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Abstract: Synchromodal transport incorporates real-time events in a dynamic manner in order to
facilitate the most suitable selection of modes, routes and handling points. Up until now, current
assessments rely on analytical models. Most of these models average distances for barges and trains
via route mapping platforms that provide realistic distances for road only. To reflect on real-world
developments more accurately, new thinking and modelling approaches are necessary to bridge
academic models with physical transport processes. This paper introduces a computational model
which computes movements of agents in geographically referenced space. The model captures
stochastic parallel processes for each mode, and simulates decentralized delivery performance of each
order in terms of cost, time and emissions at an operational level. Furthermore, we study the routing of
individual orders and their responsiveness to disruptions. Computational experiments are performed
within a case study which concerns imports of retail goods by unimodal truck transport from France
to Belgium. Our findings show that dynamic synchromodal solutions cope with disturbances better,
but unnecessary deviations and pro-activeness can also lead to negative effects when compared to
static intermodal solutions

Keywords: synchromodal transport; intermodal transport; geographic information systems;
agent-based modelling; simulation; disruption; resilience

1. Introduction

The growing cargo demand, increasing road congestion as well as reliability, safety and
environmental concerns have increased the relevance of more efficient and/or sustainable freight
transport. By 2030, the ambition of the European Commission [1] is to shift 30% of freight transported
by road to environmentally friendlier modes that have lower societal impact, such as rail and inland
waterways. This shift should increase to 50% by 2050. Critical issues in this perspective are the modal
choice preferences and transport mode selection [2–4]. The findings of the modal choice literature often
yield higher user preferences related to road transport based on the user’s needs. Intermodal transport,
which is a combination of two or more modes in one unified journey [5], provides more options and
opportunities for a positive modal shift. However, the development of intermodal decision support
models, where more actors and modes are incorporated (compared to unimodal), are hampered by
limited data availability and its static nature [6]. Furthermore, shippers perceive intermodal transport
as a slow and inflexible solution with a limited service offer [7].

Synchromodal transport/synchromodality presents an extension of intermodal transport by
including real-time re-routing of loading units over the network to cope with disturbances and/or
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customer requirements [8,9]. The main difference between intermodal and synchromodal transport
is that the former is based on services which are predefined long in advance, posing a rather static
and inflexible service level. As a matter of fact, realistic problems and dynamics such as disturbances,
breakdowns and other delays lead to time/money losses. Let alone, newly incoming orders cannot be
accounted for in time as the intermodal setting is rigid. In the synchromodal setting, decisions related
to modal choice and route are not predefined long in advance, but are taken as late as possible based
on real-time infrastructural and operational developments [8]. Thus, the synchromodal concept has
a potential to offer better performance than intermodal transport on flexibility, reliability and other
modal choice criteria. This concept is to support optimal integration of different transport modes and
infrastructure in order to address the earlier mentioned deficiencies and make intermodal transport
more dynamic, flexible and acceptable. For a more detail overview of the synchromodal concept,
we refer the reader to [10].

Synchromodality has also been regarded as a solution to congestion problems, decreasing
reliability of services and environmental concerns caused by the growth of international trade and
higher cargo demand [11]. In order to create a synchromodal transportation system, shippers should
be convinced to book their transport requests mode-free. Mode-free booking, also called a-modal,
provides an opportunity for logistics services providers (LSPs) to flexibly plan transport orders
within the expected customers’ (shippers’) requirements by combining orders and using rail or inland
waterway, rather than unimodal road-only transport. However, the synchromodal concept needs more
quantification to demonstrate the benefits of having a dynamic and flexible network of services. In this
regard, there is only a limited number of quantitative studies [12–16] and our paper is to contribute to
this body of literature by using a computational approach. The motivation behind this is that analytical
approaches assess freight systems from a central perspective, considering how the solution can work
in the most efficient way for the given centralized system or a corridor, but little has been done from a
decentralized perspective where the needs and objectives of cargo owners can be considered.

This paper presents a model that simulates the modal shift potential for hundreds of retail orders
over a year. We assess the resilience of static intermodal and dynamic synchromodal solutions by
computing alternatives in cases of disruptions which influence service reliability (early/late arrivals)
cost and emissions. In fact, reliability is one of the main concerns of shippers and LSPs that hampers
the potential use of intermodal transport [7,17]. To the best of our knowledge, a quantitative analysis
assessing the resilience of intermodal and synchromodal chains to disruptions has not been addressed.
In this paper we contribute to the current literature by providing a deeper understanding of modal
shift potential in recovery settings.

We pose two main research questions: (1) what is the potential modal shift and emission
reduction of individual dispersed orders served by truck-only when decentralized search algorithms
are deployed? (2) Does synchromodal dynamic reconfiguration have any impact on the lead-time,
cost and emissions compared to the more static intermodal setting under disruptions? The paper is
structured as follows: Section 2 provides a brief overview of existing literature, Section 3 describes the
methodological approach which is applied to a case study in Section 4. We convey the results also in
Section 4 and discuss our findings in Section 5, followed by concluding remarks in Section 6.

2. Literature Review

Synchromodal literature is mostly exploratory and theoretical in nature [8,17–29]. Only a few
studies provide quantification of the idea; ref. [12] present a mathematical model for designing
integrated barge and train service schedules for synchromodal freight transport systems within the
Rotterdam–Tilburg corridor. Another perspective is evaluated by [14] who propose a synchromodal
planning algorithm used within a control tower for a 4PL logistics service provider. Ref. [15] developed
a comparative analysis model for intermodal and synchromodal transport, taking into account
economic, societal and environmental aspects. Ref. [13] assess service and transfer selection for
different freight within a synchromodal network under uncertain demand by using a look-ahead
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approach. The revenue management aspect of synchromodality is addressed by [16] who focus on
the cargo fare class mix problem to demonstrate that booking limits for differentiated fare classes at
a tactical level lead to increased revenue. Synchromodal benefits from a supply chain perspective
are studies by [30] who demonstrate an increase in intermodal rail transport share when taking into
account more holistic supply chain impacts. The existing quantitative studies focus on synchronizing
schedules and mode services, but little has been assessed at the operational level where the performance
of individual orders is considered from a decentralized perspective. Current approaches to modelling
synchromodality are based on analytical models [10] that do not fully consider the dynamic operational
aspects such as real-time events, dynamic re-routing in geographical space, and resilience to disruptions.
Most of these models average distances for barges and trains via route mapping platforms that provide
realistic distances for road only. Even though there exist geographic information system (GIS) models
that represent detailed inland waterway (iww) and rail distance measurements via shapefiles [31,32],
these models cover the strategic (long-term) planning horizon such as terminal location analysis and
market shares. Such analytical models use observables which are moved by the model in a top-down
manner. These observables are mere numbers and do not possess any attributes and parameters that
may govern the movement or interests of the studied entities from a bottom-up perspective. In reality,
the movements of orders and modes are more independent and decentralized, governed by individual
biases and order parameters such size, origin, destination, time windows etc. These parameters vary
for each order which consequently yield different lead-times, costs, distances and emissions.

Disruption studies that take into account disruption management problems, resilience and
recovery of freight transport networks, focus on long-term strategic assessments that concern
responsiveness to bombs, terrorist attacks, floods, earthquakes and terminal attacks [33,34]. Only
a limited number of studies consider the operational level, such as [35] who provide a disruption
management method while considering road disruptions and their estimated duration. However, the
work does not account for rail disruptions, and the analytical numerical example does not include any
time and distance elements. Ref. [36] on the other hand, account for the time component but exclude
transport cost and focus only on a single corridor. More recently, ref. [37] study disruptions in the
physical internet context. The case study does not include terminals, terminal transshipments, pre-
and post-haulage and iww alternatives. Our paper is to address these gaps by combining features of
agent-based modelling, GIS and discrete-event modelling (further elaborated in Section 3). As far as
the resilience term is concerned, we borrow the definition of resilience from [38] who describe it as an
ability of an element to return to a pre-disturbance state, or move to a new one, after a disruption. To
measure resilience, the status quo (non-disrupted system) will be compared to reconfigured solutions
which will emerge when imposing various disruption profiles that may occur in reality. Such profiles
will include disruption length, severity and probability of occurrence. By doing so, various mitigation
strategies will be tested while taking into account how the devised mitigation strategies (re-routing,
bundling, mode switching) perform in terms of key performance indicators (KPIs) (costs, emissions,
lead-times).

Agent-based modelling presents a solution to capture behaviour of assets and their performance
in recovery situations under disruptions. Agent-based models (ABM) have a very high potential
as a result of the advancements in object-oriented programming languages in computer science
that have the ability to represent heterogeneity in physical and human systems [39]. ABM include
heterogeneous agents with different knowledge of their environment and layouts [40]. Agents may
represent trucks, trains, barges, orders, terminals and various other entities. These entities have the
ability to self-organize locally which may lead to significant reconfiguration of relationships and
processes based on internal perturbations or external shocks [41]. Since agents are local, they monitor
the value of system variables locally as well, without averaging and thus without losing the local
idiosyncrasies or individual specificities that can determine overall system behaviour [42]. Agents
can process and exchange information with other agents as well as perceive other entities, obstacles
or sense their surroundings [43]. Such agent characteristics allow for simulating behaviour of assets
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from a decentralized perspective which is why our methodology, in the following section, builds on
this modelling approach. In terms of freight transport and ABM applications, ref. [44] focus on agent
interaction by simulated contracts while considering road and short sea shipping. A participatory
simulation gaming approach in an urban freight transport context is studied by [45]. The agent entities
are depicted as decision-makers which does not fully exploit the possibilities of autonomous and
decentralized agent routing strategies and consequent distance collection in case of deviations induced
by disturbances. Lastly, the work of [46] assesses the impact of the transalpine rail network disruption
by using ABM.

Our work is to make use of all the above listed research progress and combine synchromodal and
disruption advances as well as advances in agent-based modelling. In other words, this paper studies
disruptions in a synchromodal context by using agent-based modelling. The paper contributes to (1)
advancing modelling approaches and (2) better resilience assessments where we do not take actual
freight movement as exogenous parameter inputs. We consider the geo-spatial context that governs
movements of barges, trucks and trains from a decentralized perspective in order to capture different
emerging patterns once assets are re-routed or delayed.

3. Methodology

Current synchromodal analytical models [10] optimize corridor flows which increases efficiency
in terms of cost and time for a given corridor of already existing rail and iww services. To achieve the
modal shift objectives mentioned in the introduction, models should also be designed for convincing
shippers who have not yet tapped into the rail and iww solutions. Therefore, decision support models
should account for supplier origins (O) and delivery destinations (D) that are dispersed in geographical
space. Hence, each order, OD, pair has different spatial attributes which yield different distance and
lead-time values. ABM incorporate different scale and time processes into a single simulation as the
time steps are discrete and small enough to approximate real-time dynamics [43]. In this regard, ABM
computer simulations can offer substantial benefits as they allow for execution of parallel processes
such as different mode adaptations to multiple disruptions. The main novel aspects of our model are
the following:

• decentralized agent process (bottom-up) simulations of each order/container and the modes it
undergoes, as well as order performance in terms of distance, time, cost and CO2.

• more realistic routing strategies through geographically referenced space for trucks, trains and
barges in a single model.

• disruption and system resilience assessment by decentralized reconfiguration of solutions induced
by messages and spatial awareness.

3.1. Representation of Space and Time

Different types of problems lead to different types of models and formalism. While most
synchromodal models rely on linear programming approaches that function in mathematical abstract
space, agents need to be spatially aware of their surroundings. The main modelling canvas of our
SYnchromodal Model for Belgian Inland Transport (SYMBIT) is a digital map that comprises of road,
rail and iww vector files. The vector files, also called shapefiles, are acquired from ETISplus which is
the European Transport policy Information System, and Eurogeographics. The vector data files contain
the TEN-T networks for roads, railways, airports, ports and the watercourse system identified by
Directorate-General for Mobility and Transport (DG MOVE). As indicated in Figure 1 (top-right), the
cyan coloured polylines represent navigable iww and railway shapefiles. The latter concerns freight
priority links. The other dark image under depicts all geocoded locations of European ports and inland
terminals. Each location contains attributes with regard to mode switching possibilities and terminal
size. The GIS environment presented herein provided our agents with real-world locations based on
the WGS84 geographic coordinate system, having Greenwich (0, 0) as its prime meridian. The reason
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behind choosing the WGS84 coordinate system is its broad application; used as a reference system by
GPS, Google Maps as well as by Microsoft in its Bing Maps. This digital infrastructure is part of the
transport supply that also includes existing services and schedules that induce agent movements. The
schedules and services were validated via the Intermodal links and Contargo platforms.

Figure 1. Input and output of the SYMBIT model.

Synchromodality encompasses uncertainties due to the wide range of external inputs that may
affect internal resource states. These inputs occur dynamically and in real-time. In this regard, dynamic
models can effectively capture state fluctuations over time [47] which is why a computation modelling
approach is chosen to capture the synchromodal dynamics in simulated real-time. As dynamic models
can be time-driven and event-driven, the latter represents a better fit as nonlinear evolution of the
model in continuous time would not account for real-time dynamics. The ABM approach herein is
represented as a discrete-event system (event-driven). The state of agents is affected by the occurrence
of events over time as they roam through the geo-referenced space.

Figure 2 represents a flow of an order starting at an origin node to a destination node DC
(Distribution Center). Once a moving agent enters a stationary agent, it is transformed into an entity
and becomes a part of the stationary agent’s processes that are organized in a discrete event logic; for
instance, container transshipment at a terminal. When the process is finished, the entity re-emerges as
an agent. SYMBIT continuously monitors the state of agents from the point when the order is sent to
the origin which represents a supplier. It then logs the type of transport means the order is carried
by, covered individual distances, elapsed time, terminal handling and dwelling time, and last-mile
delivery which stops the monitoring process of a specific order at TimeMeasureEnd.

Figure 2. Conceptual overview of moving and stationary agents.
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3.2. Model Formulation

The model works with the following sets, parameters and variables:

M = {0, 1, ..., n} = array list of transport means m representing trucks, barges and trains
H = {0, 1, ..., o} = array list of terminal agents h
S = {0, 1, ..., p} = array list of supplier agents s
DC = {0, 1, ..., x} = array list of distribution center agents dc
O = {0, 1, ..., s} = array list of order agents
N = {0, 1, ..., q} = vector file of nodes
L = {0, 1, ..., w} = vector file of links representing rails, inland waterways and roads
mc = cost per km of m
hc = handling cost at terminal h
ht = handling time at terminal h
hs = storage cost at terminal h
os,dc = individual order to be transported from s ∈ S to dc ∈ DC
ldo = lead-time of an individual order os,dc

λo = allowed time window per order
sm = average speed of m in km/h
dm
||i→i+1|| = distance for a specific m from current i to next i + 1 network node in GIS space

tm
||i→i+1|| = transit time of m from i to i + 1 network node in GIS space

`m = load factor of m with os,dc on board
ξm = emission factor of m per km
ξo

s,dc = emissions emitted for an os,dc delivery
Oc

s,dc = total cost of an order
OOc

s,dc = Total cost of all orders
DTo

s,dc = Aggregated distances generated by order os,dc movements
Tξo

s,dc = Overall emissions by all orders

The objective is to minimize Oc
s,dc of an individual order os,dc consisting of mc which is different

for truck, barge and train as well as handling cost hc at loading and unloading location of h ∈ H.
The dm

||i→i+1|| values are collected by each m agent when traversing l ∈ L in simulated real-time.
The ||.|| expression, known for defining euclidean distance in euclidean space, is adapted to define
realistic physical distances in the so called GIS space (geo-referenced space specified by GIS). Final
values are aggregated upon os,dc arrival at its distribution center which represents the final location
(Equation (1)).

Oc
s,dc = ∑

i∈N
mcdm

||i→i+1|| + hc + hs (1)

ξo
s,dc = ∑

i∈N
ξmdm

||i→i+1||. (2)

To obtain emission values emitted by each order delivery ξo
s,dc, the combination of m agents and

their individual performances in terms of covered distances dm
||i→i+1|| were considered (Equation (2)).

The emission factor ξm that corresponds to the specific m was then applied to its covered distance.
Only distances travelled with the order on board were taken into account. Return trips of modes were
not included.

The lead-time of an order ldo depends on the performance of individual m agents that can be
faster or slower based on the infrastructure l ∈ L they follow. Equation (3) depicts transfer times
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tm
||i→i+1|| for each m while considering their speed sm

k . The order lead-time ldo is then acquired by

including handling time ht in Equation (4) at loading and unloading terminals.

tm
||i→i+1|| = ∑

i∈N
(

dm
||i→i+1||

sm ) (3)

ldo = ∑
i∈N

tm
||i→i+1|| + ht. (4)

The main decision variables were order cost Oc
s,dc and order lead-time ldo that may be affected

by external perturbations (disruptive events) that are labelled as Ψ. These external events induce
re-routing strategies of m in GIS space which will, as a consequence, alter the delivery performance in
terms of Oc

s,dc and ldo. Figure 3 illustrates a stochastic disruption input Ψt at a given time t into ongoing
processes of m is simulated real-time. The model tests control policies given the current system state
η(st) by sending out messages mt to re-route or switch to another mode while traversing l ∈ L. Our
work focused on such control policies and their implications in terms of order costs Oc

s,dc, lead-times ldo

and emissions ξo
s,dc. Such policies and their consequences may be of interest to LSPs, shippers, corridor

managers and policy makers when evaluating and/or considering dynamic synchromodal processes.

Figure 3. Uncertainty (Ψ) illustration of a disruption affecting current system state. Adapted from [48].

The final aggregated outputs that our model delivers are shown in Equations (5)–(7). Total costs,
lead-times, travelled distances and emissions are the KPIs. The following section provides more
specifics in terms of parameter values and control policies η where their impact on the KPIs is studied.

OOc
s,dc =

m

∑
k=1

Oc
s,dck (5)

DTo
s,dc =

m

∑
k=1

∑
i∈N

os,dc
k dm

||i→i+1|| (6)

Tξo
s,dc =

n

∑
i=1

ξo
s,dci. (7)

As SYMBIT is not a linear programming model but a computational one, modelling constrains
and operating principles will be listed in flowcharts and pseudo-codes provided in Section 4 and the
Appendix A. The above equations are to illustrate how KPI values are accumulated when truck, barge
and train agents start re-routing; hence, generating different values given their individual spatial and
temporal context.

4. Application

The case study concerns imports of goods of a single retailer by unimodal truck-only transport
from France to Belgium (Figure 4). A pool of LSPs provide a service to this retailer to transport
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payloads from 220 origins (S) to six destinations (DC). Demand/order generation in our simulations
was based on these existing unimodal order flows. The order os,dc parameters include a reference
number, FTL or partial load, driver, week number, supplier location (latitude/longitude) and final DC
location (latitude/longitude). Order placement started when the real-time simulator entered a new
week. When the simulator entered week three for instance, all order requests that correspond to week
three will be sent out to their S locations.

As far as general assumptions and parameter input values are concerned, the model considers
trains which operate five times per week (closing time for transshipment is at 17:15) and barge
services three times per week alongside the Rhine–Alpine corridor. Terminal operating hours are
Monday–Friday between 07:00–19:00 and on Saturday between 07:00–12:00. Orders that arrive after
train/barge departures will be transported on the next day. Table 1 depicts specific values of the
model’s parameters. Barge average speed sm is sampled from downstream flows of barges from
marinetraffic.com. As for trains, according to the European Court of Auditors (ECA) the average
commercial speed of freight trains in the EU is very low, only around 18 km/h on many international
routes [49]. However, the ECA points out the average speed on rail freight corridors is comparable to
the speed of trucks. Variable and fixed costs that compose cost per km mc are taken from LSPs which
provided us with their data within previous projects. These include rail, barge and truck operators.
The load factor `m determines mc. Varying load factors, such as higher `m resulting in lower mc for
trains and barges, are not considered for simplicity purposes. CO2 equivalent factors (well-to-wheel)
are taken from the STREAM freight transport 2016 report and are adjusted to two TEU per order.
Gross weight of one TEU was set to 14.3t (2.3t tare + 12t payload) as indicated by [50]. Thus, one order
(2TEU) weighs 28.6t. Terminal handling cost hc differentiation was based on the work of [51]. As far as
transit times and distances between nodes are concerned, agents generate and record their individual
distances ad hoc, together with the time they take to traverse the links. These values depend on the
taken routes defined by shape-files (vector files):

• truck agents were governed by a road shape-file (main roads—fastest route A* algorithm).
• barge agents followed an inland waterway shape-file (navigable waterways—Dijkstra algorithm).
• train agents were linked to a railway shape-file (TEN-T corridor—Dijkstra algorithm).

Table 1. Parameter overview of moving and stationary agents.

Moving Agents Truck Barge Train

sm 60 km/h 5 knots (9.3 km/h) 50 km/h
`m 100% (2 TEU) 70% (85 TEU) 80% (70 TEU)
mc (fixed + variable) e0.96 e0.21 e0.62
λo Five work days. Two work days for urgent order requests
ξm in CO2-eq
(CO2-eq per order)

72 g/tkm
(2060 g/km)

Downstream 23 g/tkm
(657 g/km)

Electric 14 g/tkm
(400 g/km)

Stationary/Terminal agents Small Medium Large

hc at 60% utilization e81 e60 e38
hc at 80% utilization e61 e45 e28
hc at 100% utilization e49 e36 e23
hs First 24 h (overnight stay) is free of charge
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Figure 4. The left image illustrates our study area depicting 220 origins (S), six destinations (DC) and
325 terminals (H). Road shapefiles were excluded for visual clarity. The right image represents all
European terminals.

Given the decentralized nature of agents, the ongoing delivery processes may reconfigure
depending on the geographical location of the disruption, without unnecessarily bothering other
agents and their ongoing processes. In this paper, we considered more short-term disruptions Ψ by
introducing three disruption profiles (Table 2). Profile 1 (Ψ1) is applicable to road only, to simulate
the overall delivery performance of intermodal orders if a truck arrives late, or not-depending on
how far the individual trucks are from terminals. We assumed that these disruptions, slightly more
severe than daily congestion, last 1–3 h. Profiles 2 (Ψ2) and 3 (Ψ3) occurrence estimations are deduced
from Eurostat for rail only. Iww accident data were not available, which is why this study was limited
to mainly rail disruptions. Profile 2 duration was taken from [36]. We use many model realizations
with Monte Carlo simulations to approximate the stochastic probability distributions. During each
realization the model draws a different value from the probability range.

Table 2. Disruption profiles and their severity.

Ψ Description (Example) Probability of
Occurrence per Year Duration

1
Frequent and short (Delays caused by detours, blockages,
light accidents, road works, etc.) 30–40% Uniform (1, 3) h

2
Less frequent and short (Breakdowns, maintenance,
moderate weather conditions, trees on rails etc.) 6–9% Uniform (3, 6) h

3
Less frequent and mid-long (Strikes, severe weather conditions,
floods, train collision, derailment etc.) 6–9% Uniform (1, 3) d

4.1. Experimental Design

At the model verification stage, the agent code and routing were assessed by comparing our
routing solutions with Google maps and Bing maps. This was to verify the correctness of distance
accumulation per agent via road. For inland waterways and rails, the polyline lengths were inspected
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via ArcMap. The next step was calibration; after examining the distance correctness, the speed
parameters were calibrated to meet realistic movements throughout the shapefiles. We considered
congestion levels from google maps and automatic identification systems (AIS) that provide real-time
vessel positions and their historical speeds. The variable cost/km for trucks was calibrated since the
parameter can be tuned to improve agreement with observed truck data provided by our retailer. As
we do not possess experimental data for waterborne and rail transport from the retailer, computational
simulations are used to foretell the potential of those deliveries based on the fidelity of simple physics.
Figure 5 provides a schematic overview of three main simulations.

Simulation 1 (S1)—unimodal simulation (status quo): a dispatching loop scans the order file and
sends out orders based on week numbers. Truck agents collected the orders at their geolocations in
France at 08:00 and depart to the order’s DC locations in Belgium via geo-referenced space. The output
values were indicated as output A in Figure 5. The calibration procedure yielded a cost of 0.87 Euro
per km when final simulated deliveries were compared to existing data of the retailer. Therefore at this
step, the truck cost/km input parameter mc is changed from 0.96 to 0.87. Appendix A.1 contains more
details with regard to the computational logic of simulation 1.

Simulation 2 (S2)—a service is booked rather than a single mode. The truck agents initiated a
nearest neighbour search from their individual geolocations and depart to their nearest terminals
for transshipment. Should there be a cheaper terminal within 50 km radius r (determined by hc of
the terminal), the truck agents will move to h ∈ H with the lowest cost. The order agent os,dc was
placed on a barge agent which receives the next terminal delivery location; an algorithm scans the
DC geolocation embedded in os,dc and searches the nearest cheapest terminal to that DC location in
Belgium. The barge agent departs to that specific terminal and records its lead-time (tm

||i→i+1||) and
cost (mcdm

||i→i+1||) in Equation (1). The order agent is then transshipped to a truck for last-mile delivery.
The pre-haulage—transshipment—main leg by barge—transshipment—post-haulage form the total
cost of an order Oc

s,dc and determine its lead-time ldo. Both were then compared to result 1 (R1) from
the previous simulation. If the time was lower than the allowed time window λo and the cost was
lower than the previous unimodal delivery of the specific order, the solution is kept as R2a. Else, if
the cost Oc

s,dc was acceptable but the lead-time λo was exceeded, a rail solution is queried following
the same procedure as above. If the rail result R2b was cheaper and deliverable within λo, the result
was kept (Figure 5), if not, the initial R1 was kept. The same procedure was followed in case no iww
service exists. Appendix A.2 sheds more light on the modelling logic.

Simulation 3 (S3)—disruption scenario (resilience assessment): this simulation took the final
configuration of S2 as its input, and tested the system resilience to perturbations. Having established
intermodal solutions at this point, we focused on the flexibility aspect of synchromodality. We compare
the intermodal (static) solution with the synchromodal (dynamic) solution. These two represent the
control policies (η). The former, static, was labelled as risk-taking (Figure 5) which means that once
the disruption profiles Ψ from Table 2 were applied, all the agents in transition state ωm(.) were be
exposed to delays caused by Ψt given their current geolocations in space and time at the moment of
occurrence (Figure 6). In the static case (S3a) the agents were delayed without knowing the disruption
length. If the cost (Oc

s,dc from S1) and time λo thresholds were violated, the initial R1 solutions was
kept. The latter, dynamic (S3b), means that agents received information about each disruption and
proactively seek alternatives, labelled as risk-avoidance. Mainly disruption profiles 2 and 3 were
considered since profile 1 did not have any significant impact on the deliveries (further elaborated
in Section 4.2). Planning was done as late as possible so that the planners had enough time to detect
disturbances and respond to them proactively. For profile 2, the trains were able traverse a path in
case of terminal breakdown. This resulted in re-routing where the truck agent will move to the next
nearest terminal. A search radius of 300 km was added to query iww terminals first. This was to find
potentially cheaper options and also avoid trucks seeking rail terminals further inland in the opposite
direction. The radius applied to orders situated within the Rhine–Alpine corridor which were closer to
Basel in Switzerland. If the cost and time thresholds were not met, the R1 solution was reinstated. For
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longer-term disruptions in profile 3 such as rail strike, the LSP will seek other than rail alternatives.
R3b is recorded in output D if cost was lower than R1 and time fell under five days (λo). Else, R1 was
reinstated. The static case output C was then compared to the dynamic case output D. The algorithm
is described in more detail in Appendix A.3.

Figure 5. Schematic overview of three simulation scenarios and their composition.

Figure 6. Visual example of Ψ affecting agents in ωm(.) transition state.

4.2. Simulation Results

The case study results were validated with the retailer on a continuous basis; we have re-visited
the retailer three times after each model calibration in order to validate with them whether the model
represents realistic outputs. After each visit, we incorporated feedback provided by the retailer
to increase the accuracy and validity of our model. The retailer provided us with their price files
for truck-only deliveries. The output was analyzed statistically by using paired samples t-tests
(Appendix B). We interpret the statistical difference in the following sub-sections. Significance level
of 0.05 (p-value) was used which relates to confidence intervals of 95%. The analysis in Section 4.2.1
concerns our first research question, whereas Section 4.2.2 concerns the second research question.

4.2.1. Unimodal vs. Intermodal (Simulation 1 vs. Simulation 2)

The results of simulation 1 and simulation 2 were shown in Figure 7 where the reproduced
unimodal flows (red) were compared to computed intermodal flows (green). Each dot represents a
single order os,dc after reaching its final destination. The order plots indicate cost (Oc

s,dc), distance and
lead-time (ldo) per order that were recorder upon arrival at distribution centers. It can be visually
inferred that intermodal options lead to longer distances, lead-times and higher costs. The cost
increase is caused by extra handling and the containers need to be transshipped onto a barge or a train.
The order costs in the interval between 800 and 1200 km were the most competitive as the lower cost
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per km of barges and trains compensated for the extra handling costs. Even though longer distances
favoured intermodal transport, there were also flows that exceed e1000 and 1200 km (green). This
was caused mainly by the first-mile of the trucks that take detours to their nearest terminals. Such
detours, and also terminal handling operations, increased overall lead-times as illustrated in the right
side of the figure. The differences per variable were significant: distance (p ≤ 0.05), cost (p ≤ 0.05) and
time (p ≤ 0.05).

Figure 7. Comparison of orders delivered by truck-only (unimodal-red) and a combination of modes
(intermodal-green).

Table 3 shows simulation output A and B (as shown in Figure 5). When applying time window
λo2 constraint of two days for S1, all trucks were capable of reaching their destination within that
specific time frame. This fact was also validated by the retailer. The unimodal freight deliveries
(truck-only) generated 887,110 km in one year which resulted in 771,785 of costs and 1,827,446 kg of
COeq emissions. S2 yielded a potential of 26.5% of orders that can be shifted from road-only transport
where 4.3% of distances were done via iww and 16.7% by rail. Even though the cost was distributed
among roads, iww, rails and terminals, the combination still offers costs savings of e37,454 and an
emission reduction of 298,170 kg on a yearly basis. When imposing λo2 instead of λo5, the share of
shifted orders decreases to 14.5%. This percentage consists of orders that are geographically close
enough to meet the time and cost constraints; carried by road and rail as depicted by the distance share
in Table 3.

Table 3. Output for business-as-usual simulation (S1) and possible intermodal alternatives (S2).

λo
(Days)

Shifted/Unimodal
(%)

Distance Share (%)
(Road/Iww/Rail)

Cost Share (%)
(Road/Iww/Rail/Term)

CO2-eq Share (%)
(Road/Iww/Rail)

S1 λo2 0/100 100/0/0 100/0/0 100/0/0
Total λo2 887,110 km e771,785 1,827,446 kg

S2

λo5 26.5/73.5 79.1/4.3/16.7 83.1/1.1/12.5/3.3 94.5/1.6/3.9
λo2 14.5/85.5 84.7/0/15.3 87.1/0/11.2/1.7 96.6/0/3.4

Total λo5 887,337,km e734,331 1,529,276 kg
Total λo2 906,355 km e767,258 1,637,542 kg

4.2.2. Resilience Assessment—Intermodality (S3a) vs. Synchromodality (S3b) Simulations

In this section, intermodal and synchromodal performances are compared when exposing S2
configuration to our disruption profiles (see Figure 5). Only profiles 2 and 3 are addressed since profile
1 did not have any significant impact (p ≥ 0.05); this means that 1–3 h delays did not affect the trucks
which managed to reach their nearest terminal before train and barge departures. The profile input
values from Table 2 that affect the behaviour of the system are based on Monte Carlo simulations. To
ensure comparability, each simulation is executed by using a fixed random seed for numbers taken
from the uniform distribution functions; this is to account for reproducible and comparable simulations
so that S3b reacts to the same random number sequence used in S3a.

Disruption profile Ψ2: when comparing intermodal (red) and synchromodal (green) simulations
under disruption profile 2 (Figure 8), the results do not yield any significant difference in terms of cost
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(p≥ 0.05) and distance (p≥ 0.05). However, the figure visually depicts some orders which had to cover
longer distances and slightly higher costs. This development can be attributed to the pro-activeness of
agents that seek other available terminals in the synchromodal case (green). Given the insignificant
difference in cost and distance, the modes that carried the orders play a crucial role. With regard to
modal share, Table 4 shows the share of shifted orders increased from 26.5% (S3a) to 39.5% (S3b) due
to the ability of trucks to query iww terminals that are further away than the rail terminals chosen by
static intermodal solutions. The share of iww distances supports this claim as it increased from 4.3% to
12.9%. It is important to notice is the higher share of terminal costs that changed from 3.3% to 5.2%.
The increase was caused by the higher shifted order share where more handling is required, but also by
the terminal size as larger terminals are avoided and other smaller terminals are chosen. As indicated
in our input Table 1, medium terminals charge e60 per handling instead of e36. Hence, the cost does
not improve significantly for the synchromodal setting as the higher handling costs deteriorate the
potential cost improvement. As far as the lead-time is concerned (Figure 8, right), the pattern differs
significantly (p ≤ 0.05). The most visual outliers are between 60 and 66 h which can be explained
by the risk-avoiding approach of synchromodality choosing terminals further away and incurring
delays be unnecessary detours. This aspect generates higher share of road from 79.1% to 85.7% at the
expanse of rail that decreased from 16.7% to 1.4% indicating that not all orders shifted to iww (Table 4).
A cost decrease is observed between 45 and 50 h for green synchromodal dots (Figure 8, right) where
choosing barge services located closer to the order’s final destination yielded lower costs as compared
to the red intermodal dots above them.

Figure 8. Comparison of order delivery performances after exposing simulation 2 (S2) to disruption
profile 2 for static intermodal (red) and dynamic synchromodal (green) solutions.

Disruption profile Ψ3: when applying disruption profile Ψ3 (Figure 9), the proactivness of
synchromodality (green) yields significantly better performance in terms of distances (p ≤ 0.05), costs
(p ≤ 0.05) and lead-times (p ≤ 0.05). This development was caused by the fact that all truck agents
search iww solutions as the usage of rail is omitted. In this case the geo-spatial search goes beyond
the 300 km radius, ignoring several rail terminal options that lay in between, until the nearest iww
terminal is found. Given this setting, and the λo5 and cost thresholds Oc

s,dc from S1, 54.8% of orders
could be shifted from road-only transport. However, synchromodal flexibility is not always a better
solution; while most of the green orders situated between 40–50 h outperform red orders in terms
of cost and between 70–80 h in terms of time, it is observed that a small amount of red orders under
e800 yielded relatively better cost and time results. This is an interesting development which implies
that synchromodal solutions mitigate the effects of disruptions worse in terms of costs and lead-time for
these particular orders; the intermodal static case (S3a) continued with deliveries once the disruption
was over, unlike the synchromodal solution seeking case (S3b) that needed more time to deviate to
another terminal. Handling cost may also play a role since smaller terminals charge more per handling
than larger ones. In this particular case, it is more beneficial for some orders to wait at a disrupted
path rather than search proactively for other solutions. Hence, the flexibility of synchromnodality may
also yield more negative effects for a fraction of orders when compared to intermodal static options.
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Figure 9. Comparison of order delivery performances after exposing S2 to disruption profile three for
static intermodal (red) and dynamic synchromodal (green) solutions.

Table 4. Comparison of static intermodal (S3a) and dynamic synchromodal (S3b) measures after
exposing simulation 2 (S2) to disruption profiles.

λo (Days) Shifted/
Unimodal (%)

Distance Share (%)
(Road/Iww/Rail)

Cost Share (%)
(Road/Iww/Rail/Term)

CO2-eq Share (%)
(Road/Iww/Rail)

Disruption profile Ψ2

S3a

λo5 26.5/73.5 79.1/4.3/16.7 83.1/1.1/12.5/3.3 94.5/1.6/3.9
λo2 10.6/89.4 89.6/0/10.4 91.2/0/7.5/1.3 97.8/0/2.2

Total λo5 - 887,337 km e734,331 1,529,276 kg
Total λo2 - 903,215 km e772,031 1,704,625 kg

S3b

λo5 39.5/60.5 85.7/12.9/1.4 90.5/3.3/1/5.2 95.1/4.6/0.3
λo2 6.7/93.3 99.7/0.1/0.3 99/0.01/0.2/0.8 99.9/0.01/0.1

Total λo5 - 857,749 km e706,639 1,592,733 kg
Total λo2 - 886,490 km e779,639 1,821,216 kg

Disruption Profile Ψ3

S3a

λo5 26.5/73.5 79.1/4.3/16.7 83.1/1.1/12.5/3.3 94.5/1.6/3.9
λo2 9.3/90.7 90.1/0/9.9 91.7/0/7.2/1.1 97.9/0/2.1

Total λo5 - 887,337 km e734,331 1,529,276 kg
Total λo2 - 901,077 km e770,122 1,707,463 kg

S3b

λo5 58.4/41.6 80.4/19.6/0 87.1/5.1/0/7.8 92.8/7.2/0
λo2 2/98 99.9/0.1/0 99.1/0.1/0/0.8 99.9/0.1/0

Total λo5 - 853,963 km e686,079 1,524,217 kg
Total λo2 - 884,934 km e776,378 1,821,727 kg

As far as emissions are concerned (Table 4), the synchromodal setting under disruption profile
2 generated 63,457 kg more as a result of a higher share of iww from 1.6 to 4.6% and a decrease in
rail from 3.9 to 0.3%. The increase in road emission share caused by deviations is rather negligible.
A reverse effect is observed under disruption profile 3 when the synchromodal solutions decrease
emissions by 5059 kg. This effect is attributed to higher iww share (1.6 to 7.2%) in combination with
lower road share (94.4 to 92.8%).

5. Discussion

Managerial implications: the simulation experiments provide a range of alternatives and
assessments which may also be of interest to other retailers who rely on truck-only transport. To answer
our first research question (what is the modal shift potential of individual dispersed orders served
by truck-only when imposing lead-time and cost thresholds?), the modal shift potential is 26.5%
and may increase to 39.5% and 58.4% when allowing for synchromodal solutions. These solutions,
however, rely on network openness and benevolence of other carriers to flexibly change modes at any
time. Our work presents the benefits of having such an open network where orders may be transported
by a different mode, depending on its availability in geographic space. The 26.5% shift potential can
incur savings of e37,545 and 298,170 kg of emissions per year. These estimates change if stricter time
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windows are imposed. Such strict time windows concern around 10% of the orders in case of our
retailer, and these urgencies are caused by miscalculations, frequently used products, unexpected
peaks in demand etc. Given the rather attractive benefits in terms of cost and emissions, there is still
a lack of intermodal service offer for the order locations with modal shift potential. The LSPs offer
truck-only solutions due to the fact that a limited number of back-flows is present to fill a train or a
barge for a return trip. As a matter of fact, the fragmented flows are currently not interesting for LSPs
as they prefer full trains from one factory to another. Retailers cannot induce a modal shift on their
own because they do not have the necessary volumes and power to carry the costs and experiments
alone. It is thus necessary to gain insights and identify flows that would fill return trips. In this regard,
transparency and information sharing is crucial. SYMBIT can be perceived as a platform that has
the ability to simulate fragmented retail flows and assess what-if scenarios. The model exposes the
potential for a modal shift of a company, but may also compute bundling scenarios with another
company with similar backward flows. Without having critical stable mass however, the alternative
of single-wagon-loads (SWL) could be explored. This might imply development of hybrid structures
that allow for block train volumes being integrated with SWL business. A setting of this type could
enable accessing stable base volumes that could also benefit from high return SWL of the retailer
presented herein. In other words, existing train and barge services would have to be connected
with local trucking companies to offer more reliable services by reinforcing each other. In terms
of implementation, more case studies and European pilots are necessary to further strengthen the
synchromodal idea. Furthermore, standardization at a European level is a crucial element due to
diverse working cultures, different levels of digitalization and automation as well as willingness to
share information among member states and companies.

Research implications: real-time simulations within GIS can be extremely powerful and accurate.
Nonetheless, these are currently underexploited. Objects/agents have the ability to learn certain
aspects of the model during execution; when parameters or the context change, the agents will try
to find solutions that meet their objectives in realistic space and time. These spatial and temporal
dimensions are not depicted by current synchromodal models, and those which do include GIS, make
use of them for visual interpretation of results and ex-post analysis. Hence, GIS are currently never or
rarely embodied in the simulation process itself.

As for our last research question (does synchromodal dynamic reconfiguration have any impact
on the lead-time, cost and emissions compared to a, more static, intermodal setting?), our approach
sheds light on the uncertainty regarding cost and time thresholds once intermodal solutions are
exposed to disruptions. Disruptions and delays occur in reality which is why SYMBIT’s architecture is
devised to reconfigure when exposed to perturbations. This is achieved by decentralized intelligence
of each agent and its local possibilities facilitated by spatial and temporal awareness. As mentioned
earlier, deliveries under disruption profile 1 are robust enough to small deviations. With regard to
disruption profile 2, shifting modes dynamically is not always required because the extra deviations
and unnecessary pro-activeness decrease the potential emission and time savings. Therefore the
disruption severity needs to be considered when thinking about proactive solutions and whether
these proactive solutions are worth the deviations and switching in terms of KPIs. Despite visual
observations, the differences under profile 2 are not statistically significant. However, synchromodality
does present a significant improvement when dealing with longer and more severe disruptions. In this
regard, more advanced algorithms would be needed to answer each agent’s question: should I stay or
should I go? This is a very challenging task as the disruption length uncertainty is not always known
in reality, which presents a major challenge. New sensor technologies and techniques that can collect
and integrate real-time information will be imperative to determine the disruption severity, its length
and spatial occurrence in order to reduce uncertainties depicted by probability distribution functions.
The earlier mentioned network openness can be achieved through IoT technologies and geo-spatial
coverage, by 5G network for instance, in order to reach out to assets by facilitating information
exchange, remote-control and automation.
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6. Conclusions

This paper assesses the modal shift potential of hundreds of real-world scattered orders.
We provide evidence that intermodal solutions can be efficient in terms of cost and time. Furthermore,
the potential orders could yield significant cost savings of nearly 5% on a yearly basis and mitigate the
overall environmental impact by 16%. These benefits ameliorate when applying flexible and dynamic
synchromodal solutions. However, the benefits diminish for most of the orders when imposing
two-day time windows which is why better planning and demand forecasting are imperative to avoid
such developments. From a methodological perspective, our approach offers the ability to simulate
information availability/exchange that is linked to consequent reactive agent behaviour induced by it.
This ability of SYMBIT is tested by exposing static solutions to disruptions where individual agents
reconfigure based on their position in space and time. Knowing the state of the transport system and
its evolution allows for more accurate and efficient policy rules to mitigate the undesired effects of
the system and its sub-parts. Synchromodality does offer more alternatives, but these alternatives
should be assessed carefully as the performance may not always be more beneficial than the more
static intermodal solutions. As far as disruption management is concerned, future research could
focus on more severe disruptions such as the known occurrence of a sink hole in rail tracks within the
Rhine–Alpine corridor. Our agent reconfiguration may contribute to testing the resilience of possible
disruption management schemes to tackle similar events in the future. Future work could also include
dynamically changing speed profiles of agents to account for peak hours in specific geographical
regions. The horizontal collaboration dimension and bundling scenarios with revenue management
should be considered as well, once another company’s similar flows are exposed.
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The following abbreviations are used in this manuscript:

IWW/iww Inland waterways
GIS Geographic information systems
ABM Agent-based modelling
LSP Logistics service provider
AIS Automatic identification system

Appendix A. Simulation Pseudo-Codes

The pseudo-codes listed below contain additional parameters specified as follows:
Week—integer parameter representig a calendar week
DispatchWeek—local week parameter of an order agent indicating when it needs to be sent
TW—total number of weeks
Sch—boolean parameter which becomes true when the train can depart at 17:15
ωm(.)—movement state in GIS space where the agent moves to the element in (.)
NearestT—an empty parameter where a nearest loading terminal will be stored
Tarrived—boolean parameter indicating presence of a truck agent at a terminal
LastT—an empty parameter where unloading terminal will be stored
Tiww—boolean parameter: true if inland waterway transparent is possible, f alse if not
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Trail—boolean parameter: true if rail transparent is possible, f alse if not

Appendix A.1. Simulation 1

Algorithm A1: Simulation 1 (status quo).

input :∀ os,dc ∈ O
output : ldo, Oc

s,dc (Figure 7), OOc
s,dc, DRo

s,dc, Tξo
s,dc (Table 3)

1 initiate real-time simulator and update Week every calendar week (Week ++)
2 for Week← 1 to TW do

// simulation runs 1 year/52 weeks
3 if Week < TW then
4 for ∀ os,dc ∈ O do
5 if Week = DispatchWeek then
6 Send os,dc to corresponding s ∈ S geolocation

// Truck at supplier s location
7 Load os,dc on truck ∈ M
8 Truck enters movement state ωm(dc) and departs towards the dc of os,dc

9 while in ωm state do
10 follow the fastest route via road network (N)

// Truck at dc location

11 dm ← ∑
i∈N

dc
∑

i=1
||i→ i + 1||+ ||i + 1→ i + 2||+ ... + ||dc− 1→ dc||

12 Oc
s,dc ← accumulate order cost (Equation (1))

13 ξo
s,dc ← accumulate order emissions (Equation (2))

14 ldo ← accumulate order lead-time (Equation (4))

15 else
16 os,dc waiting to be sent

17 else
18 Before simulation terminates, aggregate all values

OOc
s,dc, DRo

s,dc, Tξo
s,dc—Equations (5)–(7)
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Appendix A.2. Simulation 2

Algorithm A2: Simulation 2 with omitted mode constraints.

input :∀ os,dc ∈ O
output : ldo, Oc

s,dc (Figure 7 )

1 repeat lines 1–7 from Algorithm A1
// each truck ∈ M with its unique geo-location searches a nearest terminal to

it
2 NearestT ← get nearest neighbour h ∈ H
3 ωm(NearestT)
4 while truck in ωm state do
5 follow the fastest route via road network (N)

// truck arrives at NearestT

6 dtruck ← ∑
i∈N

NearestT
∑

i=1
||i→ i + 1||+ ... + ||NearestT − 1→ NearestT||

7 update ldo (Equations (3) and (4))
8 for ∀ h ∈ H do
9 if Tiww = true ∧ Sch = true ∧ Tarrived = true then

10 transship os,dc onto barge ∈ M
11 record hc and ht according to Equation (1)

// the algorithm jumps to the final destination of os,dc and searches the
nearest h from the dc’s geo-location

12 LastT ← get nearest h ∈ H to final destination (dc) of os,dc where Tiww = true
13 ωm(LastT)
14 while barge in ωm state do
15 follow the fastest route via iww network (N)

// barge arrives at unloading terminal

16 dbarge ← ∑
i∈N

LastT
∑

i=1
||i→ i + 1||+ ... + ||LastT − 1→ LastT||

17 update ξo
s,dc (Equation (2)) and ldo (Equations (3) and (4))

18 Load os,dc on truck ∈ M
19 update hc and ht

// os,dc is now on truck for last-mile stretch
20 ωm(dc)
21 while in ωm state do
22 follow the fastest route via road network (N)

// Truck at dc location

23 dtruck ← ∑
i∈N

dc
∑

i=1
||i→ i + 1||+ ... + ||dc− 1→ dc||

24 update Oc
s,dc (Equation (1)), ξo

s,dc (Equation (2)) and ldo (Equations (3) and (4))
25 Initiate Algorithm A4

26 else if Tiww = f alse ∧ Sch = true ∧ Tarrived = true then
27 transship os,dc onto train ∈ M
28 follow the same logic in lines 11–25 where train replaces bage and rail network

substitutes iww network.
29 else
30 truck missed departure; store os,dc over night until Sch = true
31 start from line 7 again the next day
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Appendix A.3. Simulation 3

Algorithm A3: Simulation 3 with deployment of Ψ.

input :∀ os,dc ∈ O
output : ldo, Oc

s,dc (Figures 8 and 9)

// we take the structure of Algorithm A2 and target agents while being active
in ωm state (see lines 4–5 for instance)

1 for Week← 1 to TW do
// –––––––––––––––––––––––––––––––––––-Ψ2––––––––––––––––––––––––––––––––––––

2 if Intermodal S3a then
// do not communicate disruption message and stop train with os,dc on board

3 initiate Ψ2 at Sch of train; StopDuration = uniform distribution (3, 6) h
4 after StopDuration timeout, continue movement (Algorithm A2, line 28)

5 else if Synchromodal S3b then
// communicate disruption message before truck arrives and unloads os,dc

6 create a new array list RerouteTrucks()
7 for ∀ trucks ∈ M do
8 if truck in ωm then
9 add to RerouteTrucks()

10 for ∀ trucks in RerouteTrucks() do
11 get current geo-location (x,y)
12 for ∀ h ∈ H do
13 NextNearestT ← get closest h.Tiww = true
14 DistanceToIww← get distance to NextNearestT
15 if DistanceToIww < 300km then
16 ωm(NextNearestT)

17 else
18 NextNearestT ← get any next nearest neighbour h ∈ H
19 ωm(NextNearestT)

20 while truck in ωm state do
21 follow the fastest route via road network(N)

// truck arrives at NextNearestT
22 apply same logic from Algorithm A2, line 6 (replace NearestT with

NextNearestT)

// –––––––––––––––––––––––––––––––––––-Ψ3––––––––––––––––––––––––––––––––––––-
23 Repeat the same logic above (jump to line 1)
24 Replace StopDuration by a uniform distribution function (1, 3) days

// As rail disruptions are long, each truck agent will ignore terminals with
Trail = true in SynchromodalS3b scenario. Thus, lines 18–19 are replaced by
the following logic:

25 Truck enters movement state ωm(dc) and departs towards the dc of os,dc

26 while in ωm state do
27 follow the fastest route via road network (N)

// Truck at dc location

28 dm ← ∑
i∈N

dc
∑

i=1
||i→ i + 1||+ ||i + 1→ i + 2||+ ... + ||dc− 1→ dc||

29 accumulate order cost Oc
s,dc (Equation (1)), order emissions ξo

s,dc (Equation (2)) and order
lead-time ldo (Equation (4))

30 Initiate Algorithm A4
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Appendix A.4. General Comparisson

Algorithm A4: General comparisson of simulations

input : dtruck, dbarge, dtrain, ldo, ξo
s,dc

output :OOc
s,dc, DRo

s,dc, Tξo
s,dc (Table 3 for simulation 2 and Table 4 for simulation 3)

1 Initiate Equations (1) and (4)
// For clarity purposes, in lines 2–3 we first show how the Oc

dc and ldo values
are obtained in Appendix A.2. We take dm and mc from Equations (1) and (4)
where truck, barge and/or train replace m

2 Oc
s,dc ← (dtrucktruckc )+ (dbargebargec) + (dtraintrainc) + hc + hs

3 ldo ← ( dtruck

struck ) + ( dbarge

sbarge ) + ( dtrain

strain ) + ht

4 for Week← 1 to TW do
// here we compare each individual order-delivery-performance against its

previous performance from Appendix A.1 (Algorithm A1)
5 if Oc

s,dc < OcA.1
s,dc ∧ ldo < λo then

6 for simulation 2: record result (label R2a for iww or R2b for rail)
7 for simulation 3: record results (label R3a for static or R3b for dynamic)

8 else
9 reinstate initial values of OcA.1

s,dc and ldo from Appendix A.1 (label R1)

10

11 else
12 Before simulation 2 terminates, aggregate all values of OOc

s,dc, DRo
s,dc, Tξo

s,dc from R1, R2a
and R2b sets—Equations (5)–(7)

13 Before simulation 3 terminates, aggregate all values of OOc
s,dc, DRo

s,dc, Tξo
s,dc from R1, R3a

and R3b sets—Equations (5)–(7)

Appendix B. SPSS and Monte Carlo Simulation Output

Figure A1 represents a statistical comparison of different simulations. These comparisons are
analyzed statistically due to the random nature of our simulations. While S1 and S2 have a deterministic
character, S3 simulations are stochastic and work with random numbers generated by the disruption
profiles. As mentioned is Section 4.2.2, the random seed is fixed in order to reproduce comparable
simulations to ensure the same sequence of random numbers. The statistical test is used to determine
the significance of the variations in S3a and S3b. However, disruption profile Ψ2 may assign a delay of
3.5 h to orders from week 1 and 5.5 h to orders in week 2, which in fact means that orders from week
1 are not exposed to 5.5 hour delays. Such a sensitivity analysis of the disruption profiles is shown
in Figures A2 and A3 by executing 100 replications of S3a and S3b simulations under profile Ψ2 and
profile Ψ3.
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Figure A1. SPSS software output of statistical comparison used in Section 4.2.

Figure A2. Monte Carlo experiments linked to Figure 8 with disruption profile Ψ2 for static intermodal
(S3a red) and dynamic synchromodal (S3b green).

Figure A3. Monte Carlo experiments linked to Figure 9 with disruption profile Ψ3 for static intermodal
(S3a red) and dynamic synchromodal (S3b green).

The coloured areas in Figures A2 and A3 represent envelopes for each time “slice”. These can be
perceived as extended box-plots where the envelope colouration show quartile intervals. The darker
the color, the more percent of orders accumulated in the given area when replicated for different delay
inputs. Such an overview of order delivery fluctuations provides a better visual understanding of the
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stochastic uncertainty embodied in our model. It can be inferred that the fluctuations in S3b under
profile Ψ3 are more stable than S3a. The proactive synchromodal nature of the S3b simulation reduces
the delivery uncertainty by design; trucks avoid disrupted rail options whereas S3a is fully exposed to
the rail disruptions. The small fluctuations in S3b are cause by disruption profile 1 which delays trucks
by 1 to 3 h.
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