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Abstract: Cropping system models are widely employed to evaluate plant water requirements
and growth situations. However, these models rarely focus on growth studies of perennial
fruit trees. The aim of this study was to evaluate the performance of the WOFOST (WOrld
FOod STudies) model in simulating jujube fruit tree growth under different irrigation treatments.
The model was calibrated on data obtained from full irrigation treatments in 2016 and 2017.
The model was validated on four deficit percentages (60%, 70%, 80%, and 90%) and one full
irrigation treatment from 2016 to 2018. Calibrated R2 and RMSE values of simulated versus
measured soil moisture content, excluding samples on the day of irrigation and first day
after irrigation, reached 0.94 and 0.005 cm3 cm−3. The model reproduced growth dynamics
of the total biomass and leaf area index, with a validated R2 = 0.967 and RMSE = 0.915 t ha−1,
and R2 = 0.962 and RMSE = 0.160 m2 m−2, respectively. The model also showed good global
performance, with R2 = 0.86 and RMSE = 0.51 t ha−1, as well as good local agreement (R2 ≥ 0.8) and
prediction accuracy (RMSE≤ 0.62 t ha−1) for each growth season. Furthermore, 90% of full irrigation
can be recommended to achieve a balance between jujube yields and water savings (average decline
ratio of yield ≤ 3.8%).
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1. Introduction

Jujube (Zizyphus jujuba Miller) fruit is rich in vitamin C, amino acids, carbohydrates, and minerals,
and has been widely used in traditional foods, food additives, flavorings, and raw materials in
traditional Chinese medicine [1], as well as medicinal supplements [2]. Jujube trees are widely
cultivated in the subtropical and tropical regions of Asia, with approximately 3.25 million hectares in
China. The southern region of Xinjiang Uygur Autonomous Region has the highest output, of about
3.26 million tons, and supplies high quality jujube because of the large temperature difference and
sufficient light in this region. However, in this arid and warm-temperate region, average annual rainfall
ranges from 77 mm to 106 mm, and crop growth highly depends on irrigation. How to use water
resources effectively and how to implement precision agricultural irrigation are particularly important
for this water-deficient area, which are also important parts of sustainable agricultural production.

Crop growth models derived from mathematical descriptions have become more advanced. They
are widely applied in agricultural production management and societally relevant applications such

Sustainability 2019, 11, 1466; doi:10.3390/su11051466 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-3188-4772
http://www.mdpi.com/2071-1050/11/5/1466?type=check_update&version=1
http://dx.doi.org/10.3390/su11051466
http://www.mdpi.com/journal/sustainability


Sustainability 2019, 11, 1466 2 of 16

as climate change responses [3–8], crop yield predictions [9–13], and understanding crop responses in
field experimentation and the environment [14–16]. New applications for precision agriculture are also
expected with the development and improvement of such models [17]. Over the past decades, crop
models have been developed, and the prominent models are WOFOST (WOrld FOod STudies) [18],
DSSAT (Decision Support System for Agrotechnology Transfer) [19], EPIC (Environmental Policy
Integrated Climate) [20], STICS (Multidisciplinary simulator for standard crops) [21] and APSIM
(Agricultural Production Systems sIMulator) [22]. In addition, other models, such as SWAP (Soil, Water,
Atmosphere and Plant) [23], AquaCrop (Crop-water productivity model) [24] and CropSyst (Cropping
Systems Simulation Model) [25], are constantly being added for different crops and purposes.

The core of any crop growth model is that a set of equations are employed to estimate
biomass production from the captured carbon dioxide, solar radiation, and water, mainly including
carbon-driven (WOFOST), radiation-driven (EPIC and STICS), and water-driven (CropSyst and
AquaCrop) models [15]. Although the driving mechanism of several models is different, many models
can be used to perform growth simulations under water stress conditions by considering water balance
components, thereby accomplishing crop growth simulation and yield prediction [26–30], as well as
evaluating crop water requirements and implementing irrigation management [31–35]. In addition,
the water-driven AquaCrop model has been successfully employed to optimize fertigation strategies
for orange production, predict the yield of peach trees under different deficit percentages [36,37], and
evaluate the transpiration reductions of mature olive trees [38]. Scheduling regulated deficit irrigation
in a pear orchard is also implemented by the CropSyst model [39]. Certainly, calibration and validation
should be taken into account according to crop varieties, irrigation systems, and meteorological
environments [16,40,41] in the case of specific applications.

The WOFOST model has also been widely applied in the water-limited growth simulation of
annual crops by creating a soil water balance model that responds to the change of soil moisture
content [17], such as cotton, maize, winter wheat, rice, and sugar beet. However, few studies have
focused on using the WOFOST model to simulate the growth of fruit trees. The reason may be that
tree ages and tree shapes vary greatly in different planting areas, thereby resulting in initial total
dry weight and carbon dioxide assimilation parameters that are not easily determined. Whether the
WOFOST model can be employed for the growth simulation of perennial fruit trees presents a valuable
research objective, which may expand on the application of crop growth models in fruit tree production.
The aim of this study was to assess the performance of the WOFOST model in reproducing jujube
growth under different deficient irrigation treatments. Furthermore, simulated growth dynamics
of above-ground total biomass, leaf area index, soil moisture content, and harvestable yield were
evaluated and discussed based on detailed field experimental data from 2016 to 2018.

2. Materials and Methods

2.1. Site and Climate of Experimental Field

The experiments were conducted at two jujube orchards during the growing seasons of 2016,
2017, and 2018 in Alar, Southern Xinjiang (E 81◦13′, N 40◦35′). Jujube trees were planted in 2009 in a
sandy loam soil around 1–1.2 m deep over bedrock. The experimental fields were characterized by
a typical arid warm-temperate region, with a total annual rainfall of 106 mm, 98 mm, and 77 mm in
2016, 2017, and 2018, respectively, distributed mostly during summer. An average photoperiod was
about 15 hours from April to October, and average annual temperature ranged from 10.8 ◦C to 12.5 ◦C,
with a maximum daily temperature difference of 20 ◦C. Due to the excellent light and heat resources,
the quality of jujube fruit was higher in the region than others.

Climate data, including daily values of wind speed, solar radiation, photosynthetically active
radiation (PAR), air temperature, humidity, and precipitation, were measured at an automatic
weather station of the Alar Agricultural Irrigation Station, located about 500 meters away from
the experimental fields.
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2.2. Experimental Treatments

Jujube fruit trees (cultivar, jun jujube) were characterized by high quality fruit, high yields, and
drought resistance with about 6165 plants per hectare. During each jujube growing season (2016 to
2018), the fertilization amounts of converted pure nitrogen (N), phosphorus pentoxide (P2O5), and
potassium oxide (K2O) were 375, 240, and 300 kg ha−1, respectively. A first pour of the fertilizer was
spread by drip irrigation during the emergence and flowering periods (N: 50%, P2O5: 80%, and K2O:
70%), and the rest of the fertilizer was fertilized in the fruit growth period (N: 50%, P2O5: 20%, and
K2O: 30%). Pests and diseases were effectively controlled through standard management.

Irrigation experiments, with three replicates, included five treatments: full irrigation (375 mm,
D1), 90% of full irrigation supply (338 mm, D2), 80% (300 mm, D3), 70% (263 mm, D4), and 60%
(225 mm, D5). The full irrigation amount referred to an empirical value that was determined using
an spreadsheet irrigation management tool [42], which employed meteorological, soil, and jujube
parameters to evaluate water requirements. The 375 mm value was an empirical irrigation value
commonly used in the local area in prior years, which can be assumed to be rich in jujube fruit
growth during the main development period. Irrigation was carried out in ten portions during the
emergence, flowering, and fruit development periods. During the early emergence period, water and
other nutrients were thoroughly supplied to make sure there was normal emergence.

A small canopy permanent line tree shape was implemented in all field experimental plots to
avoid the effect of tree shape on the simulation results.

2.3. Data Measurement and Collection

Phenological development stages, including the emergence date, end date of flowering, and
maturity, were observed from 2016 to 2018.

According to the requirements of the WOFOST model, the biomass indicators to be measured
mainly included the initial total crop dry weight (TDWI), above-ground biomass, and leaf area index.
Jujube trees differed from annual crops, and if the stems of the previous year were considered, they
could lead to exaggerated TDWI values. In this research, TDWI at emergence was redefined as the
weight of the initial new organs (initial buds and roots), which was calculated by measuring the weight
of buds and roots. Leaf area index (LAI) and total above-ground biomass (TAGP, living leaves, stems,
and storage organ weight) during the growth period were measured approximately ten times at each
plot. At each test, ten trees were selected, and one-quarter of the stems, leaves, and fruits of each tree
was brought back to the laboratory, dried to a constant weight, and weighed. The yield of the sampled
loss was finally added to the final yield at each point (almost 411 trees per spot). LAI and extinction
coefficient for diffuse visible light were measured by using a fruit tree canopy analyzer (TOP-1300,
Zhejiang Top Cloud-agri Technology CO., LTD., Hangzhou, China, Figure 1a), which was corrected by
standard measurement methods. The depth and weight of the root were sampled and measured by
digging a 90-degree profile (Figure 1b). CO2 assimilation parameters including light-use efficiency,
single leaf and maximum leaf CO2 assimilation rate were obtained by fitted light response curves
based on net photosynthetic rate data measured using an LI-COR 6400XT meter.

The soil physical properties, including average volumetric water content at field capacity
(0.194 cm3 cm−3), saturated soil moisture content (0.39 cm3 cm−3), average bulk density (1.523 g cm−3),
hydraulic conductivity, and water retention curves, were measured before emergence each year.
The soil moisture content at different depths was automatically monitored with two-hour intervals by
the corrected soil moisture automatic monitoring meters (HOBO H21-002, United States) that were
installed at 0, 20, 40, 60, and 80 cm, respectively.
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Figure 1. (a) Leaf area index (LAI) and canopy parameter measurement; (b) Depth and weight of
roots measurement.

The jujube yield data for five irrigation gradients from 2016 to 2018 are shown in Table 1, with
standard deviations ranging from 0.866 to 1.14 t ha−1, which was beneficial for model evaluation.
The highest average yield occurred in 2017, then 2018, and finally 2016.

Table 1. Yield data for three years.

Year
Yield for Different Irrigation Degree (t ha−1)

D1 D2 D3 D4 D5 Average SD

2016 6.380 5.733 6.149 4.716 4.115 6.380 0.866
2017 9.155 8.738 7.490 7.398 5.918 9.155 1.140
2018 7.767 6.981 7.259 5.409 5.039 7.767 1.071

D1: full irrigation; D2: 90% of full irrigation supply; D3: 80% of full irrigation; D4: 70% of full irrigation; D5: 60% of
full irrigation, SD: Standard Deviation.

2.4. Model Calibration and Validation Process

Jujube parameters were calibrated for the full irrigation treatment with the data from 2016 and
2017 according to the principle of average correlation and error minimization, and the results in 2018
were used to validate TAGP and LAI growth dynamics. The soil water balance module was calibrated
for the full irrigation treatment in 2017 based on daily monitoring data of soil moisture content.

The calibration process of the WOFOST model was suggested in De Wit and Wolf [43]. First,
the length of the growth period and phenology would be effectively simulated for a reliable biomass
and yield prediction, which was determined by the effective accumulated temperature method [18].
TSUMEM (temperature sum from sowing to emergence), TSUM1 (temperature sum from emergence
to flowering), and TSUM2 (temperature sum from flowing to maturity) were calibrated by daily
average temperature and emergence, flowering, and maturity date from years 2016 and 2017. Second,
light interception and potential biomass production were mainly determined by leaf-related and CO2

assimilation parameters. Specific leaf area (SLATB), LAI at emergence (LAIEM), and a maximum
relative increase in LAI (RGRLAI) were calibrated by the measured TAGP and LAI results, and CO2

assimilation parameters were calculated with photosynthesis light-response curves. Concurrently, the
assimilation distribution between crop organs was determined in dependence of the crop development
stages and elaboration of experimental biomass data. Finally, the degree of drought stress and the
resulting reductions in transpiration rate and photosynthesis were determined by the soil moisture
content in the root zone and the water stress correction factor [15].
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The model evaluations were based on the comparison between simulated and observed data for
all treatments in three years. The agreement between measured and simulated yield was quantified
using a coefficient of determination (R2). The root mean square error (RMSE), the mean absolute error
(MAE), and the mean bias error (MBE) were used to evaluate prediction accuracy. R2 can give the
percentage of samples that can be interpreted by the model to all samples. The RMSE can show a
weighted change in the error (residual) between the predicted and actual values. MAE and MBE were
mainly used to further analyze the simulation performance for different years. MAE can give the
most intuitive and clear indicator for the average yield error magnitude. MBE can be used to evaluate
whether the model overestimated or underestimated actual yield and can also express the uniformity
of the error distribution.

Values were calculated by the following equations:

R2 = 1− ∑n
i = 1(yi − ỹi)

2

∑n
i = 1(yi − yi )

2 (1)

RMSE =

√
∑n

i = 1(ỹi − yi)
2

n
(2)

MAE =
n

∑
i = 1

∣∣yi − ỹi
∣∣ (3)

MBE =
n

∑
i = 1

(yi − ỹi) (4)

where ỹi was the simulated value based on the model, yi was the measured value, yi was the mean of
the measured values, and n was the number of samples.

3. Results and Discussion

3.1. Model Calibration and Validation under Full Irrigation

The calibrated jujube parameters are presented in Table 2. These parameters were obtained in
the following ways: with measured data, with estimated values from the available information and
observed data, from calibrated values based on field-measured data, and from default average values
or fine-tuning values around default data.

Table 2. Calibrated model parameters.

Parameter Description Value Units Source

*Emergence
TBASEM lower threshold temperature emergence 10 ◦C e
TEFFMX max effective temperature emergence 30 ◦C e
TSUMEM temperature sum from sowing to emergence 230 ◦C m-c

*Phenology parameter
TSUM1 temperature sum from emergence to anthesis 967 ◦C d−1 m-c
TSUM2 temperature sum from anthesis to maturity 960 ◦C d−1 m-c

DTSMTB0 daily increase in temperature sum as a function of average
at = 0 ◦C 0.00 ◦C d−1 e

DTSMTB100 daily increase in temperature sum as a function of average
at = 10 ◦C 0 ◦C d−1 e

DTSMTB355 daily increase in temperature sum as a function of average
at = 35.5 ◦C 25.5 ◦C d−1 e

DTSMTB400 daily increase in temperature sum as a function of average
at = 40 ◦C 25.5 ◦C d−1 e
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Table 2. Cont.

Parameter Description Value Units Source

*Initial parameters
TDWI Redefine initial total emergence dry weight 15.1/17.2/19.4 kg ha−1 m
LAIEM leaf area index at emergence 0.0007 ha ha−1 d
RGRLAI maximum relative increase in LAI 0.05 ha ha−1 d−1 d

*Green area
SLATB000 specific leaf area when DVS = 0 0.00165 ha kg−1 m-c
SLATB55 specific leaf area when DVS = 0.55 0.0013 ha kg−1 m-c
SLATB100 specific leaf area when DVS = 1 0.0013 ha kg−1 m-c
SLATB200 specific leaf area when DVS = 2 0.0014 ha kg−1 m-c
SPAN life span of leaves growing at 35 degrees Celsius 60 [d] e
TBASE lower threshold temp. for ageing of leaves 10 ◦C e

*CO2 assimilation
KDIFTB00 extinction coefficient for diffuse visible light at DVS = 0 0.8 \ m-c
KDIFTB200 extinction coefficient for diffuse visible light at DVS = 2 0.8 \ m-c
EFFTB19.5 light-use efficiency single leaf at average temp. = Celsius 0.495 kg ha−1 hr−1 J−1 m2 s m-c
EFFTB355 light-use efficiency single leaf at average temp. = Celsius 0.495 kg ha−1 hr−1 J−1 m2 s m-c
AMAXTB00 maximum leaf CO2 assimilation. Rate at DVS = 0 39.0 kg ha−1 hr−1 m-c
AMAXTB170 maximum leaf CO2 assimilation. Rate at DVS = 1.7 39.0 kg ha−1 hr−1 m-c
AMAXTB200 maximum leaf CO2 assimilation. Rate at DVS = 2 20.0 kg ha−1 hr−1 m-c
TMPFTB10 reduction factor of AMAX at 10 ◦C 0 \ d
TMPFTB195 reduction factor of AMAX at 19.5 ◦C 1 \ d
TMPFTB355 reduction factor of AMAX at 35.5 ◦C 1 \ d

*Conversion of assimilates into biomass
CVL efficiency of conversion into leaves 0.732 kg kg−1 m-c
CVO efficiency of conversion into storage organs 0.780 kg kg−1 m-c
CVR efficiency of conversion into roots 0.690 kg kg−1 m-c
CVS efficiency of conversion into stems 0.751 kg kg−1 m-c

* maintenance respiration

Q10 Relative increase in respiration rate per 10 ◦C temperature
increase 2 kg CH2O kg−1 d−1 d

RML Relative maintenance respiration rate of leaves 0.03 kg CH2O kg−1 d−1 d
RMO Relative maintenance respiration rate of storage organs 0.01 kg CH2O kg−1 d−1 d-c
RMR Relative maintenance respiration rate of roots 0.01 kg CH2O kg−1 d−1 d
RMS Relative maintenance respiration rate of stems 0.015 kg CH2O kg−1 d−1 d-c

*Dartitioning parameters
FRTB00 fraction of above-ground dry matter to roots at DVS = 0 0.3 kg kg−1 m-c
FRTB154 fraction of above-ground dry matter to roots at DVS = 1.54 0.0 kg kg−1 m-c
FLTB00 fraction of above-ground dry matter to leaves at DVS = 0 0.67 kg kg−1 m-c
FLTB012 fraction of above-ground dry matter to leaves at DVS = 0.12 0.31 kg kg−1 m-c
FLTB022 fraction of above-ground dry matter to leaves at DVS = 0.22 0.41 kg kg−1 m-c
FLTB032 fraction of above-ground dry matter to leaves at DVS = 0.32 0.55 kg kg−1 m-c
FLTB051 fraction of above-ground dry matter to leaves at DVS = 0.51 0.4 kg kg−1 m-c
FLTB097 fraction of above-ground dry matter to leaves at DVS = 0.97 0.15 kg kg−1 m-c
FLTB100 fraction of above-ground dry matter to leaves at DVS = 1.00 0.1 kg kg−1 m-c
FLTB145 fraction of above-ground dry matter to leaves at DVS = 1.45 0 kg kg−1 m-c
FLTB200 fraction of above-ground dry matter to leaves at DVS = 2.00 0 kg kg−1 m-c
FSTB00 fraction of above-ground dry matter to stems at DVS = 0 0.33 kg kg−1 m-c
FSTB012 fraction of above-ground dry matter to stems at DVS = 0.12 0.69 kg kg−1 m-c
FSTB022 fraction of above-ground dry matter to stems at DVS = 0.22 0.59 kg kg−1 m-c
FSTB032 fraction of above-ground dry matter to stems at DVS = 0.32 0.45 kg kg−1 m-c
FSTB051 fraction of above-ground dry matter to stems at DVS = 0.51 0.6 kg kg−1 m-c
FSTB097 fraction of above-ground dry matter to stems at DVS = 0.97 0.85 kg kg−1 m-c
FSTB100 fraction of above-ground dry matter to stems at DVS = 1.00 0.43 kg kg−1 m-c
FSTB145 fraction of above-ground dry matter to stems at DVS = 1.45 0.2 kg kg−1 m-c
FSTB200 fraction of above-ground dry matter to stems at DVS = 2.00 0 kg kg−1 m-c

FOTB00 fraction of above-ground dry matter to storage organs at
DVS = 0 0 kg kg−1 m-c

FOTB012 fraction of above-ground dry matter to storage organs at
DVS = 0.12 0 kg kg−1 m-c

FOTB022 fraction of above-ground dry matter to storage organs at
DVS = 0.22 0 kg kg−1 m-c

FOTB032 fraction of above-ground dry matter to storage organs at
DVS = 0.32 0 kg kg−1 m-c

FOTB051 fraction of above-ground dry matter to storage organs at
DVS = 0.51 0 kg kg−1 m-c
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Table 2. Cont.

Parameter Description Value Units Source

FOTB097 fraction of above-ground dry matter to storage organs at
DVS = 0.97 0 kg kg−1 m-c

FOTB100 fraction of above-ground dry matter to storage organs at
DVS = 1.00 0.47 kg kg−1 m-c

FOTB145 fraction of above-ground dry matter to storage organs at
DVS = 1.45 0.8 kg kg−1 m-c

FOTB164 fraction of above-ground dry matter to storage organs at
DVS = 1.64 1.0 kg kg−1 m-c

FOTB200 fraction of above-ground dry matter to storage organs at
DVS = 2.00 1 kg kg−1 m-c

*Death rates
RDRSTB00 Relative death rate of stems at DVS = 0 0 \ e
RDRSTB200 Relative death rate of stems at DVS = 2.0 0 \ e

Water use and soil parameters
CFET correction factor transpiration rate 1.02 - d-c
DEPNR correction factor for crop water stress sensitivity 1.5 - c
RDI initial rooting depth 10 cm d
RRI maximum daily increase in rooting depth 1.2 cm d−1 e
RDMCR maximum rooting depth 120 cm m
SMW soil moisture content at wilting point 0.0449 cm3 cm−3 e
SMFCF soil moisture content at field capacity 0.198 cm3 cm−3 m-c
SM0 soil moisture content at saturation 0.39 cm3 cm−3 m
CRAIRC critical soil air content for aeration 0.075 cm3 cm−3 d

d, default; e, estimated; m, measured; m–c, calibrated on the basis of the measured data; d–c, fine tuning around
default data. TDWI = 15.1 kg ha−1 for 2016, 17.2 kg ha−1 for 2017, and 19.4 kg ha−1 for 2018, respectively, with an
increase in tree age.

First, corrected values of TSUMEM, TSUM1 and TSUM2 were 230, 967, and 960 ◦C, respectively
(Table 2), which were calculated by the average temperatures and developmental stages from 2016
and 2017. Main weather parameters (average air temperature, AT; average irradiation, AI; and total
precipitation, TP) are given in Table 3. Furthermore, the highest average daily radiation amount
occurred in 2017, followed by 2018, and finally 2016. During the whole growth season, there was a
small deviation in total rainfall for three years, ranging from 72.7 to 96.8 mm. However, in 2018, 64%
of precipitation occurred between emergence and flowering, while in 2016 and 2017 most precipitation
fell after flowering.

Table 3. Phenological phases and main weather characteristics.

Phase
AT (◦C) AI (MJ m−2 d−1)) TP (mm)

2016 2017 2018 2016 2017 2018 2016 2017 2018

Beginning-Emergence 16.4 15.7 15.5 12.4 15.1 11.8 1 6 1
Emergence-flowering 23.9 23.9 23.1 19.8 22.3 20.3 19 15 46
Flowering-maturity 23.2 21.8 23.2 18.1 17.8 18.6 76 61 26

Whole season 23.6 22.9 23.1 18.9 20.1 19.5 97 83 73

AT: daily average air temperature; AI: daily average irradiation; TP: total precipitation; Whole season: the length of
from emergence to maturity. Harvested date: 293rd day for the year 2016; 302nd for the year 2017; 301st for the
year 2018.

The calibration performance was first evaluated by the simulated results of the phenological
development stages, shown in Table 4. Validated results indicated the differences in simulating the
lengths of growth duration, emergence, flowering, and maturity date against observations were −1,
−2, −3, and −3 days, respectively. The accuracy was the highest in 2016, followed by 2017 and 2018
based on emergence, flowering, and maturity end date. Although the flowering and maturity dates
were overestimated in 2017 and underestimated in 2018, with the range of 2 to 4 days, simulating
the length from emergence to flowering and from flowering to maturity suggested a small error
ranging from 1 to 2 days. In addition, jujube phenology can be expected to be further corrected by
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introducing thermal requirements for flowering and maturity, which have been successfully used in
winter wheat [44].

Table 4. Calibration and validation results for phenological development stage.

Phase
End Day

2016 Calibration 2017 Calibration 2018 Validation

Ob Si Diff Ob Si Dif Ob Si Diff

Beginning–Emergence 117 116 −1 121 121 0 120 118 −2
Emergence–flowering 187 186 −1 190 192 +2 196 193 −3
Flowering–maturity 260 260 0 271 275 +4 267 264 −3

Whole season 143 144 +1 150 154 +4 147 146 −1

Ob: observation; Si: simulation; Diff: difference between simulated and observed values.

Second, crop growth should not only accurately reflect the developmental stage of phenology,
but also simulate growth dynamics of biomass in different organs, especially the total above-ground
biomass and leaf area index. According to the phenological development stage, WOFOST distributes
the biomass produced to different organs [43]. Calibration and validation results for TAGP in the
case of full irrigation in 2016, 2017, and 2018, based on calibrated parameters in Table 2, were shown
in Figure 2. Simulated TAGP values agreed with measured values, with a calibrated R2 of 0.963 in
2016 and 0.978 in 2017, and a validated R2 of 0.967 in 2018. The model also showed great accuracy
in simulating TAGP values (calibrated RMSE = 0.851 t ha−1 for year 2016 and 0.811 t ha−1 for year
2017, and validated RMSE = 0.915 t ha−1 for year 2018). The model simulated almost perfectly the final
total biomass obtained in 2017 (15.1 t ha−1) with a slight overestimation of 1.5%, but overestimated
about 8% in 2016 and 2018. The last three observation points in 2018 were overestimated, resulting
in a slightly high deviation (18%, 9%, and 8%, respectively). But the values of predicted final total
biomass and yield error were acceptable, which were 8% and 2.8%, respectively. In addition, the yield
simulated by WOFOST under the full irrigation treatment was 6.53, 8.92, and 7.55 t ha−1 for 2016,
2017, and 2018, respectively, whereas the measured yield was 6.38, 9.16, and 7.77 t ha−1, respectively.
The model showed a relatively good performance for predicting final yield.

Within the calibration and validation datasets, the model succeeded in reproducing a time series
of LAI variability during the main growth period in these three years, demonstrated by values
of the agreement and error metrics (R2 = 0.933 and RMSE = 0.144 m2 m−2 for 2016, R2 = 0.979
and RMSE = 0.120 m2 m−2 for 2017, and R2 = 0.962 and RMSE = 0.160 m2 m−2 for 2018) (Figure 2).
Moreover, time trends of the simulated LAI were in agreement with the actual growth parameters
of jujube trees. The peak of the LAI occurred during the fruit-filling period, with a maximum
simulated value of 1.57, 2.11, and 2.23 m2 m−2 for 2016, 2017, and 2018, respectively, and with a
maximum measured value of 1.69, 2.16, and 2.31 m2 m−2, respectively. Although the model slightly
underestimated the maximum LAI, the total prediction accuracy was well presented.
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Finally, the WOFOST model accomplished water-limited production by simulating daily soil
moisture content, which was the combination of irrigation and rainfall, soil water uptake, soil
evaporation, and crop transpiration [45]. Observed and simulated daily soil water content in
the case of full irrigation treatment in 2017 are presented in Figure 3, showing R2 = 0.79 and
RMSE = 0.01 cm3 cm−3 achieved for all observations. Furthermore, R2 and RMSE, excluding sample
points on the day of irrigation and first day after irrigation, can reach 0.94 and 0.005 cm3 cm−3, showing
good moisture content simulation performance. The soil moisture content on the day of irrigation
and first day after irrigation could not be simulated well, especially the first and second irrigation
times, with a maximum deviation of 0.064 and 0.056 cm3 cm−3, respectively. The reason may be
that the drip irrigation was performed at the experimental site so the actual soil moisture content
changed slowly. While the WOFOST model employed the original, simple tipping bucket soil water
balance approach [18], it may not respond to the effect of irrigation patterns on soil moisture content
changes. A multi-layer soil-water-atmosphere-plant (SWAP) parameter can be integrated into the
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WOFOST model to successfully model the growth of annual crops and grasslands [46]. However,
Rallo et al. [47] compared the performances of SWAP and FAO (Food and Agriculture Organization)
Agro-Hydrological models in simulating the soil water contents in a grape garden, with an R2 of
0.69 and 0.74, RMSE of 0.0209 and 0.0214, respectively, showing slightly lower accuracy than our
research results. Eitzinger et al. [40] found that CERES, SWAP, and WOFOST showed almost similar
performances in simulating total soil water content of winter wheat and spring barley, ranging from
2.32%–6.77% for wheat and 0.71%–4.67% for barley. Therefore, the performance of different models
in simulating the soil moisture content of jujube gardens shall be validated based on a large number
of experiments. It may vary with fruit tree variety and soil structure. Another reason may be that,
during the emergence phase, less water consumed by jujube transpiration led to high simulation
values. Moreover, the mean absolute error (MAE) and the mean bias error (MBE) of simulated soil
water content was expressed as 0.006 cm3 cm−3 and 0.0006 cm3 cm−3 and was slightly higher than the
measured values.
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The total soil water content was averaged over the whole soil depth (0–80 cm).

3.2. Model Evaluation under Different Irrigation Regimes

The yield data achieved from five irrigation treatments in 2016, 2017, and 2018 (Table 1) were
employed to validate the global performance of the model. The model showed a great global accuracy
in predicting yield, with good R2 = 0.86 and RMSE = 0.51 t ha−1 values (Figure 4a). In total, 60% of
the samples were underestimated. Moreover, the performance was evaluated by plotting the yield
prediction error against the total irrigation amount during the main growth period (Figure 4b). There
was a reasonable error of ±0.7 t ha−1 for 14 samples, and 75% of the samples displayed a prediction
error of less than 0.5 t ha−1, with the exception of the D3 treatment in 2017, which was markedly
underestimated with an error of 1.1 t ha−1. The mean absolute error (MAE) under D1 treatment
expressed a minimum of 0.2 t ha−1, followed by D2 and D4 irrigation degrees, and finally D3 and D5.
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Verification results for different growing seasons are shown in Table 5. The comparison of
simulated yield against actual yield showed good local agreement for each growth season (R2 ≥ 0.8)
and prediction accuracy (RMSE ≤ 0.62 t ha−1). MAE ranged from 0.33 to 0.62 t ha−1, showing a
slightly higher value in 2017. The reason may be that D3 processing in 2017 had a high yield prediction
bias, which in turn led to the highest RMSE, MAE, and MBE values.

Table 5. Simulation performance for different years.

Year R2 RMSE(t ha−) MAE(t ha−) MBE(t ha−)

2016 0.93 0.41 0.34 −0.02
2017 0.80 0.62 0.62 −0.52
2018 0.90 0.31 0.33 +0.08

Simulated days of drought stress under different irrigation treatments increased with the decrease
of irrigation amount during each growth season correspondingly (Figure 5). The ratio of water stress
days to the length of the growth period in 2017 was lower than 2016 and 2018, ranging from 6%
to 41% for D1 to D5 treatments in 2017, 8% to 67% in 2016, and 14% to 43% in 2018. The main
reason was that the average temperature in 2017 was lower than 2016 and 2018, which led to a low
average evapotranspiration. In addition, during the period from emergence to flowering, the rainfall
in 2018 was higher than 2016 and 2017, resulting in a relatively small number of water stress days.
Nevertheless, during the stages of flowering to maturity, relatively low rainfalls slightly produced
more days of water stress. The model responded well to the effects of temperature and rainfall on the
number of days of water stress.
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The prediction yields slowly declined from D1 to D3, with a range from 1.2% to 10% (Figure 6).
For D4 and D5 treatments, reduction ratios ranged from 23% to 47%, except for D4 treatment in 2017
(11.2%). In the case of the same irrigation treatments, the rate of yield decline from 2017 was also
significantly lower than the other two years. One reason may be that the spring irrigation volume on
the 115th day of 2017 was 50 mm higher than 2016 and 2018, which resulted in a significant decrease
in the number of water stress days during the emergence period. Another reason, as mentioned
before, may be that the average temperature of flowering to maturity was about 1.4 ◦C lower in 2017
than in 2016 and 2018, thereby resulting in fewer days of water stress and a long fruit-filling period.
The research results also suggested that 80% of full irrigation can be a critical irrigation amount (decline
ratio ≤ 10%), and 90% of full irrigation might achieve a balance between guaranteed production and
water conservation (average decline ratio ≤ 3.8%).

Sustainability 2019, 11, x FOR PEER REVIEW 12 of 15 

The prediction yields slowly declined from D1 to D3, with a range from 1.2% to 10% (Figure 6). 

For D4 and D5 treatments, reduction ratios ranged from 23% to 47%, except for D4 treatment in 

2017 (11.2%). In the case of the same irrigation treatments, the rate of yield decline from 2017 was 

also significantly lower than the other two years. One reason may be that the spring irrigation 

volume on the 115th day of 2017 was 50 mm higher than 2016 and 2018, which resulted in a 

significant decrease in the number of water stress days during the emergence period. Another 

reason, as mentioned before, may be that the average temperature of flowering to maturity was 

about 1.4 °C lower in 2017 than in 2016 and 2018, thereby resulting in fewer days of water stress 

and a long fruit-filling period. The research results also suggested that 80% of full irrigation can be a 

critical irrigation amount (decline ratio ≤ 10%), and 90% of full irrigation might achieve a balance 

between guaranteed production and water conservation (average decline ratio ≤3.8%). 

 

Figure 6. The simulation yield decline rate of different irrigation treatments in three years. 

In this research, WOFOST was confirmed to hold confidence in estimating water-limited 

production for jujube fruit trees. Previous research has also proved that the AquaCrop model 

showed good yield prediction ability for peach trees under water stress [37], with the index of 

agreement higher than 0.867 and the correlation coefficient higher than 0.825, respectively. Total 

yield compared with RDI75 (75% of full irrigation) treatment was decreased by 32%. It was almost in 

line with our research results—that the yield was significantly reduced when the irrigation volume 

dropped to 70% of full irrigation. Marsal and Stöckle found that the CropSyst model can be used for 

scheduling regulated deficit irrigation for pear trees, with a determination coefficient of 0.85 for 

transpiration [39]. Rallo et al. [38] employed the AQUACROP model to evaluate the transpiration 

reductions of mature olive trees, showing a correlation coefficient (r) of 0.9 and an RMSE of 0.14 

between the crop transpiration reduction coefficient (𝐾𝑠) and function of the relative depletion (𝐷𝑟𝑒𝑙) 

for predawn leaf water potential (PLWP), and r = 0.86 and RMSE = 0.14 for midday stem water 

potential (MSWP). Moreover, there may be certain differences in the performance of the models 

depending on the crop varieties, irrigation systems, and purposes. Todorovic et al. [15] found that 

the biomass growth simulation for sunflowers by WOFOST was superior to AquaCrop and 

CropSyst under rain-fed and regulated deficit irrigation. Nevertheless, both AquaCrop and 

CropSyst performed well under slight-to-moderate water stress conditions. Therefore, the model 

should be chosen according to crop varieties, irrigation modes, and purposes, and calibrated and 

validated based on a large number of detailed experimental data. 

In order to confirm whether the WOFOST model can scientifically respond to the growth of 

jujube trees with different irrigation treatments, the same full irrigation amount was adopted in 

three years, which was also widely used in the local area. Figure 5 also shows that the jujube trees 

under full irrigation were still under water stress for several days per year. Moreover, there were 

deviations in the time and number of days under water stress in different years. This also indicated 

that crop water requirements were greatly affected by temperature and crop phenology. The full 

Figure 6. The simulation yield decline rate of different irrigation treatments in three years.

In this research, WOFOST was confirmed to hold confidence in estimating water-limited
production for jujube fruit trees. Previous research has also proved that the AquaCrop model showed
good yield prediction ability for peach trees under water stress [37], with the index of agreement
higher than 0.867 and the correlation coefficient higher than 0.825, respectively. Total yield compared
with RDI75 (75% of full irrigation) treatment was decreased by 32%. It was almost in line with our
research results—that the yield was significantly reduced when the irrigation volume dropped to
70% of full irrigation. Marsal and Stöckle found that the CropSyst model can be used for scheduling
regulated deficit irrigation for pear trees, with a determination coefficient of 0.85 for transpiration [39].
Rallo et al. [38] employed the AQUACROP model to evaluate the transpiration reductions of mature
olive trees, showing a correlation coefficient (r) of 0.9 and an RMSE of 0.14 between the crop
transpiration reduction coefficient (Ks) and function of the relative depletion (Drel) for predawn
leaf water potential (PLWP), and r = 0.86 and RMSE = 0.14 for midday stem water potential (MSWP).
Moreover, there may be certain differences in the performance of the models depending on the crop
varieties, irrigation systems, and purposes. Todorovic et al. [15] found that the biomass growth
simulation for sunflowers by WOFOST was superior to AquaCrop and CropSyst under rain-fed
and regulated deficit irrigation. Nevertheless, both AquaCrop and CropSyst performed well under
slight-to-moderate water stress conditions. Therefore, the model should be chosen according to crop
varieties, irrigation modes, and purposes, and calibrated and validated based on a large number of
detailed experimental data.

In order to confirm whether the WOFOST model can scientifically respond to the growth of jujube
trees with different irrigation treatments, the same full irrigation amount was adopted in three years,
which was also widely used in the local area. Figure 5 also shows that the jujube trees under full
irrigation were still under water stress for several days per year. Moreover, there were deviations in
the time and number of days under water stress in different years. This also indicated that crop water
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requirements were greatly affected by temperature and crop phenology. The full irrigation schedule,
by referring to an excel-based irrigation management method [42], is expected to be adjusted and
validated by the detailed experiments.

In addition, as mentioned above, the biggest difference between perennial fruit trees and annual
crops is the effect of tree age and tree shape on the initial dry weight and canopy structure, which leads
to significant deviations of the initial dry weight (TDWI) and CO2 assimilation parameters of fruit trees
in different regions. Considering the leaf area index (LAI) can respond well to these parameters [18],
a time series of reliable LAI acquired by remote sensing images could also be used to optimize TDWI
and CO2 assimilation parameters to solve this problem. Then, the model could be expected to be
applied to fruit tree growth simulations at the regional scale.

4. Conclusions

Research results showed that the calibrated WOFOST model can reasonably simulate the growth
dynamics of TAGP and LAI for jujube fruit trees, as well as soil moisture content. Nevertheless,
the model cannot accurately simulate the soil moisture content on the day of irrigation and first day
after irrigation, with a relatively high deviation. In addition, the model showed a greater global
accuracy in predicting yield under different irrigation treatments, with good R2 and RMSE values.
There was a relatively small deviation for most of the irrigation treatments, with the exception of
the 80% treatment of full irrigation in 2017. The ratio of water stress days to the length of growth
period in 2017 was lower than 2016 and 2018, which showed a good temperature response. The results
also suggested that the water requirement for jujube production should be no less than 80% of full
irrigation, and 90% of the full irrigation can be recommended to achieve a balance between production
and water savings. Further analysis of soil moisture simulation results at different tree ages or the use
of more elaborate experimental data can also be expected to improve the accuracy of the simulation.
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