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Abstract: To better guide the sustainable developing of freight transport aligning with environmental
objectives it is of strategic importance to capture freight transportation characteristics more
realistically. This paper characterizes freight transportation by using a complex network approach
from multidimensional perspectives based on freight vehicle trips data. We first build two
subnetworks from prefecture-level city-scale and county-level city-scale. Subsequently, network
analysis indices based on complex network theory were applied to examine the topological structure
and complexity of the freight transportation networks. Furthermore, the community detection
method is introduced to reveal the networks’ clustering characteristics. The findings show that
the prefecture-level city-scale network and the county-level city-scale network both have obvious
small-world network characteristics, but the prefecture-level city-scale network has higher operating
efficiency for goods movement. Additionally, the influence of the cross-border effect on the freight
transportation network was verified. In terms of the community structure, the freight network shows
distinct clustering features only at the county-level city-scale.
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1. Introduction

Currently, humankind’s effect on the environment has come to an irreversible stage [1]. In
particular, as one of the world’s largest energy consumers and carbon dioxide emitters, China is facing
more severe environmental issues (such as extreme climate). According to the BP Statistical Review of
World Energy 2018, China’s energy consumption accounts for 23.2% of global consumption and 33.6%
of global growth during the last year. In this atmosphere, being environmental sustainability-oriented
has become a key strategy for governments.

Transport plays a key role in the functioning and development of the city. Many empirical studies
have proven that transportation is the most crucial of the determinants (e.g., the economy, land use,
population, and employment) of urban development because it provides mobility for people and
goods and influences the growth patterns of economic activity through changing accessibility [2–4].
Meanwhile, it is also the main contributor of emission. According to survey data, China’s transport
accounts for more than 9% of the total energy consumption and maintains an average annual growth
rate of 28%. Moreover, with the significant increase in freight transportation, there is no doubt that
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the freight transport sector has become an important emission source [5–7]. Therefore, environmental
sustainability-oriented policies in the freight transport sector are essential.

In fact, many countries have been making and implementing policies for environmental
sustainability in the field of freight transportation and logistics. For example, intermodal transport,
as an efficient and environmentally friendly mode, has been vigorously advancing in Europe [8,9].
Similarly, China has been implementing the environmental logistics policy in road freight. This policy
strongly advocates reducing emissions by the application of green energy in freight vehicles and the
improvement of operational efficiency [5]. Recently, sustainable supply chain management has been
adopted in many logistics companies, because it allows to close and cycle resources and improve
environmental sustainability [10,11].

However, the realization of the environmental sustainability goal still requires much work. One
of the biggest challenges that stands in the way of achieving this goal is the lack of accuracy and
realistic characteristics of freight transportation network to support freight transport planning [12].
The identification of freight transportation network features thoroughly is the foundational work,
which is directly related to the formulation of freight transport planning schemes (such as freight
transportation network optimal scheme, infrastructure and related freight facilities layout scheme).
Although this challenge has been acknowledged by planners and policy practitioners, the most recent
studies related to freight transportation still focus on the technology and approach for capturing
freight features at microlevels, such as the identification of OD information [13], the individual truck’s
trip chain information [14], and travel time reliability [15]. Little attention has been paid on freight
transportation network. In addition, to better promote urban economic growth, the construction and
development of transportation infrastructure, as a typical urbanization strategy, have been conducted
in many developing countries [16,17]. However, with the implementation of this strategy, gradually,
freight transportation activities are likely to become more complex in terms of patterns of travel [18–21],
which increases the challenge of delineating and revealing the spatial interaction features of freight
transportation. In this context, to understand the growing complexity of freight travel, there is an
urgent need to thoroughly research the characteristics of freight transportation, which greatly benefits
the optimization of goods and service delivery within existing transportation networks and thereby
accelerates sustainable urban development and transportation.

A large number of studies have identified the characteristics of transportation networks based on
massive amounts of travel data, including air passenger flow, rail passenger flow, traffic flow, and big
geospatial data. Wang et al. [22], Lao et al. [23], and Dai et al. [24] explored the spatial structure of an
air transportation network using aviation passenger data. Zhong et al. [25] examined the hierarchical
structure of the China passenger railway transportation network and conducted a comparison analysis
of the air transportation network and the railway transportation network. In addition, Wang et al. [26]
identified the spatial interactions between cities and explored the community structure of the railway
and air transportation networks, and they stated that the barrier effects of the administrative boundary
on these two networks’ forms were different. To study traffic flow, most studies have focused on
road network layout evaluation and traffic demand analysis, as well as vulnerability analysis [27,28].
There is a need to use big geospatial data because there is an increasing need to identify travel activity
characteristics more effectively. For example, Liu et al. [29] used taxi trip data to explore the clustering
characteristics of a person’s travel activities within a city and found that some clusters showed that
the boundary scope of some clusters was not consistent with the administrative boundaries. Similar
studies have been conducted by Joubert et al. [30], Zhong et al. [31], etc.

However, the existing literature on this topic has mainly focused on passenger transportation,
providing few insights into freight transportation. In particular, the features of freight transportation
remain largely unexplored. As noted by Allen et al. [19,32], there has been no comparable research on
the spatial interaction of freight transport, although a large number of theoretical and empirical works
on passenger transport have been conducted. More importantly, when depicting and revealing the
characteristics of freight transportation, little attention has been paid to the impact of administrative
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boundaries on transportation. This is surprising, given that the urbanization trend of scope or
spatial scale of freight movements is expanding and the number of cross-border freight flows is
increasing [19,33–35]. Nevertheless, most applications treat the scope of freight movements as a
“closed area” or a” static area”; i.e., the spatial interactions and transportation linkages in the outer
areas of the selected study area are not usually considered [36–38], which leads to unrealistic results.

Therefore, our research objective is to characterize freight transportation from multiscale
perspectives, focusing on the freight flows generated in both inner and outer urban areas as well
as the influence of the cross-border effect on freight transportation networks. This research uses
origin–destination freight vehicle trip data from approximately 7000 trucks in Yunnan Province,
China, as an example to characterize spatial topological properties and the community structure of
freight transportation.

The contributions of this work are twofold. First, we propose an improved freight network
building process that depicts more realistic freight activities and spatial interactions, and it provides
evidence and findings regarding the impact of the cross-border effect on the topological structure
of networks in China. This study enriches the approach used for freight network building in the
increasingly complex travel environment and further enhances our understanding of urban spatial
structures. Second, this study uses origin–destination freight vehicle trip data that shows intercity
trips and intracity trips showing that the urban structure obtained has strong relations with freight
transportation applications; this finding provides novel insights regarding the development and
optimization of freight transportation and urban sustainable development. The following sections
describe the study area, the process used to prepare the data, introduce the study methods, and
reveal the features of freight transportation from two aspects of statistical properties and clustering
characteristics. The last section provides the conclusion and recommendations for future research.

2. Materials and Methods

2.1. Background of Yunnan Province

As an important node of the ‘The Belt and Road’, Yunnan Province plays the role of the logistics
center of Southwest China, as well as the gateway for trade and transnational cooperation with South
and Southeast Asia. According to data obtained from the Yunnan Statistical Yearbook (2016), Yunnan’s
total import and export of goods was 24,527 million USD in 2015, and the share of the total import
and export of Yunnan to ASEAN countries was 53.68% [39]. However, Yunnan is an underdeveloped
area, which had a GDP of 1371.79 billion yuan in 2015 (ranked 23rd in China). The main mode of
transporting goods is road transport. As shown in Table 1, in the Twelfth Five-Year Plan period,
the contribution of the highway transportation mode to the province’s total cargo traffic was over
80%, compared to the corresponding contribution to total cargo turnover in the province, which was
over 50%.

Geographically, Yunnan Province has a total area of approximately 394 thousand square kilometers
consisting of 16 prefecture-level administrative units and 129 county-level administrative units.
Kunming, a prefecture-level city, is the economic (capital) center and the core logistics center as
well, and Dali, an autonomous prefecture, is the vice logistics center, as depicted in Figure 1. Yunnan
Province is adjacent to the Chongqing municipality, Guangxi autonomous prefecture, Sichuan Province
and Guizhou Province (as shown in Figure 1). Yunnan Province has good connectivity and accessibility
in terms of road transport infrastructure and access to these areas mainly through five logistics channels.
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Table 1. Share of each transportation mode in Yunnan.

Cargo Traffic Share of Each Transportation Mode (%)

2011 2012 2013 2014 2015
Railway 17.66 15.55 10.71 10.4 9.78
Civil air 0.01 0.01 0.01 0.01 0.01

Highway 81.14 83.25 88.57 88.77 89.72
Water 0.60 0.66 0.43 0.48 0.40

Pipeline 0.59 0.53 0.28 0.34 0.00

Cargo Turnover for Each Transportation Mode (%)

2011 2012 2013 2014 2015
Railway 34.55 32.6 27.99 22.17 25.09
Civil air 0.10 0.10 0.10 0.10 0.10

Highway 57.68 60.31 66.22 56.96 73.86
Water 0.77 0.75 0.68 0.74 0.95

Pipeline 6.90 6.24 5.01 20.03 0.00
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2.2. Data and Data Preparation

The data were obtained from the Freight Vehicles Trip Survey of Yunnan Province conducted by
the Department for Road Transportation Administration of Yunnan Province in 2015 from September
11 to 20. In this survey, vehicle owners were asked to record their activity and travel information, and
vehicle attribute information was also collected. The collected data contained approximately 32,000
trips made by 6946 trucks in Yunnan. After trips with incomplete information were excluded, the final
sample data include 29,099 trips. Approximately 33% of these trips occurred within Yunnan Province,
and the remaining trips either originated or ended outside of Yunnan Province.

Given that we focused on the interactions between places, information on the origin and
destination of each trip was extracted, as well as the corresponding freight volume. It should be
noted that information on the origins and destinations refers to an address rather than more accurate
coordinates, and the address is only accurate to the county-level administrative units. This means that
the minimum spatial analysis unit we can use with our sample data is a county scale. In terms of the
movement direction of the freight flows, the sample data contained two types of trips: trips from and
to the county area. In this study, we further classified the sample data into intercity trips and intracity
trips. The data were prepared as described in the following section. An intercity trip refers to a trip
from one county area to another, both of which are located in the same city area (shown in Figure 2b).
An intracity trip refers to a trip either from or to a county area located in a different city area (shown
in Figure 2c). Of these trips, approximately 46% were intercity trips, and the remaining trips were
intracity trips.
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Figure 2. (a) Map of prefecture-level city A and prefecture-level city B. City A is partitioned into county
a1 to a3, and City B is partitioned into county b1 to b2. (b) The intracity trip: Trip 1 is an intracity trip
from county a1 to country a2 with a freight volume of w1, and trip 2 is an intracity trip from county b1
to country b2 with a freight volume of w2. (c) The intercity trip: Trip 3 is an intercity trip from county
a1 to county b1 with a freight volume of w3, and Trip 4 is an intercity trip from county b2 to country a1
with a freight volume of w4.

Given that we focused on the interactions between places, information on the origin and
destination of each trip was extracted, as well as the corresponding freight volume. It should be
noted that information on the origins and destinations refers to an address rather than more accurate
coordinates, and the address is only accurate to the county-level administrative units. This means that
the minimum spatial analysis unit we can use with our sample data is a county scale. In terms of the
movement direction of the freight flows, the sample data contained two types of trips: trips from and
to the county area. In this study, we further classified the sample data into intercity trips and intracity
trips. The data were prepared as described in the following section. An intercity trip refers to a trip
from one county area to another, both of which are located in the same city area (shown in Figure 2b).
An intracity trip refers to a trip either from or to a county area located in a different city area (shown
in Figure 2c). Of these trips, approximately 46% were intercity trips, and the remaining trips were
intracity trips.

2.3. Methods

The commonly adopted analytical methods for transportation network are dynamic theoretical
models of multistage graphics, including Friedman’s ‘core-periphery’ spatial model, Taft’s harbor
space structure model and ‘point-axis’ spatial system theory [40]. However, these methods exist
some limitations when dealing with large data volume, such as depicting the complex relations of
the flows and revealing the realistic spatial interactions. Complex network approach which is a part
of graph theory can reduce the difficulty in dealing with large data volume by using an abstract
representation of transportation networks [41]. Also, it can offer a useful tool to analyze network
structures, dynamics, and their underlying mechanisms at different spatial scales (e.g., local scale,
global scale, and mesoscale) [41–43]. In recent years, with the increasingly availability of GPS data,
the complex network has once again been embraced to capture the characteristics of networks [29,44].
Particularly, community detection, as a part of the complex network approach, has been employed
to find clustering characteristics of networks and, further, to identify the complex relations between
nodes [29]. Therefore, the complex network approach was introduced to analyze the freight vehicle trip
data collected in Yunnan and explore the multidimensional characteristics of freight transportation.

The construction of a network directly affects the results extracted regarding the spatial
organization characteristics of regional transportation connections. The scientific construction process
of a network is the foundation and precondition for revealing these spatial characteristics [45,46].
Considering the important role of cross-border freight flows in this study, this study developed
a modified process to establish freight networks by referring to the approach provided by
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Wang et al. [22,47]. Secondly, some complex network indicators were adopted to assess the spatial
structure of freight network. Finally, the community detection approach was conducted to reveal the
networks’ clustering characteristics. Figure 3 is the methodology of our paper.Sustainability 2019, 1, x FOR PEER REVIEW 6 of 21 
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2.3.1. Freight Network Building

For building transportation networks, the most widely used approach is to identify the nodes and
edges first and then establish the relation matrix between the nodes using graph theory [22,32,47]. This
approach has obvious advantages for representing pairwise relations between nodes and retains
the spatial realities of the movement of freight flows and was used for our research on freight
network building.

Considering that our research focused on internal and external spatial interactions, two
scale networks were constructed. One is a prefecture-level city-scale network Gp, and the other
is a county-level city-scale network Gc. These two scales were constructed by following the
relevant studies [48,49], suggesting that the spatial analysis unit is appropriate for depicting actual
transportation activities.

Before establishing the network model, the assumptions are proposed as below.

(1) We used network Gp to characterize the spatial interactions between cities and network Gc to
characterize the spatial interactions within the city.

(2) Treating the freight network as a spatial network. In this network, the nodes represent the spatial
analysis units associated with the research objective, and the edges represent the existence of
relations or linkages between these nodes.

(3) Treating the aggregated freight volume of the corresponding trips as the weight of the edge. The
processes used to build networks Gp and Gc are as follows.

(1) Identifying nodes and edges. For network Gp, the unit refers to a prefecture-level city; for
network Gc, the unit refers to a county-level city. The edges refer to the trips in our sample
data for networks Gp and Gc.

(2) Establishing the relation matrix between nodes. We constructed a directional value

matrix W =

 w11 · · · w1j
· · · · · · · · ·
wj1 · · · wij

 using UCINET 6.0 software [50]. Where wij is the
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aggregated freight volume, representing the weight of edge eij from node vi to node
vj. As a result, a weighted and directed network G = (V, E, W) composed of a node set
V = {vi : i = 1, 2, · · · , n} and a link set E =

{
eij : vi, vj ∈ V

}
was formed.

For network Gc, the weight wc
ij can be calculated as follows

wc
ij = ∑

r
ec

ij · f r
ij, r ∈ T (1)

where f r
ij is the freight volume of the r-th trip from county i to county j; T is the set of all the trips

in our sample data; ec
ij is the edge from county i to county j; and, if there is a linkage between them,

ec
ij = 1, otherwise, ec

ij = 0.

For network Gp, the weight wp
ab can be calculated as follows

wp
ab = ∑

rp

ep
ab · w

c,rp
ij , rp ∈ Tinter, i ∈ a, j ∈ b (2)

where w
c,rp
ij is the weight of the rp-th edge in network Gc; Tinter is the dataset comprising the intercity

trips in our sample data; ep
ab is the edge from prefecture a to prefecture b; and, if there is a linkage

between them, ep
ab = 1, otherwise, ep

ab = 0. i ∈ a indicates that county i belongs to the subdivision area
of prefecture a; j ∈ b indicates that county j belongs to the subdivision area of prefecture b.

Using this process, a weighted and directed network Gp (shown in Figure 4b) was formed,
composed of 48 nodes and 424 edges; a weighted and directed network Gc (shown in Figure 4a) was
formed as well, composed of 199 nodes and 2412 edges.
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2.3.2. Complex Network Index for Assessing Spatial Structure of Freight Network

A complex network analysis is employed to analyze the overall freight network structure. This
approach is frequently used to determine the temporal-spatial structure, including the hierarchical
structure and relevance structure of the network. In general, the complex network is classified into a
random network, a regular network, a small-world network, and a scale-free network based on the
topological properties. Considering that the network built using the trip data of freight vehicles is
a weighted network, which can reflect the strength of the linkages between the cities, the approach
adopted here is that used by Lordan et al. [51]. We adopt combination property indicators—four
node-level indicators and two network-level indicators—as tools for assessing the spatial structure of
the freight networks. Degree and degree distributions are the most basic indices used to determine
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whether a network has scale-free properties, while the average shortest path length and the clustering
coefficient are generally used to determine if a network has small-world properties. Below, we formally
specify each of these measures.

(1) Degree and degree distribution.

An unweighted network can be transformed using UCINIET 6.0 software into a weighted network.
In an unweighted network, the degree ki of node vi refers to the number of nodes that are directly
connected to and is calculated by:

ki = ∑
j

eij (3)

The degree distribution P(k) is the probability that any node is exactly equal to k in the network,
given by

P(k) = nk/N (4)

where nk is the number of nodes with a degree equal to k and N is the total number of nodes. For a
scale-free network, the degree distribution P(k) follows a power law, namely P(k) ∼ k−γ. Where γ is
the fitted power law parameter.

However, the common approach is to use cumulative degree distribution P(> k) to depict a
more accurate network; this approach is considered to reduce the error in relatively small and noisy
datasets [40]. The cumulative degree distribution indicates the probability of nodes with degrees less
than or equal to k, and is given by

P(> k) =
∞

∑
k′=k

P(k′) (5)

where the scale parameter γ′ has a relation to that of P(k) by γ = γ′ + 1.
In the weighted network, the strength of node vi is the sum of the weighted edges that are directly

connected to it and can be expressed as

si =
n

∑
j=1

wij (6)

where wij is the aggregated freight volume from unit i to unit j. Greater strength indicates that more
freight activities occurred in an area to satisfy the demands of daily affairs and communications.

The strength distribution is characterized by a cumulative strength distribution P(> s), which
refers to the probability of nodes with strengths equal to or greater than s and is calculated as follows

P(> s) =
∞

∑
s′=s

P(s′) (7)

P(s) = ns/N (8)

where ns is the number of nodes with strength equal to s.

(2) Average path length

The average path length L refers to the average of the distance between any two nodes in the
network, i.e.,

L =
1

N(N − 1)

N

∑
i,j=1

dij(i 6= j) (9)

where dij is the number of edges for the shortest path between vi and vj. A smaller L implies a smaller
transit time and a lower cost.

(3) Clustering coefficient
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The clustering coefficient Ci is the ratio of the number of actual edges (Ei) of node vi to the total
number of possible edges, and is written as

Ci = 2Ei/(ki(ki − 1)) (10)

The clustering coefficient for the whole network with all N nodes is expressed as

C =
1
N

N

∑
i=1

Ci (11)

where for a small-world network, the average path length L is shorter and the clustering coefficient C
is higher than those of an identical-size random network.

2.3.3. Community Detection for Revealing the Network’s Clustering Characteristics

A community in a network is a subset of nodes with similar or identical properties, and it presents
a subregion that has stronger connections within it than other subregions [52]. The identification of
community structures in complex network graphs has long been a hot topic in network science since
the early 20th century, and the partition methods and algorithms are developing and improving. As
Rosvall and Bergstrom [53] noted, community detection can be implemented using many algorithms,
such as Girvan-Newman, Walktrap, Fast-greedy Multilevel, Label Propagation, Infomap, etc.; however,
among these algorithms, the Infomap algorithm enables researchers to model a weighted network
using space-flow data [54]. There is evidence the Infomap algorithm fully takes into account the
topological properties such as node strength, edge weight, and directions of flow, as well as high-order
network data, which have significant adaptability and robust performance for real-world network
community partitioning. Here, we use the community detection technique in Infomap to divide the
subregions of the networks Gp and Gc, and then analyze the structural features of Yunnan Province as
a case.

The core idea of the Infomap algorithm is that a group of nodes, among which information
flows quickly and easily, can be clustered to a single well-connected module; the links between the
modules capture the avenues of information flow between those modules. This algorithm considers
the description length of a random walk as the optimal target function, transforming the network
partition problem into a compression coding problem that minimizes the description length. More
details on this technique can be found in papers written by Rosvall and Bergstrom [53].

3. Results

3.1. Statistical Properties of the Freight Network’s Topological Structure

3.1.1. Scale-Free Properties

Based on the Gp networks constructed from the intercity trips in the sample data, the cumulative
degree distribution P(> k) and the cumulative strength distribution P(> s) are obtained using
Equations (3)–(8). The results show that P(> k) fits an exponential function (P(> k) = 1.142e−0.114k,
R2 = 0.97090), while P(> s) fits a power law function (P(> s) = 4.299s−0.366, R2 = 0.7853). As noted by
Clauset et al. [55], there are very few real-world networks that obey a power law function, but in many
cases, they fit a power law function in a specific range of the values for degree and strength. Figure 5a
shows that the P(> k) of network Gp is segmented: the first segment of the degree has almost a
horizontal distribution; the middle segment of the degree distribution fits a double power law function
with the scale parameters γcum1 = 0.5815 and γcum2 = 1.9729. Figure 5b shows that the fitted curve
of the P(> s) of network Gp can be treated as two lines using the scale parameters of γcum1 = 1.0815
and γcum2 = 5.314. These findings imply that network Gp forms a scale-free distribution at the local
range level. Moreover, the exponential function of P(> k) can be considered as a reflection of the



Sustainability 2019, 11, 1897 10 of 20

phenomenon shown in Figure 5a, based on prior studies [56]. Therefore, we can state that Yunnan’s
freight network at the prefecture-level city-scale is in a transition and is moving from simple and
random to complex and ordered, but the overall large-scale network structure has yet to be formed.
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The same analysis approach is applied to the network Gc, and the results show that P(> k) and
P(> s) both fit a power law function (P(> k) = 4.885k−1.230, R2 = 0.9904; P(> s) = 7.665s−0.496,
R2 = 0.8964). The fitted curve of the degree distribution P(> k) (shown in Figure 6a) and the fitted
curve of the strength distribution P(> s) (shown in Figure 6b) are composed of two lines and obey the
power law distribution in the corresponding range of degree and strength. These results indicate that
Yunnan’s freight network at the county-level city-scale also has scale-free properties.
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3.1.2. Small-World Properties

Table 2 summarizes the statistical properties of networks Gp and Gc and compares these results
to those of the corresponding random network with the same size nodes and edges. According to
the criterion [18] that a small-world network has larger clustering coefficients and shorter average
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path lengths, we can infer that Yunnan’s freight network at both the prefecture-level city-scale and
the county-level city-scale has small-world properties. However, the network at the prefecture-level
city-scale has a shorter LP = 2.027 < 2.447 and a larger Cp = 0.736 > 0.525 compared to the network at
the county-level city-scale, indicating that the efficiency of freight operation on the prefecture-level
city-scale is obviously better than that on the network at the county-level city-scale.

Table 2. Summary of the statistical properties of the freight network.

Indexes
Prefecture-Level City-Scale County-Level City-Scale

Network Gp Random Network of Gp Network Gc Random Network of Gc

Number of nodes (N) 48 — 199 —
Average degree (∑

i
ki/N) 8.833 — 12.121 —

Average path length (L) 2.027 1.777 2.447 2.122
Aggregation coefficient (C) 0.736 0.184 0.525 0.061

3.1.3. Comparison of the Network’s Statistical Properties without Considering a Cross-Border Effect

Our research mainly focuses on the effect of cross-border movements on freight transportation.
Therefore, networks Gtp and Gtc are constructed by removing the nodes and edges outside Yunnan
Province from networks Gp and Gc, respectively. Table 3 presents the statistical properties of networks
Gtp and Gtc and the corresponding random network of the same size.

Table 3. Summary of the statistical properties of the freight network without considering a
cross-border effect.

Indexes
Prefecture-Level City-Scale County-Level City-Scale

Traditional
Network Gtp

Random
Network of Gtp

Traditional
Network Gtc

Random
Network of Gtc

Number of nodes (N) 16 — 129 —
Average degree (∑

i
ki/N) 11 — 15.746 —

Average path length (L) 1.267 1.156 1.991 1.763
Aggregation coefficient (C) 0.794 0.688 0.554 0.122

By comparing Tables 2 and 3, we find that from network Gp to Gtp, L decreases from 2.027 to 1.267,
and from network Gc to Gtc, L decreases from 2.447 to 1.991. This result indicates that cross-border
freight flows reduce the overall operational efficiency of Yunnan’s freight network. Furthermore, L and
C of the traditional network are compared with that of the random network. By reviewing the criteria
of a small-world network, we find that the network Gc is a small-world network, while network Gp

is not. Thus, the small-world properties disappeared from the network when it was altered from Gp

to Gtp. These findings imply that the cross-border effect of freight transportation in the region will
directly affect the spatial structure characteristics of the transportation network.

3.2. Clustering Characteristics of the Freight Network

In this section, we present a more detailed morphology of the freight network’s community
structure and discuss the internal spatial interactions in the community. We first conduct community
detection for networks Gp and Gc using the Infomap toolkit provided in the igraph R package. The
results for the community detection of Gp (Figure 7a) indicate that there are three communities,
and the corresponding modularity value is 0.2488. High modularity for partitioning indicates that
there are dense connections within communities and sparse connections across communities. In
real-world networks, the value of modularity ranges from 0.3 to 0.7 [57]. The result indicates that
the clustering characteristics of Yunnan’s freight network at the prefecture-level city-scale are not
significant. However, Gc has distinct clustering characteristics, showing eight communities, and the
modularity value is 0.4383 (shown in Figure 7b). Thus, below, we discuss and analyze the detailed
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morphology only for Gc. Figure 8 displays the community structure of network Gp using ArcGIS
10.2 Desktop.
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In terms of the community structure, most communities consist of spatially continuous units (i.e.,
counties), which indicates that intracity freight activities obey the distance decay law. Some single
units located outside Yunnan Province also belong to the community because of some long distance
but relatively large freight volume travels between the units and the inner region of Yunnan. This
phenomenon is clearly observed in Community 3, Community 4, and Community 6. Considering
that there is a strong correlation between the freight linkages and the distribution features of the
goods, this view is verified through analysis [24]. Therefore, a reliable or possible explanation for this
phenomenon is the spatial distribution features of the goods.
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Furthermore, transportation and economic resources, as determinants of travel, are considered in
our study for exploring the spatial layout features of the community. Scholars agree that the influence
of transportation and economy resources on freight travel is much weaker than that on passenger
travel. Moreover, the degree to which these two determinants have an impact on freight travel, or even
whether they have an impact or not, requires comprehensive evaluation based on a combination of
urban factors such as urban scale and urban land use. However, a close relationship between freight
travel and transportation and economy resources is observed in Yunnan Province. First, Figure 8
shows that each community forms an aggregated area; the red dots are the core nodes. The red dots
represent the maximum freight volume unit of each community, and they also represent the district
centers with a high level of economic development. This structure indicates that the district centers
dominate the local demand of freight transportation, in which the economy plays an important role.
Second, the communities’ spatial distribution feature is consistent with the layout of the main roads
(green lines in Figure 8), implying that Yunnan’s freight travel is related to transportation resources.

Focusing on the border of the community, it is not difficult to see that the connections within the
community have overcome obstacles caused by administrative boundaries and initially formed some
agglomeration areas that are mainly composed of the units located in neighboring prefecture-level city
areas. In particular, in the marginal area of Yunnan Province, some units prefer to have contact with
the units geographically adjacent to the outside of the province rather than units within the province,
forming freight activity agglomeration areas with connections crossing provincial boundaries.

To better detect the detailed structure, we paid more attention to the freight volume of the
community. As shown in Table 4, the freight demand has an imbalanced distribution, which is
reflected in the following aspects. First, the difference between the maximum and minimum freight
volumes of the trips in the same community is very large, indicating that freight demand is imbalanced
in the community. Second, the community with a similar freight volume differs greatly in terms of size.
For example, Community 2 and Community 8 cover 24 units and 54 units, respectively, and the gap
between them is as high as 30 units. However, the freight volume of Community 2 is only slightly larger
than Community 8, and the corresponding freight volumes are 136,102 and 117,061, respectively. This
difference implies that the imbalance of the freight demand between different communities is obvious.
It should be noted that for Yunnan’s logistics industry layout, Kunming is the core logistics center and
Dali is the vice logistics center; the spatial structure layouts of Community 2 and Community 8 are
consistent with the spatial layout of Yunnan’s logistics industry. Moreover, in terms of the interactions
within the communities, some communities, such as Community 2, Community 3, and Community 5,
have a single trip with a maximum freight volume that accounts for more than 50% of the sum of the
freight volume for all trips of the community. From the perspective of complex network theory, the
results show that large freight linkages occur between a small number of county pairs, indicating low
county domain freight demand.

Table 4. Freight volume of the trip in each community.

Code Number of
County Units

Maximum
Freight Volume

Minimum
Freight Volume

Sum of Freight
Volume

Maximum Freight
Volume Percentage (%)

Community 1 14 13,887 14 66,101 21.01
Community 2 24 74,146 20 136,102 54.48
Community 3 11 18,894 18 36,502 51.76
Community 4 41 4981 9 25,964 19.18
Community 5 2 416 376 792 52.53
Community 6 29 7708 19 54,635 14.11
Community 7 16 6246 20 26,671 23.42
Community 8 54 19,394 32 117,061 16.57

3.3. Sensitivity Analysis

The findings above show that the freight transportation characteristics has a tight link with
the network scale. To further test the robustness of the freight network, the sensitivity analysis is
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performed on the parameters related to network scale (i.e., the number of nodes). Meanwhile, as
an important factor, the development level of transportation determines the freight volume. The
sensitivity analysis of the freight transportation to it is also conducted.

3.3.1. Number of Nodes

Based on the statistical properties of Gp and Gc, we tested the robustness of the freight network
using deliberate attack tests (mainly by one-time destruction mode, which is simultaneous), by
identifying whether the results change substantially. The network resilience [58] (i.e., coverage and
connectivity indicators) and the change of freight volume are adopted to measure the variation in
freight network. Table 5 shows the sensitivity analysis results of the number of nodes.

Table 5. Sensitivity analysis of the number of nodes.

Experimental Process
Number of Removed Nodes

Before
Experiment One Two Three Four Five

Gp

Node 48 46 45 43 42 40
Edge 424 362 314 276 236 198
Coverage variation — −4.17% −6.25% −10.42% −12.50% −16.67%
Connectivity variation — −14.62% −25.94% −34.91% −44.34% −53.30%
Freight volume variation — −44.94% −58.31% −65.88% −69.99% −73.31%

Gc

Node 199 196 194 189 187 186
Edge 2412 2352 2040 1918 1888 1816
Coverage variation — −1.51% −2.51% −5.03% −6.03% −6.53%
Connectivity variation — −2.49% −15.42% −20.48% −21.72% −24.71%
Freight volume variation — −14.54% −18.66% −22.77% −25.73% −28.50%

According to the comparative analysis of changing trend of coverage and connectivity index in
Gp and Gc, the stability of the network structure is gradually decreases along with the reduction of
the number of nodes. In terms of the variation in freight volume, a reduction of five nodes leads to a
decrease of more than 50% of the affected freight volume in Gp, while a reduction of 17 node leads to
more than 50% of the affected freight volume in Gc (shown in Figure 9). These findings suggest that
Gp is more sensitive to the network scale than Gc, indicating that the key nodes play a more important
role in the intercity freight activities than the intracity freight activities.Sustainability 2019, 1, x FOR PEER REVIEW 16 of 21 
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3.3.2. Development Level of Transportation Infrastructure

Considering data availability, we developed an evaluation system for the development level of
transportation infrastructure (shown in Table 6) by referring the approach provided by literature [59].
Then, the entropy and Z-score method were used to determine the variables weight and data
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standardization. By doing so, we can calculate the weight of each variables and obtain the results of
the development level of transportation infrastructure by using weighted average. The data of six
indicators, including highway and freight vehicle densities, proportion of high-rank and classified
highways, coverage rate of road freight stations over a second county level, and service capacity of
logistics infrastructure, were obtained from the Statistical Yearbook 2016 (including Yunnan, Sichuan,
Guizhou, Chongqing, Guangxi, and Guangdong) and The 2015 Annual Report of Road Transportation
in Yunnan Province. Time and distance accessibility data were abstracted using ArcGIS spatial
analysis technique.

Table 6. Indicators of development level of transportation infrastructure and their respective
correlations with freight volume.

Indicators Variables
Spearman Correlation Coefficient

Gp Gc

Scale
Highway density

0.131 0.267Freight vehicle density

Grade
Proportion of high-rank highways

0.235 0.289Proportion of classified highways

Accessibility Time accessibility −0.052 −0.652 **Distance accessibility

Transportation capacity
Coverage rate of road freight stations
over a second county level 0.813 ** 0.345
Service capacity of logistics infrastructure

Development level of transportation infrastructure 0.646 ** 0.612 **

Note: ** denotes a significance level of 0.01 (2-tailed).

Firstly, we used SPSS to analyze the correlation between the development level of transportation
infrastructure and freight volume. Secondly, the variables which contribute to freight volume were
applied to perform the sensitivity analysis. Tables 6 and 7 are the results of correlation analysis and
the sensitivity analysis, respectively.

Table 7. Sensitivity analysis of the development level of transportation infrastructure.

Scenario
Gp Gc

Transportation
Capacity: +10%

Transportation
Capacity: −10%

Accessibility:
+10%

Accessibility:
−10%

Freight volume variation +8.68% −1.29% −6.68% +3.65%

Table 6 shows that the development level of transportation infrastructure has a positive effect
on freight volume both in Gp and Gc. In Gp, the main contributor of freight volume is transportation
capacity; in Gc, the main contributor of the freight volume is accessibility.

Table 7 presents the change results of freight volume with the parameters (related to transportation
capacity and accessibility) of 10% increase and decrease of the initial parameter values. As expected,
we observe that the sensitivity of freight volume to these two indicators. The results indicate that the
intercity freight activities is sensitive to transportation capacity and the intracity freight activities is
sensitive to accessibility.
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4. Conclusions and Discussion

4.1. Conclusions

This study used truck trip data extracted from the Freight Vehicles Trip Survey of Yunnan Province
to explore freight transportation. From the perspective of spatial interactions, two subnetworks, namely,
a prefecture-level city-scale network and a county-level city-scale network, were built from the data
using graph theory; these networks were conducted to delineate the freight activities more realistically
and comprehensively. Considering the influence of the cross-border effect on freight transportation,
the boundary issue that generally occurs during network formation was taken into account in the
process of building the freight networks. On this basis, network analysis indices based on complex
network theory were applied to examine the topological structure and complexity of the freight
transportation networks. Furthermore, the community detection method was introduced to reveal
the freight network’s clustering characteristics. By doing so, information on the topological and
community structure of Yunnan’s freight network and the spatial interactions both between cities and
within cities was obtained.

We find that the prefecture-level city-scale network has scale-free properties only at the local level
because it follows an exponential degree distribution and a power law strength distribution. This
finding suggests that the freight network at the prefecture-level city-scale is in a transition phase from
simple and random to a complex structure, and the overall large-scale network structure has yet to
be formed. However, the degree distribution and strength distribution of the county-level city-scale
network both fit the power law function, indicating that it has scale-free properties. Meanwhile,
the prefecture-level city-scale network and the county-level city-scale network both have obvious
small-world network characteristics, but the prefecture-level city-scale network has higher operating
efficiency for goods movement. Additionally, the influence of the cross-border effect on the freight
transportation network was verified by comparing the changes in small-world properties of the freight
network of this study to those of the traditional network. Although some empirical studies have
provided evidence that the influence of the cross-border effect has been observed, little attention
has been paid to the methods used to build the networks. Therefore, our study will draw scholars’
attention to this issue, especially for studies on transportation and urban structure.

As terms of the community structure, we found that the freight network has distinctly clustering
features only at the county-level city-scale. Most communities’ spatial interactions obeyed the distance
decay law, and in this study, the border of each community differed from the prefecture-level city
administrative boundary. Meanwhile, regardless of whether or not the freight demand was distributed
within a community or between different communities, it was unbalanced. Large numbers of freight
flows were generated by units that were district centers or had a relatively high level of economic
development. These findings could provide some guidance for promoting the balanced and sustainable
development of urban spatial structures from the perspective of transportation planning. For example,
features of the community boundaries and spatial interactions not only provide insight into improving
the mobility of goods, which thereby improves freight operational efficiency, but also help validate
existing urban and freight transportation management policies.

In addition, results of the sensitivity analysis illustrate that the key nodes (i.e., node with large
freight volume) play a more important role in the intercity freight activities than the intracity freight
activities. Regarding the transportation factor, the freight volume of Gp is sensitive to transportation
capacity and the freight volume of Gc is sensitive to accessibility. These results can help provide a
basis for regional freight transport planning. For example, in terms of Yunnan Province, the priority
should be given to the optimization of intercity transportation network and the improvement of service
capacity of related logistics facilities. With regard to intracity freight transport, there is an urgent need
to improve the accessibility.
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4.2. Implications

Based on our analytical results, this paper emphasizes the following implications.
First of all, regional freight transportation management must consider the impact of cross-border

freight flows on freight network design. Our research observes that the influence of the cross-border
freight flows on the freight network structure is unignored. From the space perspective, the freight
network consists of nodes (i.e., administrative units) and spatial linkages (i.e., the spatial interactions),
and its structure determines the strategic development direction of urban and regional freight
transportation and logistics. Under the background of economic globalization and regional economic
integration, the freight activities will more and more complex. Focusing on the cross-border freight
flows in the guidance of freight transportation and urban space development is necessary, which
will help to making a more effective and efficient planning or management policy, enabling the
sustainability for freight transportation and urban development.

Secondly, for freight transport planning aligning with environmental objectives, the
multidimensional perspective analytical approach of freight network is necessary. Many studies
have proved that the improvement of transport efficiency is the benefit of the energy conservation
and carbon emission mitigation [5,35]; however, what should be the priority and how to improve
transport efficiency lack of effective approach and hamper by large regional disparities [60]. In our
research, we characterize freight transportation from multidimensional perspectives and identify the
most influencing factors by sensitivity analysis, which is the basis for freight transport planning. For
example, the results of sensitivity analysis show that Yunnan’s freight transportation depends highly
on the minority key nodes. The priority is to improve the transport efficiency of these nodes in the
premise of economic sustainability. By doing so, the freight transport emission will achieve reduction
substantially more easily.

Finally, it is essential for China to consider the proper spatial layout of infrastructure and the
related facilities. In recent years, growing flows of freight have been an important component of
contemporary changes in economic systems at national, regional, and local scales, which contribute to
national economic growth. In order to adapt to the increasingly freight flows, the government blindly
planed a large number of logistics facilities. On the one hand, this has intensified the increasingly
prominent contradiction of urban land use, and, on the other hand, it caused the waste of logistics
resources. Recent surveys and studies have documented that the increasingly emissions are nature
caused by the increased mileage and the poor transportation infrastructure and freight facility [35]. In
our study, we find that the different influencing factor in terms of transportation dimension determines
the change of freight volume in different spatial scales. Moreover, several studies have examined
that the transport infrastructure both has positive and negative effects on local freight transportation
development. Therefore, there is an urgent need for the proper spatial layout of infrastructure and
the related facilities so that they can offer quality service for freight transportation while ensuring a
sustainable environment.

4.3. Research Limitations and Futuer Concerns

In the future, due to the acceleration of Chinese urbanization, the improvement in comprehensive
transportation systems and growing transportation demand, the complexity of the freight network
will also increase. Our research can provide some ideas for the precise description and exploration of
transportation networks in such a context. However, it should be noted that although it is meaningful
to analyze the characteristics and model by taking the transportation network of Yunnan Province as
an example, the significance and value of the application still need more empirical support because of
the dynamic relationship between transportation and urban development, as well as the evolution
characteristics of the boundary and morphology of the freight network. Future research will focus
on the dynamic evolution of freight transportation and will consider additional dimensions of the
influence mechanism of urban structure.
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In addition, some limitations of the freight vehicle trip data representativeness should be noted.
First, freight vehicle trip data are only able to represent a part of freight activities occurred by Yunnan
province. Some data, such as trip occurred by extraprovincial freight vehicle but traveled in Yunnan,
is hardly obtained. Second, the freight vehicle trip data is only a sample data of 10 days, the freight
activity information provided by them are only able to show freight transportation characteristics in a
specific period of time. Recently, with the advancement of the information technology, truck GPS data
are becoming more accessible. Truck GPS data is a more precis, objective, plentiful, and cost-effective
data, which can provide an opportunity for depicting freight travels more effective; however, how
to make full and reasonable use of this data and to reveal the freight transportation characteristics is
still in the exploration stage. Future studies will consider combining freight vehicle trips with truck
GPS data to characterize freight transportation characteristics and explore the spatial differentiation
characteristics of freight characteristics by subdividing the data based on different time stages.
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