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Abstract: The increasing CO2 concentration in the Earth’s atmosphere, mainly caused by fossil
fuel combustion, has led to concerns about global warming. Carbonation is a technique that can
be used as a carbon capture and storage (CCS) technology for CO2 sequestration. In this study,
the utilization of the fly ash from a solid refused fuel (SRF) power plant as a solid sorbent material
for CO2 capture via semi-dry carbonation reaction was evaluated as a simple process to reduce
CO2. The fly ash was exposed to accelerated carbonation conditions at a relative humidity of 25,
50, 75, and 100%, to investigate the effects of humidity on the carbonation kinetics of the fly ash.
The reaction conditions such as moisture, concentration of CO2, and reaction time can affect CO2

capture performance of fly ash. Due to a short diffusion length of H2CO3 in water, the semi-dry
process exhibits faster carbonation reaction than the wet process. Especially, the semi-dry process
does not require a wastewater treatment plant because it uses a small amount of water. This study
may have important implications, illustrating the possibility of replacing the wet process with the
semi-dry process.
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1. Introduction

CO2 is a main greenhouse gas and undoubtedly a major contributor to global warming. Capturing
CO2 from the atmosphere is an essential parameter of the carbon management for sequestrating CO2

from our environment. The concentration of CO2 in our atmosphere is promoted by the combustion of
fossil fuels for generating electricity [1,2]. In addition, the amount of the fly ash produced from power
plants is expected to increase continuously as the demand for electricity increases. Thus, the interest in
fly ash utilization has increased [3–6].

Among many CO2 reduction and sequestration techniques, solid-looping using calcium oxide
(CaO) is a promising CO2 capture process, known as carbonate looping [7–13]. This process is based
on the reversible reaction between CaO and CO2 to form calcium carbonate. The carbonation reaction
can be used to remove CO2 from the atmosphere. Derevschikov et al. prepared a CaO/Y2O3 sorbent
to capture CO2 at high temperatures [14]. J. Shi et al. synthesized a CaO/sepiolite sorbent by the
hydration reaction [15]. However, these manufacturing processes are complex and uneconomical for
industrial application.

Meanwhile, solid refused fuel (SRF), a highly heterogeneous mixture of high calorific fraction of
non-hazardous waste materials, has been recognized as a viable alternative to fossil fuels, and is already
being used as a fuel in various industrial sectors, including power plants [16]. The fly ash from SRF
plants contains about 20 wt% of lime (CaO) which can be used to sequester CO2 by aqueous carbonation.
Thus, studies about utilizing fly ash as a solid sorbent material for CO2 capture have increased.
In the carbonation reaction between CaO and CO2, water plays an essential role in hydrating the
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calcium-based materials to form calcium hydroxide and most studies were conducted in environments
with a high amount of water. Loo et al. conducted accelerated wet carbonation experiments on
circulating fluidized bed combustion (CFBC) ash (the prepared solution possessed an ash-to-water
ratio of 1:10) [17]. Dananjayan et al. and Ebrahimi et al. conducted aqueous carbonation with
the water-to-ash ratio of 15:1 with carbonation capacities of 50.3 g and 32 g of CO2/kg of fly ash,
respectively [18,19].

However, although a Ca(OH)2 aqueous solution can be effectively used as an absorbent to capture
CO2, commercialization of the CO2 capture process is still hindered because of the high amount of
energy required to evaporate water. Moreover, the process needs a wastewater treatment plant which
can be a source of greenhouse gasses.

In this study, we investigated the utilization of fly ash as a solid sorbent material for CO2 capture
via semi-dry carbonation reaction. The effects of the amount of moisture, CO2 concentration, and
reaction time on the performance of fly ash was investigated. The rest of the paper is structured as
follows: Section 2 describes the experimental framework used to evaluate the semi-dry carbonation.
Section 3 contains the composition changes after the carbonation of SRF ash. Sections 4 and 5 present
our discussions and conclusions.

2. Materials and Methods

2.1. Materials

Fly ash obtained from Korea District Heating Corporation in Korea was used for this research.
The fly ash was dried in an oven at 100 ◦C for 10 h to remove moisture.

2.2. Semi-Dry Carbonation Reactor

CO2 capture was conducted in a round-bottom flask with a single neck as shown in Figure 1.
The mixture of fly ash (200 g) and water was delivered into the flask. The rotation speed of the flask was
fixed at 40 RPM to shake the mixture. The CO2 stream (99.99%) and N2 stream (99.99%) were flowed
into the reactor using the regulator and the flow meter to control the CO2 concentration. The total
flow rate of the mixture gas was 10 L min−1. The temperature in the reactor was maintained at 25 ◦C.
The flow chart of the experimental method of semi-dry carbonation is shown in Figure 2.
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Figure 2. Experimental method of semi-dry carbonation.

2.3. Characterizations

The morphologies and structures of the fly ash were analyzed by SEM (JSM-6700F, JEOL, Tokyo,
Japan). The crystal structures were investigated by XRD (X’pert3 Powder, Malvern PANalytical) with
Cu Ka radiation (λ = 1.5418 Å) at the Ssangyong Cement Co. (Daejeon). The particle size was measured
using a laser diffraction particle size analyzer (PSA) (Mastersizer S Ver. 2.15, Malvern Instruments,
Malvern, UK). The elemental compositions of the fly ash were investigated using X-ray fluorescence
analysis (XRF, Primus2, Rigaku, Japan).

3. Results

When SRF is burned in a bottom boiler, most of the unburned material is caught in the flue gas
and captured as fly ash. Bottom ash is an incombustible byproduct that is collected from the bottom of
the furnaces that burn SRF for generating steam. Therefore, fly ash and bottom ash are quite different
physically and chemically. The fly ash and the bottom ash used in the study are shown in Figure 3.
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Figure 3. Photographs of (a) fly ash and (b) bottom ash.

The fly ash was composed of fine particles, while the bottom ash was coarse and granular.
The color of the bottom ash was dark, dull brown while the color of the fly ash was light brown.
Figure 4 shows the morphologies of the fly ash and the bottom ash. The microstructure of the bottom
ash (Figure 4b) had a much larger particle size compared to fly ash, which was about the size of sand
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but was more porous. As shown in Figure 5, the particle size of the fly ash was between 2 and 130 µm,
with D50 (medium diameter) of 25 µm, D10 of 7 µm and D90 of 160 µm.
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Figure 5. Particle size distribution of fly ash.

Table 1 shows the results of X-ray fluorescence analysis of the fly ash and bottom ash.
Concentration of the major elements in the fly ash was given in the form of oxides by XRF. The chemical
compositions of the fly ash showed that SiO2, Al2O3, Fe2O3, CaO, and Na2O were the main oxides.
On the other hand, the major chemical composition of the bottom ash was SiO2. Lead and copper were
the most common heavy metals in both ashes (Table 2).

Table 1. Oxide compositions in fly ash and bottom ash (wt%).

SiO2 Al2O3 Fe2O3 CaO MgO N2O K2O SO3 P2O5 Cl

Fly Ash 24.9 13.2 2.56 17.1 1.82 13.1 2.36 1.29 2.96 12.8
Bottom Ash 85.0 2.90 0.87 7.27 0.50 1.01 0.35 0.18 0.94 0.2
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Table 2. Heavy metals in fly ash and bottom ash (mg kg−1).

Pb Cd As Hg Cu

Fly Ash 785 33 N.D. N.D. 5620
Bottom Ash 74 N.D. N.D. N.D. 2240

The content of CaO (17.1%) in the fly ash was much higher than that in the bottom ash (7.27%).
Therefore, the fly ash, which has high calcium-based contents, was selected for CO2 capture.

Figure 6 shows the crystal structure of the fly ash. The XRD pattern in Figure 6 confirms the
formation of composite powders with mixed crystal structures consisting of periclase (MgO), lime
(CaO), calcite (CaCO3), anhydrite (CaSO4), quartz (SiO2), mullite (3Al2O3-2SiO2), hematite (Fe2O3),
gehlenite (Ca2Al[AlSiO7]), halite (NaCl), and sylvite (KCl). The calcium-based materials such as calcite,
anhydrite, and gehlenite could be prepared by a high temperature combustion. By using the relative
intensity ratio (RIR) technique from the XRD we found that the weight percentage of the periclase,
lime, calcite, anhydrite, quartz, mullite, hematite, gehlenite, halite, and sylvite were 0.89, 0.40, 3.02,
7.57, 12.78, 0.54, 2.27, 24.58, 42.46, and 5.48%, respectively (Table 3).
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Table 3. Quantitative analytical results obtained by relative intensity ratio (RIR) method (wt%) of the fly ash.

Periclase Lime Calcite Anhydrite Quartz Mullite Hematite Gehlenite Halite Sylvite

0.89 0.40 3.02 7.57 12.78 0.54 2.27 24.58 42.46 5.48

Among the above materials, calcium-based materials (lime, anhydrite, and gehlenite) can react
with CO2:

Lime [20]:
CaO + H2O→ Ca(OH)2 (1)

Ca(OH)2 + CO2 → CaCO3 + H2O (2)

Gehlenite [21]:

4Ca2Al(AlSiO7) + 18H2O→ CaAl2Si4O12·2H2O + 7Ca(OH)2 + 6Al(OH)3 (3)
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To investigate the effect of the amount of moisture on the performance of fly ash for CO2 capture,
reaction with CO2 was conducted with the following amounts of water: 25 (25-W/A), 50 (50-W/A),
75 (75-W/A), and 100% (100-W/A). The CO2 concentration and reaction time were fixed at 100% and
60 min, respectively.

Figure 7 and Table 4 show the crystal structure of the fly ash after CO2 capture using different
amounts of moisture and materials by using the relative intensity ratio (RIR) technique from the
XRD. The CaCO3 components of the 25-W/A, 50-W/A, 75-W/A, and 100-W/A were 14.13, 21.31,
26.16, and 21.98%, respectively. The amount of CaCO3 increased with increasing the amount of water.
This suggests that the presence of water played an essential role in hydrating the calcium-based
materials to form calcium hydroxide, which then sequestrated carbon by forming calcium carbonate.
Notably, the amount of CaCO3 increased from 3.02 to 26.16% when the ratio of the ash-to-water was
1:0.75. The results showed that fly ash of 100 g from a SRF fired power plant captured CO2 of 10.17 g.
However, when the ratio of the ash-to-water was 1:1, the amount of CaCO3 decreased. CO2 in gaseous
phase does not react with calcium-based materials; it has to dissolve in the water first to form carbonic
acid (H2CO3) [22]. As shown in Figure 8, the diffusion length of the H2CO3 from the outside of the
water to the calcium-based materials increased with the increasing amount of water. Therefore, the fly
ash with too much water reacted slowly with CO2.
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Figure 7. X-ray diffraction patterns of fly ashes after carbonation with various amount of water.

Table 4. Quantitative analytical results obtained by RIR method (wt%) of the fly ash after carbonation
with various amounts of water.

Samples Periclase Lime Calcite Anhydrite Quartz Mullite Hematite Gehlenite Halite Sylvite

25-W/A 0.35 0.00 14.13 1.68 18.07 0.28 2.14 22.50 40.79 0.06
50-W/A 0.88 0.14 21.31 1.92 18.91 0.65 3.66 23.03 26.03 3.21
75-W/A 0.58 0.06 26.16 2.12 17.34 0.72 3.31 23.25 25.15 1.30
100-W/A 0.95 0.24 21.98 2.25 9.32 2.47 0.82 24.01 37.96 0.00

To investigate the properties of the fly ash with a small amount of water in the environments
with low CO2 concentrations, CO2 captures were conducted at CO2 concentrations of 10 (10-C/A),
20 (20-C/A), 50 (50-C/A), and 100% (100-C/A). The moisture content and reaction time were fixed at
20% and 10 min, respectively.

Figure 9 and Table 5 show the crystal structure of the fly ash after CO2 capture using different
concentrations of CO2 and the amount of materials by using the relative intensity ratio (RIR) technique
from the XRD. The CaCO3 components of the 10-C/A, 20-C/A, 50-C/A, and 100-C/A were 15.21,
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19.46, 19.86, and 21.98%, respectively. As shown in Table 5, the CaCO3 component stabilized at CO2

concentration of 20%. This result indicates that the semi-dry process can be applied to the power plant
without a CO2 concentration process.
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Table 5. Quantitative analytical results obtained by RIR method (wt%) of the fly ash after carbonation
with various CO2 concentrations.

Samples Periclase Lime Calcite Anhydrite Quartz Mullite Hematite Gehlenite Halite Sylvite

10-C/A 0.34 0.00 15.21 1.56 14.32 1.09 1.22 25.11 40.79 0.06
20-C/A 0.34 0.02 19.46 1.33 11.35 0.84 1.39 24.39 38.34 2.54
50-C/A 0.38 0.01 19.86 1.12 14.84 0.33 0.91 22.55 38.72 1.17
100-C/A 0.95 0.24 21.98 2.25 13.17 2.47 0.82 24.01 37.96 0.00
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Figure 10 and Table 6 show the crystal structure of the fly ash after CO2 capture in a reaction time
of 1 (1-T/A), 5 (5-T/A), 10 (10-T/A), and 30 min (30-T/A), and the amount of materials. The CaCO3

component of the 1-T/A, 5-T/A, 10-T/A, and 30-T/A was 16.26, 15.16, 15.21, and 16.72%, respectively.
As shown in Table 6, the carbonation performed well despite the short reaction time of 1 minute.
This result indicates that the semi-dry process can be designed as a continuous process to capture large
scales of CO2.
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Table 6. Quantitative analytical results obtained by RIR method (wt%) of the fly ash after carbonation
with various reaction times.

Samples Periclase Lime Calcite Anhydrite Quartz Mullite Hematite Gehlenite Halite Sylvite

10-C/A 0.34 0.00 15.21 1.56 14.32 1.09 1.22 25.11 40.79 0.06
20-C/A 0.34 0.02 19.46 1.33 11.35 0.84 1.39 24.39 38.34 2.54
50-C/A 0.38 0.01 19.86 1.12 14.84 0.33 0.91 22.55 38.72 1.17
100-C/A 0.95 0.24 21.98 2.25 13.17 2.47 0.82 24.01 37.96 0.00

4. Discussions

The utilization of SRF ash has emerged as one of the most important interventions in SRF power
plants. Due to the calcium-based materials in the SRF ash, the SRF ash can be reused as a material
for CO2 capture. According to Loo et al., who studied the utilization of circulating fluidized bed
combustion (CFBC) ash, high humidity conditions during the carbonation process were a critical factor
that significantly enhanced the CO2 uptake in the CFBC ash [17]. However, in this study, the results
show that the high amount of water led to a low efficiency of carbonation reaction. This may be due
to the fact that the diffusion length of the H2CO3 increased correlatively with the amount of water.
These results demonstrate that the semi-dry carbonation process is more effective in the aspect of cost
and time compared to the wet process. The carbonated SRF ash can be used in various construction
industries such as a mineral admixture for concrete [23]. For the utilization of the carbonated SRF ash
prepared via semi-dry carbonation process, further research should be conducted on controlling the
conditions of the process such as temperature and pH value.

5. Conclusions

In this study, the utilization of the fly ash from SRF power plant as a solid sorbent material for CO2

capture via semi-dry carbonation reaction was evaluated as a simple CO2 reduction technique which
does not require a high cost wastewater treatment plant and an evaporating process. Quantitative
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analysis was conducted by using the relative intensity ratio technique from the XRD to study the
potential for fly ash carbonation under semi-dry carbonation process. The amount of CO2 capture
increased as the amount of water increased. However, when the ratio of the ash-to-water was 1:1,
the amount of CO2 capture decreased because the diffusion length of the H2CO3, from the outside of
the water to the calcium-based materials, increased with the increasing amount of water. The results
indicated that H2O plays an important role in the carbonation of calcium-based materials. The fly
ash of 100 g can capture 10.17 g of CO2 by semi-dry carbonation reaction without any treatment.
The moisture content can affect the CO2 capture capacity but CO2 concentration and reaction time do
not significantly affect the carbonation reaction. In the semi-dry carbonation process, the carbonation
was well performed in the short reaction time and with low CO2 concentration. These results show that
the semi-dry process can be designed as a continuous process and applied to a power plant directly
without CO2 concentration processes.
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