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Abstract: Pyrolytic carbon black (CBp) from scrap tire pyrolysis is a potential modifier for the bitumen
industry. Binders containing different contents of CBp were prepared and experimentally investigated to
examine the effects of CBp on the electrical and thermal conductivity, conventional physical properties,
rheological properties, high-temperature antirutting performance, aging resistance, and storage stability.
Laboratory test results indicated that the incorporation of CBp effectively improves the electrothermal
properties, rheological properties, high-temperature rutting resistance, and aging resistance. It also
increases the viscosity and decreases the storage stability of bitumen. The study confirms that
CBp-modified bitumen with proper selection of content can be a multifunctional paving material.

Keywords: bitumen; carbon black; rheological property; electrical conductivity; storage stability;
scrap tire pyrolysis

1. Introduction

With the transport development and the associated increase in numbers of vehicles, an estimated
one billion (~17 million tons) end-of-life tires (ELTs) are generated every year worldwide [1]. This number
has been growing steadily and this trend is expected to continue in the future. The countries of the
European Union (EU), the USA, China, Japan, and India produce the largest amounts of scrap tires,
accounting for almost 88% of the gross around the world. The illegally dumped or stockpiled tires pose a
potential threat to both human health and environmental issues [2]. The rising environmental awareness
and economic benefits have driven people to seek sustainable treatment and disposal of ELTs, such as
retreading, energy recovery, pyrolysis, and material recycling [3,4]. Typical applications of recycled
scrap tires in civil engineering practice include (i) rubber modified asphalt pavements, (ii) flooring for
playgrounds and sports fields, (iii) highway crash barriers, dock bumpers and artificial reefs, (iv) roofing
materials, etc. [5,6].

From a materials point of view, scrap tires are still a valuable source of raw materials in other
applications. In general, the tire is made of rubber/elastomer, carbon black, metal, and other processing
additives. The recycled rubber has been successfully utilized in paving industry for several decades
due to the tremendous advantages. However, carbon black, which is used as a reinforcing filler and
antioxidant of rubber, has not gained sufficient attention in the modification of bitumen. Although the
properties of crumb rubber modified bitumen, where the crumb rubber usually contains carbon black,
have been investigated for a long time, the individual effect of carbon black on the modification of
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bitumen is still not very clear. Carbon black possesses many unique properties that distinguish it from
other conventional fillers. Carbon black usually has a large specific surface area and irregular shapes.
The surface of carbon black is also reported to have various functional groups [7]. Moreover, it is
often added to different composite materials to enhance their electrical and thermal conductivities [8,9].
The unique physiochemical properties of carbon black make itself a promising and multifunctional
modifier of the bitumen [10]. This study investigated the various properties of bitumen modified with the
pyrolytic carbon black (CBp), a by-product from scrap tire pyrolysis. The present study not only helps
the understanding of the role of carbon black in crumb rubber modified bitumen, but also explores the
possibility to incorporate carbon black into bitumen as an independent modified binder. To examine the
modification effect of pyrolytic carbon black on bitumen, the electrical resistivity, thermal conductivity,
conventional physical properties, rheological properties, high-temperature antirutting performance, aging
resistance, and storage stability were investigated by various laboratory tests.

2. Materials and Methods

2.1. Materials

The neat bitumen used in this study was SH-70, provided by Jiangsu Baoli Asphalt Co., LTD
(Jiangyin, China). The basic properties of SH-70 are listed in Table 1. Pyrolytic carbon black (CBp)
was obtained by vacuum pyrolysis of scrap tires at a total pressure of 20 kPa and a temperature of
480–520 ◦C from Henan Yingo Technology Co, Ltd. (Henan, China). The technical information about
CBp is listed in Table 2.

Table 1. Basic properties of neat bitumen SH-70.

Properties Unit Value

Penetration (25 ◦C, 100 g, 5 s) dmm 71
Ductility (5 cm/min, 5 ◦C) cm 32.2

Softening point (R&B) ◦C 47.5
Flash point ◦C 272

Rotational viscosity (60 ◦C) Pa·s 203
Wax content % 1.6

Density (15 ◦C) g/cm3 1.032

Table 2. Basic properties of pyrolytic carbon black.

Properties Unit Value

Iodine absorption g/kg 82
DPB absorption cm3/100 g 102

DPB absorption of the compressed sample cm3/100 g 90
CTAB surface area cm2/100 g 83

Nitrogen absorption surface area cm2/100 g 79
Heating loss % 2.3
Ash content % 0.3

Density g/cm3 1.871
45-µm sieve residue % 0.09

Tensile modulus at 300% strain MPa 1.8
Electrical resistivity Ω·cm 0.472

2.2. Sample Preparation

All CBp modified bitumen (CMB) samples were prepared using the high shear process. The neat
bitumen was firstly heated to 150 ◦C and continuously stirred. Then it was mixed with CBp at various
contents (3%, 6%, 9%, 12%, 15%, and 18% by weight of the neat bitumen). The blend was then mixed
at 150 ◦C for 1 h using a high-speed shear mixer at a rate of 2000 rpm. The prepared binders with
different CBp contents were designated as CMB-3, CMB-6, CMB-9, CMB-12, CMB-15, and CMB-18.
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2.3. Testing Methods

2.3.1. Electrical Resistivity and Thermal Conductivity Measurement

The electrical resistivity of bitumen was measured on a disk specimen of 25 mm diameter and
1 mm height, which corresponds to the geometry of specimen used in the dynamic shear rheometer
tests. The resistivity of specimens was measured by the two-probe method. To minimize contact
resistivity, silver paint, in conjunction with a copper plate, was used for the electrical contact with
both ends of the circular plate specimen. A UNI-T modern digital multimeter (Dongguan, China)
was connected with the copper electrodes to measure the resistivity of bitumen. The test temperature
is 20 ◦C. The electric field of the multimeter is assumed constant and the end-effects are considered
negligible. The steps of specimen preparation and measurement of electrical resistivity are shown in
Figure 1.
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Figure 1. Electrical resistivity measurement process: (a) specimen molding; (b) specimen demolding;
and (c) electrodes connecting with specimen.

From the resistivity readings of multimeter, the electrical resistivity of sample can be calculated
based on Ohm’s second law:

ρ =
RS
L

(1)

where ρ is the electrical resistivity (Ω·m), L is the internal electrode distance (m), S is the electrode
conductive area (m2), and R is the measured resistivity (Ω).

The thermal conductivity of bitumen was measured by the advanced C-Therm TCi thermal
analyzer (New Brunswick, Canada). The schematic diagram of the measuring system was shown
in Figure 2. It comprises of a one-sided interfacial heat reflectance sensor, a sample cell with guard
ring, a control unit, and a data acquisition unit. The prepared bitumen material was poured in a flat
conical mold. The modified transient plane source (MTPS) method was employed by the TCi system
for measuring the thermal conductivity. A known current is applied to the sensor’s spiral heating
element to provide a small amount of heat to the sample. By monitoring the change in the voltage drop
of the sensor element, which is induced by the rise in temperature at the interface between the sensor
and sample, the thermal properties of the sample can be determined. With the known heat flux and
temperature gradient through the sample, the thermal conductivity can be calculated by Fourier’s law:

q = −k·dT
dx

(2)

where q is the heat flux density (W/m2), dT/dx is the temperature gradient (K/m), and k is the thermal
conductivity (W/m·K).
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2.3.2. Physical, Rheological, and Mechanical Properties Tests

Conventional physical properties of bituminous binders were studied by softening point test,
penetration test and ductility test. A rotational viscometer (RV) was used to determine the dynamic
viscosity of binders in the high-temperature range of production, transport, and construction. During the
measurement, constant rotational speed (20 rpm) of the cylindrical spindle was maintained to monitor
the torque at 135 ◦C and 165 ◦C.

The conventional binder tests, with simplistic indexes, only give an empirical representation of
a material’s rheological properties. Bitumen is a temperature- and time-dependent (i.e., the rate
of loading), viscoelastic material. To have a better understanding of the viscoelastic behaviors,
the rheological properties of each binder were also determined using a dynamic shear rheometer (DSR)
following AASHTO T315-12. The parallel plate configuration with a diameter of 25 mm and a gap of
1 mm was used during the test.

Temperature sweep tests with 6 ◦C increments were applied to obtain the principle rheological
parameters, complex modulus (G*) and phase angle (δ) at various temperatures. Typically, an angular
frequency of 10 rad/s, which simulates the shear loading corresponding to a traffic speed of
approximately 90 km/h, was applied.

The Multiple Stress Creep and Recovery (MSCR) test conducted on a DSR was utilized to
investigate the high-temperature performance of bitumen. Two stress levels (0.1 kPa and 3.2 kPa) at
64 ◦C were applied on the sample according to AASHTO T350-14. The test protocol includes a 1-s
creep load followed by a 9-s recovery at zero load in each cycle. Ten creep and recovery cycles were
performed at each stress level. Two important parameters—the nonrecoverable creep compliance (Jnr)
and the percentage of recovery—were calculated to characterize the stress dependence and elastic
response of bituminous binders.

2.3.3. Aging Procedure

The rolling thin film oven test (RTFOT) was used to simulate the short-term aging of bitumen
according to ASTM D2872. The oven was kept at 163 ◦C for 85 min with the carriage rotating at a
rate of 15 rpm. A pressure aging vessel (PAV) was used to simulate the long-term aging of bitumen.
The short-term aged bitumen samples were subjected to the PAV at an aging temperature of 100 ◦C
and an air pressure of 2.1 MPa for 20 h.
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2.3.4. Storage Stability Test

The hot storage stability of binders was evaluated by the “tube test” according to ASTM D7173.
In this test, an aluminum foil tube with standard dimensions (25 mm in diameter and 140 mm in
height) was poured with the binder sample (50 ± 0.5 g) with due precaution to avoid the incorporation
of air bubbles. The tubes were kept in an oven vertically at 163 ± 5 ◦C for 48 ± 1 h. Then, the tubes
were moved to the refrigerator and cooled to −10 ± 2 ◦C. After cooling, the tubes were cut into three
equal parts. Samples from the top, middle, and bottom parts of the tube were collected and stored for
further testing.

3. Results and Discussion

3.1. Electrothermal Properties

It was reported the addition of carbon black can enhance the electrothermal properties of various
composites [8,9]. It is also of much interest to see how it influences the electrothermal properties
of bitumen since the concept of conductive asphalt pavement becomes more and more popular in
functional pavement design [12]. Usually bitumen and normal aggregates are considered insulators.
The conductive asphalt mixture is achieved by adding conductive materials (such as carbon fiber,
graphite, carbon black, steel fiber, etc.) into common asphalt mixtures [13–15]. To investigate the effect
of pyrolytic carbon black on the electrothermal properties of bitumen, six carbon black contents (3%, 6%,
9%, 12%, 15%, and 18% by weight of neat bitumen) were involved in this study. The electrical resistivity
of different binders measured with the two-probe method is displayed in Figure 3. The results indicate
that when added relatively low contents of CBp, the electrical resistivity of CBp modified bitumen
(CMB) is close to that of neat asphalt binder, exhibiting an insulating behavior. As the content of CBp

increases, the electrical resistivity is reduced. A dramatic decline in the resistivity takes place after
a certain content of CBp (12 wt % in this study) has been added. Twelve weight percent is usually
regarded as the threshold as explained by the percolation theory [16]. After this percolation threshold,
when continuously increasing the content of graphite, the electrical resistivity decreases slowly. Based
on the graph, changes in the electrical resistivity under various CBp contents can be roughly divided
into three phases: (1) Insulated phase. CBp particles are so isolated that there is not a valid conductive
path formed for electrons within the bitumen sample. (2) Transition phase. More CBp particles start
to contact with each other and the valid conductive paths form. (3) Conductive phase. Occurs if the
insulated phase ends with sufficiently low resistivity [17].
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Similarly, the thermal conductivity of bitumen with different CBp contents was also measured and
is shown in Figure 4. It is obvious that the thermal conductivity of bitumen is increased continuously
by the addition of CBp. However, it shows a different pattern from the electrical resistivity curve.
At the initial stage with low contents of CBp, the thermal conductivity of CMB exhibits a linear increase
with the continuous addition of CBp. When the content of CBp is beyond 9 wt %, the increasing trend of
thermal conductivity is more significant. It is interesting to note that this transition point of CBp content
is similar to the content corresponding to the threshold value in the evolution of electrical resistivity.
This is because CBp particles begin to form conductive paths at ~9 wt %, and there is a change in the
conductive system from the dispersed system (bitumen) to the attached system (pyrolytic carbon black),
resulting in a rapid increase in thermal conductivity. However, the increase in thermal conductivity
occurs less rapidly than electrical conductivity. The reason for this phenomenon is the electrical
resistivity of CBp (0.472 Ω·cm) is much lower than that of bitumen (almost an insulator). Therefore,
most of the electric current flows through the formed conductive CBp paths instead of bitumen.
On the other hand, because the thermal conductivity of CBp is not significantly greater than that of
bitumen, heat flows not only through the formed conductive CBp paths, but also through the bitumen
itself. Consequently, the thermal conductivity of CMB is less influenced than electrical resistivity
by the exponential increase of the number of conductive paths [18]. In a summary, the enhanced
electrothermal properties of CMB make it a promising multifunctional binder in asphalt pavement,
such as snow melting, ice removing, energy harvesting, etc.
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Figure 4. Thermal conductivity of bitumen with different contents of pyrolytic carbon black.

3.2. Conventional Physical Properties

The physical properties, including softening point, penetration, and ductility, of CMB with
different CBp contents are shown in Figure 5. The softening point reflects the viscosity of bitumen.
Penetration indicates the degree of softness and consistency as well as the relative viscosity of bitumen.
Ductility evaluates the tensile deformation and flexibility of bitumen. The results show that penetration
and ductility values of CMB are all smaller than those of the neat bitumen, whereas the softening
points of CMB are greater than that of neat bitumen. The effects mentioned above are strengthened
with increasing contents of CBp. The above analyses demonstrate that CBp can improve on the
high-temperature properties of CMB. It maybe attributes to the unique properties of CBp, which has
high oil absorption capability and surface area. This eventually leads to the absorption of most
lightweight fractions of bitumen and hence stiffens it. In view of the consistent effects of CBp content
on the physical properties of bitumen, bitumen, with only three different CBp contents (CMB-6,
CMB-12, and CMB-18), was investigated in the further bitumen tests.
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Figure 5. Conventional physical properties of bitumen with different contents of pyrolytic carbon
black: (a) softening point; (b) penetration; and (c) ductility.

3.3. Rotational Viscosity

The flow characteristics of bituminous binders, which are crucial to the pumpability, mixability,
and workability, can be characterized by viscosity [19]. Figure 6 presents the results of unaged
binders obtained from rotational viscosity tests. As temperature increases from 135 to 165 ◦C,
the viscosities of all binders decrease accordingly. Moreover, the addition of CBp significantly increases
the binder viscosity. The more CBp content was added, the higher binder viscosity can be measured.
In the paving industry, the viscosity–temperature relationship is built to determine the equiviscous
temperature ranges for selecting suitable mixing and compaction temperatures for hot mix asphalt.
The recommended viscosity ranges for mixing and compaction temperatures are 0.17 ± 0.02 Pa·s
and 0.28 ± 0.03 Pa·s, respectively [20]. The viscosity values together with the determined mixing
and compaction temperatures from the temperature–viscosity curves in Figure 6 are summarized in
Table 3. With the increase of CBp content, the mixing and compaction temperatures of CMB should be
increased accordingly to ensure the mixability and workability. However, these temperature ranges
are still lower than that of the common polymer-modified bitumens.
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Figure 6. Rotational viscosity of bitumen with different contents of pyrolytic carbon black.

Table 3. Rotational viscosity values and determined mixing/compaction temperatures of different binders.

Binder Types Rotational Viscosity (Pa·s) Temperature Range (◦C)

135 ◦C 165 ◦C Mixing Compaction

Neat bitumen 0.39 0.05 147–150 139–143
CMB-6 0.61 0.07 152–155 145–148

CMB-12 0.84 0.11 156–160 149–152
CMB-18 1.21 0.15 162–166 155–158

3.4. Rheological Properties

The complex shear modulus and phase angle of different binders were obtained from dynamic
shear rheometer tests. Figure 7 shows the temperature dependence of complex modulus and phase
angle at 10 rad/s for each binder in a temperature range from 52 to 82 ◦C. The results in Figure 7a
indicate that the addition of CBp increases the complex modulus of bitumen, which can be attributed
to the stiffening effect of CBp facilitated by the absorption of light fractions of bitumen. Moreover,
the slope of the semilogarithmic curve of complex modulus versus temperature is gradually reduced
with the increase of CBp content. This means that CMB is less susceptible to temperature changes
than neat bitumen. It can be seen from Figure 7b that CBp decreases the phase angle of bitumen,
making the material more elastic. This indicates CMB may have a better rutting resistance since it
has more elastic recovery than the neat bitumen. However, the phase angles of the binders at the
testing temperature range are all higher than 80◦, which is still much higher than that of common
polymer-modified bitumen [21]. The limited elastic recovery performance of CMB was also confirmed
by the multiple stress creep recovery test.
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3.5. Multiple Stress Creep Recovery Test

MSCR tests were carried out to evaluate the rutting performance of binders at high temperatures.
The nonrecoverable creep compliance and percentage of recovery of different binders at the stress level
of 3.2 kPa are presented in Figure 8. The nonrecoverable creep compliance, Jnr, as opposed to the SHRP
criteria, G*/sin δ, provides a much better correlation to rutting [22]. Binders with lower Jnr values are
considered to have better rutting resistance. It is clear that the incorporation of CBp decreased the Jnr

values of bitumen, indicating improved high-temperature rutting resistance. In addition, the percentage of
recovery of bitumen was also increased due to the addition of CBp, but only to a limited extent. This result
coincides with the phase angle results from rheological tests.

To evaluate the aging properties, both short-term (RTFOT) and long-term aging (PAV) tests
were conducted on bitumen samples to simulate the aging process during the stages of mixing
and placement, and the stage of in service. The aged samples were subjected to the MSCR tests.
By comparing the nonrecoverable creep compliance of bitumen before and after aging, the following
aging index (AI) was defined.

AI =
Jnr, aged

Jnr,unaged
(3)
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where Jnr, aged is the nonrecoverable creep compliance of either RTFOT- or PAV-aged samples; Jnr,unaged
is the nonrecoverable creep compliance of fresh bitumen. It is obvious that binder having an AI close to
unity is assumed to be more aging resistant in this study. The aging indices of different binder samples
are shown in Figure 9. Both RTFOT and PAV aging made the binder stiffer, exhibiting lower Jnr values.
With the increase of CBp content, the aging indices of bitumen at both aging states are higher and closer
to unity. This obviously illustrates that the aging resistance of bitumen is significantly improved by the
CBp modification. This improvement is enhanced at higher contents of CBp. There are possibly two
reasons for the improved aging resistance of CMB. Firstly, the surface of CBp is rich in various active
functional groups that are more prone to react with oxygen than bitumen during the aging process.
This in turn delays the oxidation aging of bitumen itself. Secondly, the CBp is more compatible with the
maltenes which are also partly absorbed during the dispersion process. It also creates a boundary layer
(film) which is composed essentially of asphaltenes [23]. Since the aging of bitumen is mainly caused
by the depletion of maltenes and the creation of more polar asphaltene-like substances, the existence
of carbon black surrounded by asphaltene impedes the maltenes from aging. These two features of
CBp together contribute to improving the aging resistance of bitumen.Sustainability 2019, 11, x FOR PEER REVIEW 10 of 13 
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3.6. Hot-Temperature Storage Stability

To evaluate the storage stability of the samples, the stability index (SI) was developed by
considering the property difference between bitumen samples from different parts of the tube. The Jnr

values of the samples were used to calculate the SI in Equation (4).

SI =
|Jnr,t − Jnr,b|

Jnr,avg
(4)

where Jnr,t and Jnr,b are the nonrecoverable compliances of the sample from the top and bottom parts in
the tube, respectively. Jnr,avg is the averaged nonrecoverable compliance among the samples from the
top, middle, and bottom parts; if the binder is absolutely homogenous and storage stable, the unit-less
index SI should be zero. Therefore, a smaller SI value represents higher storage stability. Figure 10
shows the stability index of CMB with different CBp contents. With the increase of CBp content,
the stability index of CMB increases, indicating lower storage stability. The effects of CBp content on
the storage stability of CMB binders can be explained by the Stoke’s law [24]. This theory defines the
terminal velocity (vt), which is the velocity of the displacement of the spherical particles when the
gravity on the particles equals to the drag force (frictional force) on the particles in a Newtonian fluid
in Equation (5). The phase separation in modified bitumen is governed by the terminal velocity of the
dispersed phase (assumed as spherical particles) in a Newtonian fluid:

vt =
2
9

r2∆ρg
η

(5)

where r is the radius of the dispersed particle; ∆ρ is the difference of density between the particle
and Newtonian fluid medium; g is the gravitational acceleration; and η is the viscosity of the liquid
medium. For CMB binders, CBp particles are considered as the dispersed phase in the liquid bitumen
medium. According to Equation (5), the terminal velocity of the particles is proportional to the square
of the radius of dispersed particles and the density difference, and inversely related to the viscosity of
the liquid medium. In the case of CMB, CBp particles have a much higher density (1.871 g/cm3) than
bitumen (1.032 g/cm3) and, consequently, have the tendency to settle down due to the gravitational
force. One may argue that CMB with higher CBp content has a higher viscosity which creates larger
drag forces for the descending CBp particles. Therefore, CMB at high CBp content should be more
stable than at low CBp content. However, the terminal velocity in the Stoke’s law only describes the
speed of phase separation (or becoming unstable). It is not the driving force for phase separation to
happen. Therefore, after sufficient conditioning time in the tube test, CMB with high CBp content will
have more distinctions among the different parts of the tube. This is eventually reflected by the higher
stability index (less stable) in Figure 10.Sustainability 2019, 11, x FOR PEER REVIEW 12 of 13 
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4. Conclusions

From the various laboratory tests conducted on the pyrolytic carbon black modified bitumen
binders, it can be concluded that pyrolytic carbon black is a promising modifier for bitumen modification.
Specifically, it can enhance the electrothermal properties of bitumen, making the modified binder feasible
for multifunctional applications. The enhancement mechanisms of electrical and thermal conductivity of
bitumen by adding pyrolytic carbon black are different, resulting in different patterns in the evolution
curves of conductivity versus pyrolytic carbon black content. The modification by pyrolytic carbon black
increases the softening point and decreases penetration and ductility of the binder. Improved rheological
properties were observed on the CMB binders, whose complex shear moduli are increased and phase
angles are decreased. The temperature susceptibility is also reduced. The rutting resistance and aging
resistance of bitumen are also improved by the incorporation of pyrolytic carbon black based on the
MSCR test results.

Pyrolytic carbon black-modified bitumen binders have higher viscosities than neat bitumen,
which means the mixing and compaction temperature windows need to be adjusted accordingly.
The addition of pyrolytic carbon black into bitumen is detrimental to the storage stability of bitumen as
most of the particulate matter modified bitumen. Cautions should be taken to find a suitable content of
pyrolytic carbon black to ensure storage stability. Since the stiffening effect from modification usually
contradicts the thermal cracking resistance, the low-temperature performance of CMB should also be
addressed in the further studies. Future studies on the mixture level are recommended to examine the
modification effect of pyrolytic carbon black on the paving applications.
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