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Abstract: Due to high mechanical inertia and rapid variations in wind speed over time, at variable
wind speeds, the problem of operation in the optimal energetic area becomes complex and in due
time it is not always solvable. No work has been found that analyzes the energy-optimal operation
of a wind system operating at variable wind speeds over time and that considers the variation of
the wind speed over time. In this paper, we take into account the evolution of wind speed over
time and its measurement with a low-power turbine, which operates with no load at the mechanical
angular velocity ωMAX. The optimal velocity is calculated. The energy that is captured by the wind
turbine significantly depends on the mechanical angular velocity. In order to perform a function in
the maximum power point (MPP) power point area, the load on the electric generator is changed,
and the optimum mechanical velocity is estimated, ωOPTIM, knowing that the ratio ωOPTIM/ωMAX
does not depend on the time variation of the wind speed.

Keywords: wind system; variable wind speeds; maximum power point; power; mechanical inertia;
motion equation; mathematical model of wind turbine; maximum energy; maximum power point
operation; optimum mechanical angular velocity

1. Introduction

In the literature [1–12], the operation of the wind turbine (WT) in the maximum energy area is
studied at a constant wind speed; using various mathematical models, data from the manufacturing
company and/or obtained in laboratory conditions, which are quite different from those in real
conditions operation [13–15]. For this reason, the electrical energy obtained is less than the maximum
value that was obtained in a maximum power point (MPP) operation, at optimum mechanical angular
velocity (MAV), ωOPTIM.

At variable wind speeds over time, the problem of operation in the MPP area becomes complex
and not always solvable in due time due to high mechanical inertia and rapid variations in wind speed
over time.
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The WT power characteristic, i.e., the function PWT(ω), at a certain constant velocity in time,
shows a maximum at ωOPTIM.

The optimal energy is at the velocity ωOPTIM, where the power captured by the WT is the
maximum, the MPP point on the power characteristic.

Important points on the WT power curve are:

- maximum power point—MPP–with MAV—ωOPTIM; and,
- null power point with maximum MAV—ωMAX.

The correct determination of these points, in real operating conditions, assures the operation in
the MPP area.

At variable wind speeds between VMIN and VMAX, the WT power takes values in the hash area of
Figure 1 between:

PWT-MAX—the power at VMAX
and
PWT-MIN—the power at VMIN
The power at permanent magnets synchronous generator (PMSG) takes values between PG-MAX

and PG-MIN, the green hazel area of Figure 1.
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PMSG power oscillations are much lower due to the high EOLIAN ELECTROENERGY SYSTEM
(EES) equivalent moment of inertia. The equivalent moment of inertia attenuates PMSG’s power
oscillations from the WT as a shock absorber.

In the present paper, the results that were obtained by simulations are based on the usual
mathematical models of WT and PMSG.

2. Mathematical Models

The simulations that presented in the paper are based on the classical mathematical models of
WT and PMSG [16–19].
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2.1. The Mathematical Model of WT, (MM-WT)

We will use a classical turbine model [19], which allows for the estimation of the reference angular
velocity ωref. The mathematical model of the WT also allows for the calculation of the optimal velocity,
so the captured energy will be a maximum one.

The power given by the WT can be calculated using the following equation:

PWT = ρπR2
pCp(λ)V3 (1)

where: ρ—is the air density, Rp—the pales radius, Cp(λ)—power conversion coefficient, λ = Rω/V,
V—the wind speed, andω—mechanical angular velocity (MAV).

The power conversion coefficient, Cp(λ), could be calculated, as follows:

Cp(λ) = c1

( c2

Λ
− c3

)
e−

c4
Λ (2)

1
Λ

=
1
λ
− 0.0035 (3)

c1–c4 are data-book constants.

1
Λ

=
1
λ
− 0.0035 =

V
Rω
− 0.0035 =

V
1.5ω

− 0.0035 (4)

By replacing, we can obtain the power conversion coefficient, as follows:

Cp(λ) = c1
( c2

Λ − c3
)
e−

c4
Λ =

c1

(
c2

(
V

1.5ω − 0.0035
)
− c3

)
e−c4(

V
1.5ω−0.0035) (5)

The power given by the wind turbine can be calculated, as follows:

PWT(ω, V) = ρπR2Cp(λ)V3 = 1.225π1.52c1

(
c2

(
V

1.5ω
− 0.0035

)
− c3

)
e−c4(

V
1.5ω−0.0035)V3 (6)

or

PWT(ω, V) = ρπR2Cp(λ)V3 = k1

(
k2

(
V
ω
− 0.0525

)
− c3

)
e−k3(

V
ω−0.0525)V3 (7)

where k1 = 1.225π1.52, k2 = c2/1.5, k3 = c4/1.5.
For the wind turbine WT, the producer gives the experimental power characteristics,

PWT(ω, V), or torque characteristics TWT(ω, V), with the last ones being known as mechanical
experimental characteristics.

TWT(ω, V) = PWT(ω, V)/ω = k1

(
k2

(
V
ω
− 0.0525

)
− c3

)
e−k3(

V
ω−0.0525)V3/ω (8)

The maximum value of the function PWT(ω, V) is achieved for a reference MAV ωref, and it yields:

ωre f = ωOPTIM = 400·k3
k2

400·k2 + 21·k3k2 + 400·k3c3
·V = k4·V (9)

ωOPTIM = k0·V1 (10)

where k0 is the constructive constant of the turbine.
This result proves the direct link between reference velocity and wind speed.
By replacing this result, it yields:

PWT−MAX(V) = kP·V3 (11)
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ie a cubic dependence of the maximum power value of the wind speed V.
In cases where the wind speed varies significantly over time, the result that is obtained must be

re-analyzed and an equivalent wind speed is required.
For power wind turbines: PTV-MAX = 11 KW the experimental power characteristics and PWT(ω,

V) are modeled by:
PWT(ω, V) = 1191.5·(V/ω− 0.02)e−98.06(V/ω)·V3 (12)

Obtaining the maximum WT power value.

Case 1

The maximum PWT(ω) function is obtained by canceling the derivative

dPWT(ω, V)

dω
=

d
(

1191.5·(V/ω− 0.02)e−98.06(V/ω)·V3
)

dω
= 0 (13)

with the solution:
ωOPTIM = 33.115 V

By replacing this value in the function PWT(ω), maximum velocity is obtained, at the wind speed V:

PWT−MAX−1 = 1191.5·(V/ωOPTIM − 0.02)e−98.06(V/ωOPTIM)·V3 = 1191.5·(1/33.115− 0.02)e−98.06(1/33.115)·V3 (14)

or
PWT−MAX−1 = 0.62888·V3 (15)

Case 2

To obtain the maximum of PWT(ω) function, we can also use the no-load MAV value from a
low-power auxiliary WT (WTAUX), operating at MAV, ωMAX. The auxiliary turbine is a model of
the main turbine; it is much smaller and models the main turbine power characteristic. The main
and auxiliary turbines are in the same location and both are exposed to the same wind. This MAV
value takes into account the evolution of wind speed in time. The value of the ωOPTIM/ωMAX ratio is
constant for a given WT and it does not depend on the time variation of the wind speed [11–14]

ωOPTIM = 0.6623·ωMAX

PWT−MAX−2 = 0.62888·(ωMAX/50)3 (16)

This value is very easy to obtain during the operation of the EES.

2.2. The GSMP Mathematical Model, (MM-GSMP)

To analyze the behavior of the system WT-PMSG for the time-varying wind speeds, it uses the
orthogonal mathematical model for permanent magnet synchronous generator (PMSG), which is given
by the following equations [11–14]:

−U
√

3 sin θ = R1 Id −ωLq Iq

U
√

3 cos θ = R1 Iq + ωLd Id + ωΨPM
MPMSG = p1

(
Ld − Lq

)
Id Iq + IqΨPM

PG = R·
(

I2
d + I2

q

) (17)

where

U—stator voltage;
Id, Iq—d-axis and q-axis stator currents;
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θ—load angle;
R1—phase resistance of the generator;
Ld—synchronous reactance after d axis;
Lq—synchronous reactance after q axis;
ΨPM—flux permanent magnet;
MPMSG—PMSG electromagnetic torque; and,

The two functions: PG(R, ω)—electric power provided by the generator and MPMSG(R,
ω)—moment at the generator shaft depend on: R—load resistance and ω-MAV.

For R = ct the moment MPMSG depends linearly on ω, and the power depends squarely on ω.
From the nominal values of the PMSG [1], for the nominal power: PN = 5 [kW], it yields R1 = 1.6

[W], Ld = 0.07 [H], Lq = 0.08 [H], ΨPM = 1.3 [Wb].
From the equations of the PMSG, it obtains

−RId = 1.6Id −ω·0.08·Iq

−RIq = 1.6Iq + ω·0.07·Id + ωΨPM
MPMSG = −0.01·Id Iq + IqΨPM

ΨPM = 1.3

PG =
(

I2
d + I2

q

) (18)

PG = 4225Rω2 4ω2 + 625R2 + 2000R + 1600

(1250R2 + 4000R + 3200 + 7ω2)
2 (19)

MG = MPMSG = −845ω(5R + 8)· 4ω2 + 625R2 + 2000R + 1600

(1250R2 + 4000R + 3200 + 7ω2)
2 (20)

The analysis of the transient phenomena specific to variable wind speeds is done by simulation.
The simulations are based on the motion equation:

J
dω

dt
= MWT −MPMSG (21)

where J—equivalent moment of inertia; MWT—Moment on WT; MPMSG—Moment of PMSG.

3. Simulation Results at the Time Variable Wind Speed

This analyzes the EES operation at a time variation of wind speed of the form:

V(t) = 15·e−t/3600 − 2· sin 0.17943t (22)

as shown in Figure 2.
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3.1. No-Load Operation of See

For the no-load operation, the motion equation is:
45· dω

dt ω = 1191·
((

15·e−t/3600 − 2 sin 017943t
)
/ω− 0.02

)
·e−98.06((15·e−t/3600 − 2 sin 017943t)/ω)(

15·e−t/3600 − 2 sin 017943t
)
/ω

ω(0) = 0

(23)

The MAV over time is presented in Figure 3.
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Figure 3. The mechanical angular velocity (MAV) over time for t = 0–15000 s.

After two hours, the wind speed drops to 0 and the WT switches to fan mode. The power absorbed
by it can be calculated with:

PFAN = k·ω3 (24)

where k, the coefficient of proportionality, is determined by knowing that at:
ω = 571 [rad/s] the equivalent power of WT is:

PECH(571) = 2055.5 [W] (25)

It yields:

k =
PECH(571)

ω3 =
2055.5
5713 (26)

and, therefore, power becomes:

PFAN = 2055.5·
( ω

571

)3
(27)
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under these conditions and when considering friction losses as 5% of PECH(571), the motion equation
was obtained in the form of: {

45· dω
dt ω = −2055.5·

(
ω

571
)3 − 102

ω(0) = 103.52
(28)

After t = 2258 [s], MAV becomes:
ω(2258) = 0.11673 [rad/s], and, therefore, it can be considered that WT stopped, as it can be seen

in Figure 4.
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The energy that is captured during this time period is significantly dependent on MAV values,
which are load-dependent.

For a given time interval, the optimal MAV value, ωOPTIM, is calculated based on the ratio:

ωOPTIM/ωMAX = 0.68

where the ωMAX value is obtained by a no-load operation of a low power auxiliary WTAUX.

3.2. No-Load Operation of WTAUX

The moment of inertia moment, J, of the WTAUX is much smaller than the power WT, for example:

J = 0.1 [kgm2]

For a time variation of wind speed of the form:

V(t) = 15·e−t/3600 − 2· sin 0.17943t (29)

the motion equation, for WTAUX, becomes:
0.1· dω

dt ω = 1.1·
((

15·e−t/3600 − 2 sin 017943t
)
/ω− 0.02

)
·e−98.06((15·e−t/3600 − 2 sin 017943t)/ω)(

15·e−t/3600 − 2 sin 017943t
)
/ω

ω(0) = 756.85

(30)

and the time variations of ω and ωOPTIM are obtained over the interval 0–333 [s], as shown in Figure 5.
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Measuring MAV at WTAUX, at 33 [s] time intervals, the optimal MAV values ωOPTIM are obtained
at time moments: t = 33, 66, 99, ..., 198 [s], as follows:

ωOPTIM(33) = 0.68ω(33) = 514.64 [rad/s]
ωOPTIM(66) = 0.68ω(66) = 514.59 [rad/s]
ωOPTIM(99) = 0.68ω(99) = 514.51 [rad/s]

ωOPTIM(132) = 0.68ω(132) = 514.39 [rad/s]
ωOPTIM(165) = 0.68ω(165) = 514.25 [rad/s]
ωOPTIM(198) = 0.68ω(198) = 514.1 [rad/s]

(31)

3.3. Load Operation of the EES

Based on these values and measuring, at time tk, the current MAV, ωtk, from PMSG, we can
estimate the amount of kinetic energy that is to be taken from PMSG, as follows:

∆WKINETIC = J·
(

ω2
tk −ω2

OPTIM−tk

)
/2 (32)

This energy is added by the wind energy captured by WT, WWT, during the time ∆t:

∆t = tk − tk−1

When considering that, at the beginning, the operation of the EES is stable at the following MAV:
ω(0) = 520 [rad/s], in time interval ∆t = 33 [s], the wind energy captured, Wwind, has the value:

W(520) =
∫ 33

0

 1191.5·
((

15·e−t/3600 − 2sin017943t
)
/520− 0.02

)
·e−98.06((15·e−t/3600 − 2sin017943t)/520)(

15·e−t/3600 − 2sin017943t
)3


dt = 67416 [J]

(33)

and therefore, the average WT power is:

PWT−MED(520) =
67416

33
= 2042.9 [W] (34)

the same as the PMSG, PPMSG(520).
PMSG load resistance is calculated from the algebraic system:{

PG = 845ω2(5R + 8)· 4ω2+625R2+2000R+1600
(1250R2+4000R+3200+7ω2)

2

ω = 520
(35)
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or: {
2042.9 = 845ω2(5R + 8)· 4ω2+625R2+2000R+1600

(1250R2+4000R+3200+7ω2)
2

ω = 520
(36)

with the solution:
ω = 520 [rad/s] and R = 216.12 [Ω]

For EES to operate in the MPP area, at:

ωOPTIM(33) = 514.64 [rad/s]

must take the kinetic energy ∆WKINETIC corresponding to the both MAV ω(0) and ωOPTIM(33) and
the wind energy that was captured by the WT in the time interval ∆t = 33 [s].

The calculation of the wind energy captured by the WT over the analyzed time frame and at wind
speed, V(t), can be done through the integration of WT power over time:

PWT(ω) = 1.1·
((

15·e−t/3600 − 2 sin 017943t
)
/ω− 0.02

)
·e−98.06((15·e−t/3600 − 2 sin 017943t)/ω)

(
15·e−t/3600 − 2 sin 017943t

)3
(37)

resulting:

Wwind =
∫ 33

0

 1191.5·
((

15·e−t/3600 − 2 sin 017943t
)
/ω− 0.02

)
·e−98.06((15·e−t/3600 − 2 sin 017943t)/ω)(

15·e−t/3600 − 2 sin 017943t
)3

 (38)

Remark

Observation 1

In determining the value of wind energy captured by WT, two problems arise:

(1) The estimated value of captured wind energy is based on the use of MM-WT, which is valid only
under certain conditions, usually different from the operating conditions.

(2) When calculating the integrity of the WT power, it is necessary to know the time variation of MAV,
which is not known in advance. This can only be known later by solving the motion equation or
by direct measurements. We can determine the maximum power of the TV corresponding to the
wind speed at that time using the relationship:

PWT−MAX = 0.62888·V3

The wind speed varies, but between a maximum value: VMAX and a minimum value: VMIN, it is
necessary to introduce the equivalent wind speed term, VECH, the speed at which the WT power has
the same value as in the real case over a given time interval.

Determining the equivalent speed value in the graph of the function V(t) that was obtained from
the measurement of wind speed over time is complicated because VECH depends both on the evolution
of wind speed and MAV, ω, on which WT works.

Considering the results of [11–14] the equivalent wind speed is calculated while using the
relation [11–14]:

VECH =
3

√∫ t

0
(V(t))3dt/T (39)

or

VECH =
3

√∫ 35

0

(
15·e−t/3600 − 2 sin 017943t

)3dt/35 = 15.054 [m/s] (40)



Sustainability 2019, 11, 1249 10 of 16

Based on this value, the maximum WT power can be obtained:

PWT−MAX = 0.62888·V3 = 0.62888·(15.054)3 = 2145.5 [W]

While considering the curve F->MPP from Figure 6, the medium WT power during ∆t interval,
it yields:

PWT−MED =
PWT−MAX + PWT−F

2
(41)

where PWT-F is the power in point F. It results:

PWT−MED =
2145.5 + 2042.9

2
= 2094.2 [W] (42)

The total win energy captured in this time interval is:

Weol = PWT−MED·∆t = 2094.2·33 = 69109 [J] (43)

The sum of energies: the kinetic energy ∆WKINETIK corresponding to the two MAV ω(0) and
ωOPTIM(33) and the wind energy that is captured by the WT in the time interval ∆t = 33 [s] implies the
amount of energy that is required to be taken over by the generator on the F-MPP and it has the value

WG−REQ = Weol + WKINETIC (44)

The control is performed considering time intervals ∆t = 33 [s].

Step 1; t = 33 ÷ 66 [s]

The value of the kinetic energy to be captured by the PMSG, between MAV

ω(0) = 520 [rad/s]

and ωOPTIM(33) = 514.64 [rad/s] is:

∆WKINETIC = J·
(

ω2
tk
−ω2

OPTIM−tk

)
/2 = 45·

(
5202 − 514.642

)
/2 = 1.2478·105 [J] (45)

The PMSG power, to reach the optimum MAV for the period ∆t, is:

PG−REQ = WG−REQ/∆t = (Weol + ∆WKINETIC)/33 =
(
69109 + 1.2478·105)/33 = 5875.4 [W]

1191.5·((15)/ω− 0.02)·e−98.06·((15)/ω)·(15)3 (46)
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The load resistance of the PMSG to reach the movement of the F point to MPP can be
calculated from: {

PG−REQ = 845ω2(5R + 8)· 4ω2+625R2+2000R+1600
(1250R2+4000R+3200+7ω2)

2

ω = (ω(0) + ωOPTIM(33))/2
(47)

{
5875.4 = 845ω2(5R + 8)· 4ω2+625R2+2000R+1600

(1250R2+4000R+3200+7ω2)
2

ω = 517.32
(48)

with the solution
ω = 517.32

R = 50.545

In these conditions, the motion equation for the EES becomes:

45· dω
dt = 1191.5·

((
15·e−(t+33)/3600 − 2· sin 0.17943·(t + 33)

)
/ω− 0.02

)
e−98.06·((15·e−(t+33)/3600−2·sin0.17943·(t+33))/ω)(

15·e−(t+33)/3600 − 2· sin 0.17943·(t + 33)
)3
−

−845ω2(5·50.545 + 8)· 4ω2+625·50.5452+2000·50.545+1600
(1250·50.5452+4000·50.545+3200+7ω2)

2

ω(0) = 520

(49)

The MAV over time is presented in Figure 7:Sustainability 2019, 11 FOR PEER REVIEW  10 
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After t = 33 [s], MAV becomes

ω(33 + 33) = 514.46 [rad/s] (50)

When comparing to the optimal one:

ωOPTIM(66) = 514.59 [rad/s] (51)

The differences are quite insignificant, below 0.025%.

Step 2; t = 66 ÷ 99 [s]

The value of the kinetic energy to be captured by the PMSG, between MAV
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ω(33 + 33) = 514.46 [rad/s] and ωOPTIM(66) = 514.59 [rad/s] is:

∆WKINETIC = J·
(

ω2
tk
−ω2

OPTIM−tk

)
/2 = 45·

(
514.462 − 514.592

)
/2 = −3010 [J] (52)

The wind energy captured by the WT during this time interval is:

WWIND =
∫ 33

0

(
1191.5·

((
15·e−(t+66)/3600 − 2· sin 0.17943·t

)
/ω− 0.02

)
·e−98.06·((15·e−t/3600−2· sin 0.17943·t)/ω)·

(
15·e−t/3600 − 2· sin 0.17943·t

)3
)
·dt

(53)

and at a medium value of MAV

ωMED =
ω(33 + 33) + ωOPTIM(66)

2
=

514.46 + 514.59
2

= 514.53 [rad/s] (54)

The wind energy captured during the time interval t = 66 ÷ 99 [s] can be calculated as follows:

WWIND(514.53) =
∫ 33

0

(
1191.5·

((
15·e−(t+66)/3600 − 2· sin 0.17943·(t + 66)

)
/514.53− 0.02

)
·e−98.06·((15·e−(t+66)/3600−2·sin0.17943·(t+66))/514.53)·

(
15·e−(t+66)/3600 − 2· sin 0.17943·(t + 66)

)3
)
·dt = 62467 [J]

(55)

The sum of ∆WKINETIC and WWIND(514.53) is:

WREQ = WWIND(514.53) + ∆WKINETIC = 62457− 3010 = 59457 [J] (56)

The PMSG power, to reach the optimum MAV during ∆t interval, is:

PG−REQ =
WG−REQ

dt
=

59457
33

= 1801 [W] (57)

The load resistance can be calculated, as follows:{
1801.7 = 845ω2(5R + 8)· 4ω2+625R2+2000R+1600

(1250R2+4000R+3200+7ω2)
2

ω = 514.53
(58)

with the solution
ω = 517.53

R = 241.5

In these conditions, the motion equation for the EES becomes:

45· dω
dt = 1191.5·

((
15·e−(t+66)/3600 − 2· sin 0.17943·(t + 66)

)
/ω− 0.02

)
e−98.06·((15·e−(t+66)/3600−2· sin 0.17943·(t+66))/ω)(
15·e−(t+66)/3600 − 2· sin 0.17943·(t + 66)

)3
−

−845ω2(5·241.5 + 8)· 4ω2+625·241.52+2000·241.5+1600
(1250·241.52+4000·241.5+3200+7ω2)

2

ω(0) = 514.46

(59)

After t = 99 [s], MAV becomes

ω(33 + 66) = 514.59 [rad/s] (60)

when comparing to the optimal one:

ωOPTIM(99) = 514.51 [rad/s] (61)
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The differences are also insignificant, below 0.015% (Figure 8).
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Figure 8. The evolution of the MAV during ∆t = 66 ÷ 99 [s].

From the analysis of the above results, it can be observed that, in a very short time: t = 99 [s], EES
reaches to operate in the optimal area of energy.

By estimating the wind speed, V, by measuring the maximum MAV, ωMAX-tk from WTAUX, it is
possible to calculate ωOPTIM-tk ensuring the optimal adjustment in the maximum energy area.

The adjustment algorithm is based on the optimal MAV determination based on the MAV value
from the no-load operation of the WTAUX.

Control algorithm
k-step at the moment tk

(1) measure the current MAV value, ωtk, for the PMSG and maximum MAV, ωMAX-tk, from WTAUX;
(2) measure the power at PMSG at the operating point P and obtain the power value at WT,

PWT-P; and,
(3) MPP coordinates at power WT, optimum MAV, ωOPTIM-tk, and maximum power, PWT-MAX, are

obtained from ωMAX-tk using the relations:

ωOPTIM−tk = 0.6623 ·ωMAX−tk (62)

PWT−MAX = 0.62888 ·
(ωMAX−tk

50

)3
(63)

(4) With the measured MAV, ωtk, measured and ωOPTIM-tk values, the kinetics energy variations are
obtained, over time intervals ∆t, in the following form:

∆WKINETIC = J·(ω2
tk −ω2

OPTIM−tk

)
/2 (64)

(5) Calculate the value of the wind energy taken over by the WT, in the time interval ∆t, knowing
the value of the WT power at the operating point P and the maximum power, PWT-MAX:

WWT = ((PWT−P + PWT−MAX)/2)·(tk − tk−1) (65)

(6) Calculate the energy value, WG-REQUIRED, which the generator should debit in the time interval
∆t, to reach the optimum MAV, ωOPTIM-tk, in the time interval ∆t:

WG−REQUIRED = WWT + ∆WKINETIC (66)
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(7) The prescribed power value at the generator to reach the optimal MAV, ωOPTIM-tk, in the time
interval ∆t, is calculated from the energy value, WG-REQUIRED, as:

PG−REQUIRED = WG−REQUIRED / ∆t. (67)

Regardless of the evolution of wind speed over time, we can estimate ωOPTIM and thus achieve
optimal energy control that is based on the value of the ωOPTIM/ωMAX ratio, which does not change
regardless of the wind speed evolution in time.

Based on the connection between ωOPTIM and ωMAX, and calculating the variation of kinetic
energies, a simple and economically efficient driving system can be conceived, as seen in Figure 9.
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4. Conclusions

This paper analyzes the operation of a wind power system so as to achieve optimal energy
performance. By analyzing several cases, it was possible to obtain the basic parameters that lead to
an optimal functioning from the energy point of view and the maintenance of the EES in the MPP
area by measuring the speed and the estimation of the wind energy that is captured by the WT.
The estimation of the wind energy captured by the WT is based on MM-WT, which requires a more
accurate determination of it. The equivalent wind speed is defined and the optimal angular velocity is
calculated, as a function of it. By knowing the optimal speed, the system can operate at the Maximal
Power Point. The energy that is captured by the WT has maximum values in the MPP area. Through
the simulations presented, the PMSG loads could be identified so that the WT + PMSG will reach the
optimal area of in terms of energy in the shortest possible time. The method is based on the optimal
MAV determination with an auxiliary WT operating in a no-load regime. The method is based on
the fact that the optimal MAV value, ωOPTIM, is directly proportional to ωMAX. By measuring the
maximum MAV, ωMAX, using an auxiliary WT can determine, at any time, ωOPTIM, regardless of
the time variation of the wind speed. By calculating the variations of the kinetic energies and the
measurement of the electric energy that is flowing by the generator, the value of the power to it is
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determined, a value that is achieved by controlling the switching elements of the power converter
between the generator and the network.
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