . . [0.068, 0.141] [0.065, 0.133]
k1 [0.098, 0.184] [0.098, 0.180] [0.086, 0.167] . . . [0.068, 0.132] [0.073, 0.133]
k3 [0.117, 0.200] [0.115, 0.196] [0.084, 0.172] . . . [0.076, 0.141] [0.076, 0.139]
kd1 [0.078, 0.184] [0.076, 0.180] [0.065, 0.155] . . . [0.047, 0.132] [0.050, 0.135]
. . . . . . . . . . . . . . . . . . . . .
r5 [0.110, 0.173] [0.107, 0.169] [0.075, 0.145] . . . [0.058, 0.105] [0.058, 0.105]
c1 [0.077, 0.140] [0.082, 0.140] [0.063, 0.112] . . . [0.068, 0.108] [0.066, 0.106]
c2 [0.076, 0.142] [0.074, 0.137] [0.065, 0.124] . . . [0.035, 0.077] [0.066, 0.109]
c3 [0.077, 0.142] [0.071, 0.138] [0.062, 0.124] . . . [0.069, 0.119] [0.034, 0.075]

Table 11. The rough total influence relation matrix, T.

e1 e3 e4 . . . c2 c3

e1 [0.089, 0.232] [0.191, 0.335] [0.158, 0.280] . . . [0.103, 0.211] [0.088, 0.204]
e3 [0.126, 0.319] [0.050, 0.203] [0.062, 0.244] . . . [0.066, 0.194] [0.059, 0.190]
e4 [0.115, 0.270] [0.098, 0.249] [0.035, 0.139] . . . [0.062, 0.163] [0.052, 0.149]
k1 [0.137, 0.288] [0.136, 0.277] [0.111, 0.237] . . . [0.066, 0.163] [0.054, 0.159]
k3 [0.161, 0.297] [0.165, 0.286] [0.104, 0.230] . . . [0.069, 0.159] [0.053, 0.149]
kd1 [0.097, 0.250] [0.098, 0.241] [0.067, 0.182] . . . [0.037, 0.138] [0.030, 0.134]
. . . . . . . . . . . . . . . . . . . . .
r5 [0.152, 0.250] [0.149, 0.242] [0.086, 0.187] . . . [0.042, 0.105] [0.040, 0.110]
c1 [0.042, 0.140] [0.044, 0.136] [0.030, 0.099] . . . [0.054, 0.098] [0.033, 0.086]
c2 [0.032, 0.093] [0.033, 0.089] [0.025, 0.072] . . . [0.009, 0.035] [0.029, 0.065]
c3 [0.065, 0.151] [0.067, 0.148] [0.043, 0.114] . . . [0.048, 0.106] [0.009, 0.047]

Table 12. The rough and de-roughness values of r + c and r − c for the systemic criteria.

r̃ c̃ r c r + c r− c

e1 [3.334, 6.174] [2.505, 5.335] 5.208 2.505 7.713 2.702
e3 [1.957, 5.668] [2.417, 5.115] 3.971 2.417 6.388 1.554
e4 [2.051, 4.872] [1.648, 4.096] 3.476 1.648 5.124 1.828
k1 [2.373, 5.101] [2.016, 4.847] 3.842 2.106 5.948 1.737
k3 [2.470, 5.097] [2.228, 4.796] 3.901 2.228 6.129 1.674
kd1 [1.294, 4.146] [1.916, 4.696] 2.481 1.916 4.397 0.566
kd3 [1.694, 4.429] [1.472, 4.338] 2.943 1.472 4.415 1.471
kd4 [1.743, 4.869] [1.606, 4.358] 3.265 1.606 4.871 1.660
g1 [1.353, 3.700] [2.615, 4.661] 2.260 2.165 4.425 0.095
g2 [1.987, 4.209] [2.161, 4.527] 3.005 2.161 5.166 0.845
g3 [2.022, 4.386] [1.975, 4.155] 3.140 1.975 5.114 1.165
g4 [2.315, 4.506] [2.023, 4.251] 3.408 2.023 5.431 1.385
m1 [1.964, 3.981] [1.733, 3.947] 2.853 1.733 4.586 1.120
m2 [1.388, 3.039] [1.951, 4.215] 1.935 1.951 3.886 −0.016
m3 [1.793, 4.577] [1.628, 3.623] 3.106 1.628 4.733 1.478
m4 [2.175, 4.705] [1.853, 4.096] 3.447 1.853 5.300 1.594
r1 [1.109, 3.409] [1.267, 3.283] 1.917 1.267 3.184 0.650
r3 [1.698, 3.376] [2.041, 4.240] 2.331 2.041 4.372 0.291
r4 [1.426, 2.711] [1.125, 2.791] 1.813 1.125 2.938 0.689
r5 [2.117, 4.094] [1.506, 3.239] 3.022 1.506 4.528 1.517
c1 [0.846, 2.322] [1.120, 2.746] 1.196 1.120 2.316 0.077
c2 [0.666, 1.627] [1.215, 3.024] 0.808 1.215 2.024 −0.407
c3 [0.885, 2.330] [1.004, 2.895] 1.231 1.004 2.235 0.227

Table 13. The total influence relation matrix and sum of the systemic function effect.

F1 F2 F3 F4 F5 F6 F7 R + C R−C R C

F1 0.178 0.203 0.181 0.200 0.184 0.153 0.127 1.225 1.087 2.312 0.138
F2 0.202 0.159 0.173 0.194 0.166 0.139 0.107 1.140 1.062 2.202 0.078
F3 0.165 0.156 0.121 0.147 0.132 0.111 0.099 0.932 0.944 1.875 −0.012
F4 0.161 0.167 0.147 0.139 0.134 0.113 0.085 0.947 1.010 1.956 −0.063
F5 0.165 0.162 0.137 0.141 0.116 0.107 0.088 0.917 0.899 1.816 0.018
F6 0.138 0.137 0.122 0.125 0.103 0.083 0.065 0.773 0.757 1.530 0.016
F7 0.079 0.078 0.062 0.063 0.065 0.050 0.051 0.449 0.623 1.072 −0.174
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5. Discussion and Implications

It is essential to identify the appropriate functions and criteria that influence innovation policy
configuration. An effective design of innovation policy will contribute to the development of a
particular technology, thereby enhancing a country’s economic growth and industrial competitiveness.
Consequently, this research represents an integrated model in terms of the function of technological
innovation to explore the relationship between systemic functions that affect the sustainability of IoT
in smart manufacturing. Based on the empirical analysis by the Bayesian rough DEMATEL method,
policy implications and the advancement of MCDM methods are elaborated in the following sections.

5.1. Implications of the Analytical Results

To discuss the policy implications of the empirical analysis, the function and criterion levels are
illustrated below. At first, the analytical results of the functions as well as the causal networks will
be discussed in the following Section 5.1.1. Then, the results corresponding to the criteria will be
discussed in Section 5.1.2.

5.1.1. Function Level

According to the analytical results and the causal relationship network (see Figure 3), the functions
of the TIS can be divided into two groups based on the values of r − c. The cause group consists
of the functions with positive r − c values. The cause group consists of entrepreneurial activities
(F1), knowledge development (F2), market formation (F5), and resource mobilization (F6), while the
effect group is composed of knowledge diffusion through networks (F3), guidance of the search (F4),
and creation of legitimacy (F7). Among all the cause group functions, the prominence (r + c) of
the entrepreneurial activities (F1) function is the largest, which is 2.312. Therefore, entrepreneurial
activities (F1) are recognized as the most significant function affecting the sustainability of IoT in smart
manufacturing. The function of entrepreneurial activities (F1) also has the largest r− c value, which
implies that this function has more influence on the entire TIS.

Faced with the uncertainties of the development of new technology, the introduction of different
new enterprises to promote new technological applications can be one way of expanding the entire
learning process of new technology [6]. In recent years, enterprises and government have often
emphasized how to leverage smart manufacturing to enhance the industrial competitiveness of
Taiwan. However, it still lacks practical methods to realize such issues. Although Taiwan has a
primary advantage in IC design, semiconductor, and other manufacturing industries, if firms cannot
aggressively facilitate IoT development and enhance the technology capability in smart manufacturing,
industrial development will fall behind other industrialized countries. Thus, by providing proper
incentives and policies, the government should play a role in encouraging different enterprises and
technological applications to enter the market.

A prominent and influential function is the knowledge development function (F2). The second
largest r+ c and r− c values, which were 2.202 and 0.078, respectively, demonstrate the high dominance
and strong influence of the knowledge development function on others [52]. In the real world,
technological research and facilitation always needs powerful policy support and investment from
enterprises and government sectors [28,50]. Thus, governments should conduct feasible IoT studies
through associated agencies and institutions and provide incentives to firms and technological
institutions to develop complementary technology [36]. For the functions belonging to the effect group,
the creation of the legitimacy function (F7) has the lowest r− c value (−0.107), which means the function
is mainly influenced by others [53].

The other functions are prioritized as follows: Guidance of the search (F4) with an r − c value
of −0.063 and knowledge diffusion through networks (F3) with an r− c value of −0.012. Regarding
the function of the creation of legitimacy (F7), the lobbying power and growth of interest groups is
essential for technology promotion [17]. Based on the analytical results of this research, firms and
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related agencies should cooperate with each other, and this will help promote competitiveness between
firms in IoT sustainable development.

In addition, based on the causal diagram demonstrated in Figure 3, major influential relationships
can be discussed. For the relationship between entrepreneurial activities (F1) and knowledge
development (F2), this relationship demonstrates that entrepreneurial activities (F1) can directly
influence knowledge development (F2). This causal result is consistent with the research by Zahra [54],
who found that enterprise activities can facilitate knowledge creation and development.

5.1.2. Criterion Level

Concerning the criterion level, Table 12 reveals that experimenting with new applications of
IoT (e1), conducting feasible studies (k1), demonstrations and exhibitions (kd4), providing direction of
development (g4), standardizations (m4), funding scaling up on IoT projects (r5), and social acceptability
(c3) have the greatest influence on other criteria within the relevant functions. In contrast, experimenting
with new applications of IoT (e1), developing complementary technologies (k2), demonstrations and
exhibitions (kd4), providing direction of development (g4), standardizations (m4), funding scaling up
on IoT projects (r5), and strength of lobby actions (c1) with the highest values of r + c are the major
criteria that influence other criteria within the observed functions. From the causal diagram, these
results serve as a solid foundation for making profound decisions. In the following sub-sections,
detailed discussions of the influential network relationships toward the criteria within each function
are presented.

The Function of Entrepreneurial Activities

At first, by referring to the IRM demonstrated in Figure 3, for the function of entrepreneurial
activities, experimenting new applications of IoT (e1) has direct influences on both systems for
innovation and incubation (e4) and entry of firms to the IoT market (e3). The innovation and incubation
(e4) also has a direct influence on the entry of firms into the IoT market (e3). These path relations
are consistent with the research of Hekkert, Suurs, Negro, Kuhlmann, and Smits [17], who stated
that the promotion of potential technology and innovation applications may ultimately turn into
new business opportunities for entrepreneurs. Implementing various new applications will lead to a
situation in which new firms and incumbent companies will enter into the market to search for new
possibilities. Currently, many applications of IoT in the smart manufacturing industry have been
verified and successfully launched. Remote monitoring is an example. The malfunction of IoT devices
may influence the productivity and profitability of firms. An IoT-based monitoring system can connect
all devices to the cloud. Malfunctions and potential risks can be detected and the problems can be
identified and solved without delay.

In Taiwan, firms have a strong background in high-technology manufacturing and have powerful
technology capabilities to produce products in specific domains, such as semiconductors and panels.
However, software development and innovation applications that combine with hard devices are quite
insufficient. Under such situations, the role of the government in IoT policy formulation is to examine
related issues and provide subsidies to support entrepreneurial activities [6]. From the systemic point
of view, policy makers and top management in firms recognize the importance of prioritizing the
implementation of IoT applications. Through such encouragement, innovative firms and incumbent
companies will continue to emerge and eventually the IoT market will flourish.

The Function of Knowledge Development

As depicted in Figure 3, the analytical results of this research indicate that the conduction of feasible
studies directly affects the development of complementary technologies. Gans and Stern [55] argued
that the development of feasible studies is a fundamental driver that influences industrial development
and can reinforce the value of existing technologies, as well as foster the development of complementary
technologies. According to previous studies, successful technological innovation primarily comes from
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the combination of different technologies instead of coming from similar technologies [56]. This implies
that the development of complementary technology may create considerable profit for firms and
facilitate technology applications. Hence, conducting viable studies is important for the promotion of
developing complementary technologies. From the systemic view of point, it is essential that the task
of conducting feasible studies should be focused upon first. Such action may enable firms to combine
different technologies for IoT applications in smart manufacturing fields.

The Function of Market Formation

The empirical study shows that government procurement is influenced by the provision of
subsidies, regulatory reform, and technology standards. Based on the network relationship map
(Figure 3), both subsidy provisions and regulatory reform mediate the influences of technology’s
standard definition on government procurement. The establishment of causal relationships between
standards and government procurement programs requires the mediation of these two factors.
Generally, emerging innovative technologies cannot compete with incumbent technologies. Hence,
the creation of specific markets is needed. Whether the emerging market can be favorably built up,
a set of factors must always be considered, including financial support, government procurement,
construction of new standards, and provision of a friendly environment for the development of
emerging technologies [6,7,17].

Based on the point of view of market formation in the IoT policy definition, government sectors
should emphasize the coordination of cooperation between firms and research institutes and should
aggressively promote the construction of technology standards. Due to the lack of unit standards for
the integration of various technologies and platforms, many applications and technologies relevant to
IoT cannot effectively cooperate and communicate with each other. The Taiwanese government and
public research institutes (e.g., Industrial Technology Research Institute, ITRI) should define related
standards, develop technologies, and accelerate the development of innovation systems by regulation
re-definition. Further, subsidies should be provided for smart manufacturing. Such actions will assist
firms to develop and utilize services and applications of smart manufacturing.

The Function of Resource Mobilization

From the aspect of resource mobilization, funding the scaling up of IoT projects (r5) has a direct
impact on all criteria, consisting of mobilizing human resources (r4), providing R&D budgets (r1),
and launching IoT related education programs (r3). From a systemic perspective, the means of funding
the scaling up of IoT projects should receive much attention. This implies that the government needs to
raise funds for firms to conduct internal R&D projects. In budget planning for R&D, public sectors will
also invest more budget in IoT development. After receiving financial support from the government,
firms can develop technological innovation applications of IoT.

At the same time, as the demand for human resources increases, more IoT-related educational
programs are required. The Taiwanese government recently proposed a major project (Asia Silicon
Valley Development Plan) for the promotion of IoT-based smart manufacturing. This policy aims
to improve conditions for the development of an IoT innovation ecosystem. This important policy
encourages firms to introduce novel innovations from overseas, develop unique applications in IoT
in manufacturing, and enhance the efficiency of the supply chain of smart manufacturing industries.
In addition, by initiating various IoT projects, IoT-related educational programs on smart manufacturing
will also attract attention. The IoT-related education program will also cause significant levels of
human resources to mobilize.

The Function of Knowledge Diffusion through Networks

From the aspect of knowledge diffusion in Figure 3, demonstrations and exhibitions (kd4) affect
the organization of conferences, workshops, seminars, and meetings (kd3), as well as the training of
professionals (kd1). To accelerate IoT development in smart manufacturing, the government should
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provide additional locations that can be used as demonstration fields for IoT activities by firms so that
they can experiment with IoT applications.

For example, the Taiwanese government has invested 40 million New Taiwan dollars in the creation
of demonstration fields for smart manufacturing. This investment will help promote IoT applications.
The construction of smart manufacturing fields can be attributed to certain reasons. First, most
Taiwanese firms are small and medium enterprises (SMEs) that are focused on traditional manufacturing.
Facing pressure from traditional manufacturing to transform to smart production, core competences in
platformization and integration are essential. The shortage of core manufacturing capabilities of key
platformization, financial support, and talent are always obstacles for IoT development.

These demonstration fields will be a benefit measure that can help firms develop and transfer
technologies as well as eventually realizing smart manufacturing. Moreover, many conferences and
workshops have been held by the government and associated firms for discussing and sharing IoT
applications and trends. In summary, the support of the government within the function of knowledge
diffusion through networks is considered an essential force behind the IoT innovation system.

The Function of the Guidance of the Search

From the aspect of the guidance of the search in Figure 3, setting collective goals for IoT
development (g1) is influenced by the design of favorable rules and regulations (g2), publicizing
expectation (g3), as well as providing directions of development (g4). The sequence list for enhancing
the function guidance of the search can be illustrated as follows: Provision of directions of development
(g4), publicizing expectation (g3), design of favorable rules and regulations (g2), and setting collective
goals for IoT development (g1).

This array implies that the provision of directions of development by the government should be
prioritized. This result is compatible with the research of Planko, Cramer, Hekkert, and Chappin [14],
who argued that clear government guidance will facilitate new technology development. Then,
positive publicizing of expectations needs to be strengthened and the favorable rules for new
technology development should also be designed [6,17], respectively. Finally, the collective goals for
IoT development will be realized.

To enhance the innovative IoT developing ecosystem, the Taiwanese government should focus on
R&D innovations that can be commercialized for end markets. For example, the government may hold
conferences and meetings related to IoT development and define the national research direction, which
will make firms become involved in IoT development and will strengthen the linkage of technology
collaboration between domestic and international firms and institutes. By implementing such a policy,
considerable progress in the setting of technology standards and sustainable technology development
will be achieved.

The Function of the Creation of Legitimacy

From the aspect of legitimacy creation, social acceptability (c3) has strong influences on the
strengthening of lobby actions (c1) as well as the rise and growth of interest groups (c2). These path
relationships imply that IoT technology should first be accepted by society. Then, lobby actions
will be initiated. Further, the number of advocacy coalitions will increase. To develop the TIS,
advocacy coalitions and political lobby forces should be strong enough to effectively influence policy
formulation [7]. That is, with the increase of IoT development, the alliance of firms and interest groups
can serve as a useful power that can influence policy formation.

5.2. Policy Implications for Sustainability of IoT in Smart Manufacturing

This research evaluated and analyzed the systemic functions of IoT industrial sustainability based
on TIS. The effectiveness of the proposed novel hybrid method was not only verified for analyzing
the functions that influence IoT industrial sustainability, but it also provides an understanding as to
how the various systemic functions and criteria influence each other based on causal relationships.
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For policy makers, precise knowledge of the causal relationships between functions and criteria may
suggest ways to define innovation policies and enhance the competitiveness of the IoT industry. In brief,
such modeling techniques allow policymakers to consider these systemic functions as a causal diagram
to help define IoT innovation policies.

The systemic functions and criteria were labeled as groups of causes and effects according to
the findings. The priority sequence (refer to Table 14) of enhancement derived from this research is
needed to define appropriate innovation policy and thus promote the sustainability of the IoT industry.
Based on Figure 3, some suggestions behind the policy formulation of motivating IoT development are
illustrated as follows: (1) Based on the point of view of functions in the policy formulation system,
the government should preferentially consider how to increase entrepreneurial activities (F1) and
promote knowledge development (F2). Additionally, the government should construct a favorable
market environment for smart manufacturing of IoT and effectively facilitate the mobilization of human
capital and financial resource allocation. Such measures will encourage companies and firms to develop
smart manufacturing. (2) Concerning the systemic perspective in the function of entrepreneurial
activities, the government should assist with innovation experiments of IoT applications. In addition,
launching policy that promotes developmental incubation centers will stimulate and encourage more
start-ups and transformation enterprises to enter the market. (3) Government sectors should have
strong support from the systemic function of knowledge development to motivate cooperation between
related research institutes, SMEs, and universities. Such measures will facilitate a growing number
of potential studies and technological development, such as complementary technologies. (4) From
the systemic perspective of the function of market formation, the development of standards is the
most important task prior to other systemic criteria. This step will influence the reforms of regulations.
Therefore, government sectors should encourage and help the formulation of standards for smart
manufacturing. In addition, government sectors should also continuously provide subsidies for
enterprises to develop IoT applications.

Regarding the function of resource mobilization, government sectors should first raise funds
depending on the scale of projects and programs. Previous studies have shown that human capital
is a crucial factor in enterprise performance [57]. Cultivating talent and attracting professionals to
related IoT industries is indispensable work for the development of smart manufacturing. Thus,
government sectors should facilitate the mobilization of human capital, such as education training and
talent cultivation.

Table 14. The priority sequence for the enhancement of the innovation policy definition.

Schemes Sequence of Enhancement Priorities

Influential causal diagram of systemic functions (F1), (F2), (F5), (F6), (F3), (F4), (F7)

Influential causal diagram of systemic criteria

(F1): (e1), (e4), (e3)
(F2): (k1), (k3)
(F3): (kd4), (kd3), (kd1)
(F4): (g4), (g3), (g2), (g1)
(F5): (m4), (m3), (m1), (m2)
(F6): (r5), (r4), (r1), (r3)
(F7): (c3), (c1), (c2)

5.3. Advances in Research Methods

An empirical case was validated for the integrated evaluation model presented by this research.
By implementing the rough interval number and Bayesian theory, the proposed approach successfully
developed the DEMATEL method, effectively avoiding unclear and inaccurate human judgment
views. The robustness of the rough interval number for effectively dealing with imprecise information
produced by human judgments has been demonstrated [19,58,59]. The main advantage of Bayesian
theory is that it simultaneously considers the prior possibility and conditional possibility of an event for
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deriving the final result. Combining Bayesian theory and the rough interval number into the DEMATEL
method can not only address imprecise opinions, but can also provide a real analytical result.

In addition, according to the proposed model, the authors attempted to adopt the RF to select a
set of systemic criteria as the evaluation indicators for use in subsequent evaluation analyses. Before
conducting systemic criteria selection, the authors found that the collected data have imbalanced
categories. For example, the category of firms makes up the majority of the data set. If we directly use
the data for empirical analysis, the research outcome may generate bias. Therefore, we adopted the
SMOTE technique to deal with imbalanced categories in data sets. The criteria selection in traditional
MCDM primarily relies on the Delphi method. The Delphi method does not consider the imbalanced
categories in a data set. Meanwhile, the decision being determined is merely based on experts’
consensus, which will lead to judging bias. The RF is a machine learning technique that has superior
classification ability in prior practical cases as compared to other algorithms [60]. At the same time,
RF also has the ability to determine suitable variables in terms of the data set and classification results.
In order to effectively deal with criteria selection, this research attempted to adopt the SMOTE and RF
method for criteria selection.

In this research, the authors successfully verified the effectiveness of the proposed integrated
model. Therefore, the proposed model contributes to the MCDM fields. In the future, researchers
can expand the proposed model or use this model for their studies. Other group decision-making
methods which can deal with subjective judgments [61] can also be adopted. These methods include
the consensus cost model [62], the group decision-making model by incorporating social network
concepts [63], the decision-making model by integrating heterogeneous information [64], and the fuzzy
inference method [65]. Additionally, the proposed model can be used for fields of innovation policy
and TIS.

6. Conclusions

To help define innovation policy, the present research proposed a systemic evaluation framework
for policymakers. By incorporating the RF-based SMOTE technique, Bayesian theory, rough interval
number, and DEMATEL methods, this hybridization system identified the influential relationships
between systemic functions and criteria that can enable the TIS and can therefore form the basis for
policymakers to formulate appropriate innovation policies. By adopting a theoretical perspective
with empirical validation, this research also explored the interrelationships among pivotal systemic
functions. In the modeling process, the RF-based SMOTE technique was utilized to select 23 criteria
from the raw data with 28 criteria. Then, based on the selected criteria, causal relationships were
derived using BR-DEMATEL analysis. Based on the analytical results of this research, from the
perspective of systemic functions, entrepreneurial activities directly influence other functions. In other
words, such a function needs to be preferentially improved within the policy system. In summary,
the proposed method and the empirical findings of this research can help to clarify key functions for
the formulation of innovation policy, and thus serve as an effective point of reference for policy makers.

Despite the contributions of this research, there are still several limitations. First, the findings and
discussions on perceived causal relationships among systemic criteria and functions were based on
samples collected from the smart manufacturing industry in Taiwan, whereas other countries might
have different characteristics. Thus, the generalization of these findings needs to be validated. Second,
this research uses systemic functions from the literature to explore causal relations in the TIS. Future
research can use other theoretical frameworks to conduct an analysis of policy systems. Furthermore,
future research can be performed using other methodologies, such as machine learning techniques or
other MCDM methods, for comparison. In summary, this research provides a robust causal analysis
technique that may result in a more effective policy evaluation system. The results of this research
demonstrate that the BR-DEMATEL method, which uses flexible rough intervals to treat the vague
and imprecise nature of human judgments, is a useful tool. Additionally, the proposed method can
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also classify systemic factors into cause and effect groups and generate a causal network. The derived
causal diagram enables policy makers to easily determine an enhanced plan for complex problems.
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Appendix A

Please check “
√

” for an appropriate answer.

Table A1. Questionnaires for Evaluating the Importance of Each Criterion.

Criteria Symbol Very High Influence High Influence Low Influence Very Low Importance No Influence

Experimenting new applications of IoT e1
Launching pilot IoT projects e2
Entry of firms to IoT markets e3
System for innovation and incubation e4
Conducting feasible studies k1
IoT market research and assessment k2
Developing complementary technologies k3
Network of technology and research cooperation k4
Training of professionals d1
Conducting promotion campaigns d2
Organizing conference/workshops/seminars/meetings d3
Demonstrations and exhibitions d4
Setting collective goals for IoT development g1
Design of favorable rules and regulations g2
Publicizing expectations g3
Providing direction of development g4
Providing subsidies m1
Government procurement programs m2
Regulatory reform m3
Standardizations m4
Providing R&D budgets r1
Providing financial grants and loans r2
Launching IoT related education programs r3
Mobilizing human resources r4
Funding scale up on IoT projects r5
Strength of lobby actions c1
Rise and growth of interest groups c2
Social acceptability c3
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Appendix B

Please fill the influences of the criteria in the left hand side on the criteria being identified on the top of each column, where a “0” means no influence, a “1”
means low influence, a “2” for medium influence, a “3” for high influence, and a “4” for very high influence.

Table A2. Questionnaires for the Influence from One Criterion to Another Criterion.

Criteria/Symbol e1 e3 e4 k1 k3 d1 d3 d4 g1 g2 g3 g4 m1 m2 m3 m4 r1 r3 r4 r5 c1 c2 c3

Experimenting new applications of IoT e1
Entry of firms to IoT markets e3
System for innovation and incubation e4
Conducting feasible studies k1
Developing complementary technologies d1
Training of professionals d4
Organizing conference/workshops/seminars/meetings g2
Demonstrations and exhibitions g3
Setting collective goals for IoT development g4
Design of favorable rules and regulations m1
Publicizing expectations m2
Providing direction of development m3
Providing subsidies m4
Government procurement programs r1
Regulatory reform r3
Standardizations r4
Providing R&D budgets r5
Launching IoT related education programs c2
Mobilizing human resources c3
Funding scale up on IoT projects e3
Strength of lobby actions e4
Rise and growth of interest groups k1
Social acceptability k3
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Appendix C

Table A3. The Background Information of Experts.

No. Industry Position No. Industry Position

1 Robot Automation Mfg. Executive director 9 Designing and Mfg. Product Manager
2 Robot Automation Mfg. Senior Tech. Engineer 10 Smart System Mfg. R&D Manager
3 Robot Automation Mfg. Sales Manager 11 Industrial IoT Mfg. R&D Manager
4 Industrial Computer and IoT R&D Assistant Manager 12 Industrial IoT Mfg. R&D Manager
5 Industrial Computer and IoT Senior Engineer 13 Industrial IoT Mfg. R&D Manager
6 Designing and Mfg. R&D Manager 14 Industrial IoT Mfg. R&D Manager
7 Designing and Mfg. R&D Manager 15 Industrial IoT Mfg. R&D Manager
8 Designing and Mfg. Tech. Integration Manager

Remark: “mfg.” is the abbreviation for “manufacturing.”; “tech.” is the abbreviation for “technical”.
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