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Abstract: Public infrastructure not only promotes economic growth, but also influences
energy intensity, which plays an important role in the strategies related to energy.
Therefore, infrastructure policy can be used as an important instrument to reconcile the dilemma of
energy, economy, and environment in China. However, few studies have been made to assess
the effect of public infrastructure on energy intensity in China. This paper presents an analysis
of how three typical types of public infrastructure (i.e., transportation, energy, and information
infrastructure) affect energy intensity for 30 Chinese provinces, from 2001 to 2016. To account
for nonlinearities, we adopt the panel smooth transition regression (PSTR) approach. The results
show that transportation infrastructure has a significantly negative effect on energy intensity,
and this negative effect gradually strengthens when the transportation infrastructure stock exceeds
the threshold value. Adversely, energy infrastructure has a significantly positive effect on energy
intensity, and this positive effect gradually strengthens with the development of energy infrastructure.
Our results also suggest that the development of information infrastructure could not only strengthen
its own significantly negative effect on energy intensity, but also could promote the negative
effect of transportation infrastructure on energy intensity. Moreover, the positive impact of energy
infrastructure on energy intensity gradually decreases when the stock of information infrastructure
surpasses the larger threshold value. Our findings suggest that policy makers could reduce
energy intensity by accelerating the development of transportation and information infrastructure.
Furthermore, they could strengthen the negative effects of transportation and information
infrastructure on energy intensity and weaken energy infrastructure’s positive effect on energy
intensity by increasing their information infrastructure investment.

Keywords: public infrastructure; energy intensity; nonlinear effect; panel smooth transition regression

1. Introduction

China’s current national policies promote high levels of economic growth. The average annual
growth rate of real GDP was 11.3% from 2001 to 2016. Meanwhile, China’s energy consumption
also experienced a high annualized growth of around 7.1% and increased from 1.56 billion tons
of coal equivalent (tce) per year in 2001 to 4.36 billion tce per year in 2016. As a result, the gap
between energy demand and supply expanded from 81 million tce in 2001 to 898 million tce in 2016.
Consequently, energy shortages are gradually becoming one of the main constraints to sustainable
economic growth in China. Moreover, the problem of ecological damage and air pollution caused
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by the dramatic raise of energy consumption has become increasingly serious [1,2]. One of the most
efficient and effective ways to solve these problems is to sufficiently reduce energy intensity [3].
As a result, Chinese policymakers have placed great importance on energy intensity reduction,
which has become a strategic plan for sustainable development in China [4,5]. It is therefore crucial to
explore the determinants of energy intensity in China.

In recent years, extant literature on this topic has emerged and has considered a variety of
factors, including energy structure [6], energy price [7–9], foreign direct investment [8], sectoral energy
efficiency [10,11], demand structure [10,12], production structure [10,13,14], urbanization [15–17],
industrialization [18], technological factors [7,14,18], energy saving materials [19], education [20] and so
on. However, little attention has been paid to the impact of public infrastructure on energy intensity.
This lack of research is troubling because one of the prominent features of China’s growth is that it is
led by public infrastructure investment [21]. However, research on the role of public infrastructure in
economic development and infrastructure efficiency has been well documented [22–33]. In addition
to affecting economic growth, public infrastructure also impacts energy intensity through various
channels. On one hand, public infrastructure investment can stimulate the development of
energy-intensive industries, such as the steel and cement industries [10,16], thereby increasing energy
intensity and escalating the energy constraints to economic growth. However, on the other hand,
public infrastructure investment also increases public physical capital, which may reduce energy
intensity and ease the constraints on economic and social development [34–36]. The few works on this
topic analyzed the effect of energy investment [37], urban public infrastructure [38], state owned
investment [39] and infrastructure investment [10] on energy intensity or energy consumption.
These studies present, however, three major drawbacks. First, they ignored the nonlinear effect
of public infrastructure on energy intensity. According to Duggal et al., ignoring nonlinearity will
cause biased and inconsistent estimates of the results since infrastructure has nonlinear effects on
economic output [25]. Second, they ignored the effect of interaction among different types of public
infrastructure [40]. Third, infrastructure is usually measured by aggregated infrastructure investment,
which ignores the difference in the effects of various infrastructure on energy intensity.

Thus, the main purpose of this article is to empirically study the nexus between public
infrastructure and energy intensity using provincial data from the period of 2001 to 2016, and gain
insights for future infrastructure policies that will help to reconcile the dilemma of energy, economy,
and environment in China. In our view, the contributions of this article are as follows. First, we analyze
the effect of three types of public infrastructure (i.e., transportation, energy, and information
infrastructure) on energy intensity. Thus, it is possible to examine different patterns of the impact of
public infrastructure on energy intensity. Second, to account for nonlinear effects, this study employs
a panel smooth transition regression (PSTR) approach which allows the public infrastructure–energy
intensity coefficients to vary not only between provinces, but also with time. Third, we analyze
the interaction effects between transportation, energy infrastructure and information infrastructure by
using information infrastructure as a transition variable in the model, which will enrich the existing
literature on the relationship between public infrastructure and energy intensity.

The remainder of the paper is structured as follows: In Section 2, we briefly analyze the influence
of public infrastructure on energy intensity. Section 3 presents the methodology used in this paper
and discusses the problem of model specification. Section 4 analyzes the results. Finally, the conclusions
and policy implications are presented in Section 5.

2. Influence of Public Infrastructure on Energy Intensity

Energy intensity is a comprehensive index that can reflect energy efficiency. With increasing
concerns about energy efficiency, a wealth of literature has emerged on the topic of energy intensity
since the 1973 oil crisis. This literature can be divided into two categories. The first focuses on
the decomposition analysis of the change of energy intensity [41–47]. This perspective generally
regards the change in energy intensity as primarily influenced by the sectoral technological level
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and the economic structure. Therefore, many scholars have tried to deconstruct the change of energy
intensity into technique effects (measured by energy intensity at lower sector level or product level)
and structural effects (measured by sectoral structure shifting or product structure shifting), and explore
which effects are the main sources of variation in energy intensity [48]. Though this kind of
research could quantitatively measure the direct sources of energy intensity variation, it is unable
to recognize the indirect effects of economic activities on energy intensity. The other category of
literature focuses on the above-mentioned indirect effects. In these studies, scholars further analyzed
the impacts of various economic activities on structural effects and technique effects on energy
intensity [49,50]. Public infrastructure could strengthen the impact of economic activities as a type of
substantial physical capital, and further indirectly influence energy intensity through various channels.
Therefore, this paper will analyze the effects of public infrastructure on energy intensity following
the latter kind of literature.

The critical problem is how does infrastructure affect energy intensity indirectly? We think
that there are at least three kinds of effects: (1) technological effects, (2) price effects,
and (3) structural effects. First, public infrastructure is beneficial in promoting the diffusion of
technology. For example, transportation and information infrastructure speed up technology diffusion
and then promote technological progress. Additionally, good public infrastructure also accelerates
the inflow of foreign direct investment [51], which is beneficial for the technological progress
of the host country [3,52], and decreases energy intensity. Second, good public infrastructure
improves the conditions for energy production and transportation (i.e., decreasing the number of
force majeure events and reducing cost of energy transport), which then lowers the price of energy.
Although China keeps energy prices under tight control, the controlled price is usually based on
the actual cost of energy. Good public infrastructure, such as natural gas pipelines, high voltage
transmission lines, highways, and high-speed railways, has a substantial negative effect on energy
prices and could lower energy costs. In theory, higher energy prices can push economic agents to
save energy [53], or induce energy-saving innovations [54], and thus have a negative effect on energy
intensity. Therefore, public infrastructure increases energy intensity indirectly through the channel
of price effects. Third, in general, it is believed that well-developed transportation infrastructure
will increase the proportion of the logistics industry in the overall economy [55], and modern
information infrastructure will increase the proportion of the information industry in the overall
economy [56]. Because the logistics industry is energy-intensive, while the information industry is
energy-saving, the final effects of the increase of both kinds of infrastructure on energy intensity
depend on the proportional growth of each sector. Figure 1 shows the impact public infrastructure
mechanisms have on energy intensity through different effects.
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Figure 1. Influence of public infrastructure on energy intensity through different effects.

The above figure shows that public infrastructure has a negative impact on energy intensity caused
by technological effects and a positive impact caused by price effects. In addition, public infrastructure
can also influence energy intensity through structural effects, but the direction of influence depends
on the type of infrastructure. It is difficult to measure the specific influence quantitatively due to
the lack of detailed data. Therefore, although we know public infrastructure influences energy intensity,
we cannot determine the direction of the final effects.

However, we think the technological effects are the relatively more important effects. That is
to say, the final effects will be negative or will eventually become negative once the scale of
infrastructure reaches a certain level. We offer the following three reasons for our stance: first,
technological effects will strengthen along with an increase in public infrastructure for its network
effect; second, empirical literature found that energy intensity is less influenced by energy prices in
China [9,57,58]. (There are at least two reasons for this phenomenon. One reason is that China is
still in the middle stage of industrialization, and growth in energy consumption has outpaced
the growth in energy supply, so the energy demand is rigid [58]. Another reason is that energy
prices in China are mainly controlled by state-owned enterprises [7], and do not fully reflect scarcity of
energy resources, environmental degradation, and imbalances in domestic demand and supply [8].),
and the positive effects on energy intensity through the price effects will also be insignificant; and third,
the influence of negative technological effects is wider than the influence of positive structural effects,
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because the former effects could influence all industries and sectors while the latter effects could only
affect several individual sectors. Therefore, we propose that public infrastructure has a significant
impact on energy intensity.

3. Methodology, Variables, and Model Specification

3.1. Methodology

In this paper, we adopt a PSTR model developed by Gonzalez et al. [59] and further
improved by Fouquau et al. [60]. The PSTR model was first applied by González et al. (2005)
to examine the effect of capital market imperfections on investment. This methodology has been
commonly used in finance [61] and recently, in energy and environmental economics [62–65].
However, the public infrastructure–energy intensity relationship has not been studied from this
perspective. After estimating a PSTR model of the income relationship of energy intensity
and electricity consumption, Destais et al. [66] and Heidari et al. [67] summarize the four main
advantages of this type of model. First, it allows the regression coefficients to change for each
of the provinces in the panel along with time, thereby providing more consistent estimators.
Second, PSTR modelling enables a smooth rather than an abrupt transition between extreme regimes,
which is a more flexible and reliable framework. Third, the threshold value is not given a priori, but is
calculated in the model. Finally, as infrastructure is also added as an explanatory variable, its impact
on energy intensity is easy to measure. Capturing non-linearities and regime switching in this way
makes the PSTR a good tool for the study of the public infrastructure–energy intensity relationship.

In a PSTR model, regression coefficients can take on a small number of different values depending
on the value of another observable variable. Interpreted differently, the observations in the panel
are divided into a small number of homogeneous groups or ‘regimes’, with different coefficients in
different regimes. The basic PSTR model with two extreme regimes is defined as follows:

yit = µi + β0xit + β1xitg(qit; γ, c) + uit (1)

for i = 1,2, . . . . . . N, and t = 1,2, . . . . . . T, where N and T denote the cross-section and time
dimensions of the panel respectively. yit is an explained variable, xit is a k-dimensional vector of
time-varying explanatory variables, µi represents the individual fixed effects, and uit represents
the errors. qit is a transition variable, γ is the slope parameter, c is the location parameter, and β0 and β1

are the regression coefficients. The transition function g(·) is a continuous function of the observable
transition variable qit and is normalized to be bounded between 0 and 1. The transition function is
defined by Granger and Terasvirta [68] and Terasvirta [69] using the logistic specification as follows:

g(qit; γ, c) =

(
1 + exp

(
−γ

m

∏
j = 1

(qit − cj)

))−1

, γ > 0, c1 ≤ c2 ≤ · · · cm (2)

where cj is a location parameter, m is the number of location parameters, and the slope parameter γ

determines the smoothness of the transition. The restrictions in the function are imposed only for
identification purposes.

In the above PSTR model, the regression coefficients consist of the linear element β0 and nonlinear
element β1·g(·) and fluctuate between β0 and β0 + β1 as the threshold variable qit increases,
where the fluctuation is centered around cj. Compared to a threshold model, a special characteristic of
a PSTR model is that it allows for the regression coefficients to switch gradually when observations
move from one group to another group. This assumption is more realistic, prompting a growing
interest in the PSTR model.
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3.2. Variables and Data Sources

3.2.1. Dependent Variable

This paper uses energy intensity (EI) as the dependent variable, which measures the energy
efficiency of an economy and is calculated as units of energy per unit of GDP. It is given below in
Equation (3) [4].

EIit =
TECit
GDPit

(3)

where TECit denotes total energy consumption of province i at time t and GDPit denotes real gross
product of province i at year t using 2001 as the base year.

3.2.2. Explanatory Variables

This paper uses public infrastructure as an explanatory variable, which refers to public physical
and organizational infrastructure needed for the operation of a society or enterprise, such as roads,
electrical grids, or telecommunications [25,70]. Considering the importance and data availability of
various types of infrastructure in China, we used the stock of transportation infrastructure (STI),
energy infrastructure (SEI), and information infrastructure (SII) as the proxy variable of public
infrastructure. The stock of these three kinds of infrastructure are measured by the density of highways
above class II, the density of electrical grids, and the density of mobile phone exchange capacity,
respectively. They are given below.

STIit =
wLOELOEit + wLOH1LOH1it + wLOH2LOH2it

AOPi
(4)

where LOEit, LOH1it, and LOH2it denote the length of expressway, the length of class I highway,
and the length of class II highway of province i at year t, respectively. AOPi denotes the area of
province i. wLOE, wLOH1 and wLOH2 are the weights of different kinds of highway which depend on
the road’s capacity [71,72].

SEIit =
wLOPL1LOPL1it + wLOPL2LOPL2it + wLOPL3LOPL3it + wLOPL5LOPL5it

AOPi
(5)

where LOPL1it, LOPL2it, LOPL3it, and LOPL5it represent the length of 110kV power line, the length
of 220 kV power line, the length of 330 kV power line, and the length of 500kV power line of province
i at year t respectively. AOPi denotes the area of province i. wLOPL1, wLOPL2, wLOPL3 and wLOPL5 are
the weights of the different kinds of power line which depend on their transmission and distribution
capacity [71,72].

SIIit =
MECit
AOPi

(6)

where MECit represents mobile phone exchange capacity of province i at year t. AOPi denotes
the area of province i.

3.2.3. Control Variables

Besides explanatory variables, we also used industry structure (IND), real income per
capita (YPC), and provincial energy endowment (EE) as control variables following Ang [73],
Greening et al. [74], Hubler and Keller [49], and Jiang and Ji [4]. Industry structure is measured
in the proportion of secondary industry. Real income per capita is computed using 2001 as the base
year and provincial energy endowment is measured in the ratio of provincial energy production to
national energy production.
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3.2.4. Transition Variables

What determines the size of the impact of specific infrastructure on energy intensity? There are
at least two factors which could affect the shape of the infrastructure/energy intensity relationship:
the stock of the specific infrastructure itself and the stock of information infrastructure. As such, we use
these two factors as transition variables in this paper.

Transportation infrastructure, energy infrastructure, and information infrastructure are all typical
network capital with economies of scale and network externality [25,75]. In other words, the effect of
public infrastructure on energy intensity will change when the infrastructure stock increases gradually,
and the final effect is nonlinear. In terms of network externality, once infrastructure stock reaches
a critical level, its impact on energy intensity will rapidly switch from one equilibrium to another
equilibrium [76].

Another factor thought to play a major role in determining the shape of the infrastructure–energy
intensity relationship is the stock of information infrastructure, which could expand the impact
of information and communication technologies (ICT hereafter). In one aspect, ICT could promote
the operational and management efficiency of the infrastructure network, and then strengthen the effect
of infrastructure on energy intensity [77]. In another aspect, ICT could also promote infrastructure-use
efficiency through providing information and guidelines to the users of the infrastructure system [40].

3.2.5. Data Sources

The panel dataset is yearly and covers the period from 2001 to 2016 for 30 Chinese provincial
regions. Tibet, Hong Kong, Macau and Taiwan are excluded due to data constraints. The data on
the length of highways above class II, the capacity of mobile phone exchange, the region area,
the share of secondary industry and gross domestic product of the 30 provinces were taken
from the China Statistical Yearbook [78]. The data on the length of power line above 110 kV for
the 30 provinces were taken from the China Electrical Yearbook [79]. Data on energy consumption
and production of the 30 provinces were taken from China Energy Yearbook [80]. Weights used in
Equations (4) and (5) were taken from Wang and Bi [72]. Based on the above data and Equations (3)
to (6), we calculate the values of all variables used in this paper. All variables are expressed in natural
logarithms. Table 1 reports the descriptive statistics for all variables.

Table 1. Descriptive statistics.

Variable Obs Mean Std. Dev. Min Max Description Unit

lnEI 480 0.3258 0.4977 −0.7869 1.6060 energy intensity tce per 104 yuan

lnSTI 480 5.3913 1.2310 1.6133 7.8635 stock of transportation
infrastructure km per 104 km2

lnSEI 480 7.7905 1.0809 4.2513 10.0917 stock of energy
infrastructure km per 104 km2

lnSII 480 5.0764 1.6177 0.1864 8.9672 stock of information
infrastructure subscribers per km2

lnIND 480 3.8099 0.1995 2.9581 4.0783 industry structure %
lnYPC 480 0.5771 0.6884 −1.2096 2.1786 yield per capita 104 yuan
lnEE 480 0.3553 1.5485 −4.4619 3.4812 energy endowment %

Notes: If prices are involved, the data is at 2001 constant price. For structure variables, the current year’s price is adopted.

3.3. Model Specifications

In accordance with the previous discussion, we assumed that the nonlinear relationship between
public infrastructure and energy intensity depends on the scale of infrastructure stock. The basic
equation is specified as follows:

ln EIit = µi + β1 ln INDit + β2 ln YPCit + β3 ln EEit + β4 ln INFit
+β5 ln INFit · g(qit; γ, c) + uit

(7)
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where lnEI, lnIND, lnYPC, lnEE, and lnINF denote the natural logarithm values of EI, IND, YPC,
EE, and INF. qit is a transition variable. γ is the slope parameter, c is the location parameter and uit
represents the errors. The stock of transportation infrastructure (STI), energy infrastructure (SEI),
and information infrastructure (SII) are used as the proxy variables of INF, respectively, and the specific
infrastructure stock itself is used as the transition variable. Furthermore, information infrastructure
stock (SII) will be used as a transition variable while STI and SEI are used as proxy variable of INF.

There are two problems that need to be solved before the estimation of Equation (7), namely,
testing the linearity hypothesis of the model and choosing the proper value of m in Equation (2).

The PSTR model (Equation (7)) can be reduced to a linear model by imposing either γ = 0 or β5 = 0.
Therefore, testing the linearity hypothesis of model (Equation (7)) is equivalent to testing the null
hypotheses as follows:

H0 : γ = 0; or H′0 : β5 = 0 (8)

However, the associated tests are nonstandard because under either null hypothesis, the PSTR
model contains the unidentified nuisance parameter c. This problem was first studied by Davies [81].
Luukonen et al. [82], Andrews and Ploberger [83], and Hansen [84] later proposed alternative solutions
in the time series context, while Gonzalez et al. [59] proposed a solution in the panel data context.
We follow Luukonen et al. [82] and Gonzalez et al. [59], and test the linearity hypothesis of the model
using the null hypothesis H0:γ = 0. To circumvent the identification problem, we replaced g(qit; γ,c)
in Equation (7) by its first-order Taylor expansion around γ = 0. After reparameterization, this leads to
the following auxiliary regression equation:

ln EIit = µi + β1 ln INDit + β2 ln YPCit + β3 ln EEit + β4 ln INFit
+β∗1 ln INFit · qit + · · ·+ β∗m ln INFit · qm

it + u∗it
(9)

According to the definition of the Taylor expansion, the parameter vectors β1
*, . . . , βm

* are
multiples of γ. Consequently, testing the null hypothesis H0:γ = 0 in Equation (8) is equivalent to
testing the null hypothesis H0′ :β1

* = . . . = βm
* = 0 in Equation (9). This null hypothesis could

be conveniently tested by a Lagrange multiplier test (LM). To define the LM statistics, we follow
Mehrara et al. [85] in the following strategy: considering SSR0 as the sum of the squares of panel errors
in the null hypothesis H0′ and SSR1 as the sum of the squares of panel errors in Equation (9), the LM
statistic is equal to the following:

LM = ((SSR0 − SSR1)/k ·m)/(SSR0/(T · N − N − k ·m)) (10)

where k refers to the number of explanatory variables, m is the number of location parameters,
and N and T denote the cross-section and time dimensions of the panel, respectively. Under the null
hypothesis, the LM statistic (Equation (10)) is asymptotically distributed as a chi-squared distribution
with k·m degrees of freedom and the corresponding F statistic as the distribution F (k·m, T·N-N-k·m).

Another problem is the selection of an appropriate value for m, i.e., the number of location
parameters. In practice, it is usually enough to consider m = 1 or m = 2, as these values allow
for commonly encountered types of variations in the parameters [59]. Granger and Terasvirta [68]
and Terasvirta [69] proposed a sequence of tests for choosing between m = 1 or m = 2 in similar studies.
Applied to the present situation, this testing sequence reads as follows: using the auxiliary regression
Equation (9) with m = 3, test null hypothesis H00′ : β1

* = β2
* = β3

* = 0. If it is rejected, test H03′ :
β3

* = 0, H02′ : β2
* = 0|β3

* = 0 and H01′ : β1
* = 0|β2

* = β3
* = 0. According to Terasvirta [69], if m = 2,

then H02′ will be rejected more strongly than H03′ and H01′ . For m = 1, the situation is just the opposite.
Therefore, we can select m = 2 if the rejection of H02′ is the strongest. Otherwise, we should select m = 1.

Because the null hypothesis H0′ contains the unknown parameter m, we first selected the proper
value of m following the above testing sequence and then tested the linearity hypothesis of the models
with the determined value for m.



Sustainability 2019, 11, 629 9 of 21

Model 1 to Model 5 are described in the Appendix A. According to Table 2, all the null
hypotheses H00′ are strongly rejected, showing evidence of a nonlinear relationship among them.
Rejection of H01′ is the strongest in Model 1, Model 3, and Model 5, suggesting that these three
models are the PSTR models with m = 1. In addition, the rejection of H02′ is the strongest in Model 2
and Model 4. Thus, the PSTR models with m = 2 are chosen for Model 2 and Model 4.

Table 2. Linearity tests for selecting m.

Model
(Explanatory Variable/

Transition Variable)

H00′ H03′ H02′ H01′

LM p-Value LM p-Value LM p-Value LM p-Value

Model 1 (STI/STI) 40.7879 0.0000 0.7203 0.3901 9.5112 0.0020 31.2356 0.0000
Model 2 (STI/SII) 40.6435 0.0000 15.9915 0.0000 24.7144 0.0000 0.8299 0.3693
Model 3 (SEI/SEI) 21.7359 0.0000 0.6153 0.4328 3.9636 0.0465 17.3272 0.0000
Model 4 (SEI/SII) 62.6728 0.0000 10.9015 0.0000 48.4463 0.0000 5.0364 0.0248
Model 5 (SII/SII) 33.4464 0.0000 2.6352 0.1045 0.3203 0.5714 30.6814 0.0000

4. Results

We estimate all five PSTR models described in the Appendix A using the non-linear square
method and report the estimated results in Table 3. The estimated slope parameters are relatively small
in all models, implying that there is a continuum of conditions between two regimes. That is to say,
the transition from one regime to another is smooth. We also employed a quadratic polynomial model
to explore the nonlinear relationship between public infrastructure and energy intensity. The results are
presented in Table A1 in the Appendix A. According to the Wald test in Table A1, linearity hypotheses
are rejected in all five models except Model 9, implying that it is more proper to take the nonlinearity
relationship into account. In general, the nonlinear effect of public infrastructure on energy intensity
in PSTR models tends to be quite similar to the results of quadratic polynomial models in most
cases, which confirms that the PSTR is a good approximation of the quadratic fixed effects model.
Indeed, the inclusion of quadratic and interaction terms might be well suited to model U-shaped
relations, but fails to account properly for more complex nonlinear effects that could be well modeled
by the PSTR approach [86]. Therefore, in the following paragraphs we will focus on the estimation
results of the PSTR approach.

Model 1 and Model 2 of Table 3 show the results when public infrastructure is proxied by
transportation infrastructure and the transition variable is proxied by transportation and information
infrastructure, respectively. As shown in Model 1, there is a significantly negative relationship
between transportation infrastructure and energy intensity, since the estimated coefficients of
lnSTI are significantly negative (−0.0034 and −0.091) in the two regimes. These results suggest
that as the stock of transportation infrastructure rises, energy intensity decreases slowly in
the early stage of the transportation development. In the later stage, energy intensity then rapidly
decreases after the level of transportation infrastructure exceeds approximately 52.5 km per 104 km2

(estimated location parameter is 3.9604). These results are similar to those of Rudra [87] and Guo
and Zhang [88]. They found that investment in transportation infrastructure could enhance energy
efficiency, but they did not take a nonlinearity relationship between transportation infrastructure
on energy intensity into consideration. The marginal effect (see details in the Appendix A)
of transportation infrastructure on energy intensity using transportation infrastructure as a transition
variable is shown as the yellow line in Figure 2. The final effects of transportation infrastructure on
the energy intensity of 30 provinces in 2016 are also shown in Figure 2. The provinces are divided into
eastern, middle, and western provinces (see details in Table A2 the Appendix A). According to Figure 2,
except for two western provinces, Qinghai and Xinjiang, transportation infrastructure stocks have
already exceeded the threshold value in the remaining provinces, which implies that these provinces
will remain in the high-impact regime when the stock of transportation infrastructure increases.
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Table 3. Estimation results of PSTR models.

Model
(Explanatory Variable/

Transition Variable)

Model 1
(STI/STI)

Model 2
(STI/SII)

Model 3
(SEI/SEI)

Model 4
(SEI/SII)

Model 5
(SII/SII)

γ
15.5432

(18.5043)
0.2869

(0.1823)
2.7773

(1.9942)
0.9699 **
(0.4493)

3.9383
(2.7765)

c1 3.9604 ***
(0.0819)

10.0443 ***
(2.0140)

4.8595 ***
(0.4553)

7.6793 ***
(0.1083)

7.8414 ***
(0.1829)

c2 2.1483 ***
(0.4146)

1.7189 ***
(0.2075)

lnSTI −0.0034 *
(0.0019)

−0.0025 *
(0.0016)

lnSTI·g(lnSTI) −0.0876 ***
(0.0245)

lnSTI·g(lnSII) −0.3394 *
(0.1819)

lnSEI 0.0323 ***
(0.0829)

0.1339 ***
(0.0329)

lnSEI·g(lnSEI) 0.0805 *
(0.0492)

lnSEI·g(lnSII) −0.0281 ***
(0.0060)

lnSII −0.0963 ***
(0.0197)

lnSII·g(lnSII) −0.0728 ***
(0.0163)

lnIND 0.2293 ***
(0.0339)

0.6361 ***
(0.0517)

0.6555 ***
(0.0481)

0.5628 ***
(0.0509)

0.3209 ***
(0.0168)

lnYPC −0.2685 ***
(0.0304)

−0.3936 ***
(0.0331)

−0.4466 ***
(0.0314)

−0.4733 ***
(0.0289)

−0.1660 ***
(0.0326)

lnEE 0.0768 ***
(0.0108)

0.0146
(0.0127)

0.0234 *
(0.0126)

0.0185
(0.0129)

0.0859 ***
(0.0108)

N 480 480 480 480 480

Notes: ***, ** and * denote significance at the 1%, 5% and 10% levels, respectively; standard errors are given in brackets.
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Figure 2. Marginal effect of transportation infrastructure on energy intensity using transportation
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The two threshold parameters in Model 2 are estimated to be approximately 8.57 subscribers
per km2 (estimated location parameter is 2.1483) and 23,024.17 subscribers per km2 (estimated location
parameter is 10.0443). It is implied that when the transition variable (information infrastructure)
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grows, the marginal effect of transportation infrastructure on energy intensity will gradually decrease
from 0.3419 to 0.0025 in absolute value after the level of information infrastructure stock exceeds
the smaller threshold value. Then, it will gradually increase to 0.3419 again when information
infrastructure stock exceeds the bigger threshold value. These findings provide an interpretation of
the different influences of ICT infrastructure found by Abdolrasoul and Roghayeh [89]. They observed
that information infrastructure strengthens the impact of transportation infrastructure on energy
intensity in some countries, while it weakens the previously mentioned impact in other countries.
Furthermore, both coefficients of the transportation infrastructure and transition variable are
significantly negative in Model 2, implying that the impact of transportation infrastructure on energy
intensity is still negative when using information infrastructure as the transition variable. The marginal
effect of transportation infrastructure and the impacts of 30 provinces in 2016 are presented in
Figure 3. According to Figure 3, the information infrastructure stocks of these provinces are all
between the two threshold values, implying that the impact of transportation infrastructure on energy
intensity tends to increase as information infrastructure increases.
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Figure 3. Marginal effect of transportation infrastructure on energy intensity using information
infrastructure as a transition variable.

Model 3 and Model 4 of Table 3 show the results when public infrastructure is proxied by
energy infrastructure and the transition variable is proxied by energy and information infrastructure
respectively. As shown in Model 3, there is a significantly positive relationship between energy
infrastructure and energy intensity, which is similar to the findings of Wang et al. [90]. However, in our
model, we took the nonlinear relationship into consideration and found that the influence of energy
infrastructure on energy intensity gradually switches from low impact regime (0.0323) to high impact
regime (0.1128). This change occurs when the energy infrastructure stock exceeds the threshold
value of 128.96 km per 104 km2 (estimated location parameter is 4.8595). The marginal effects of
energy infrastructure on the 30 provinces’ energy intensity are shown in Figure 4. According to
Figure 4, the energy infrastructure stocks of all provinces have already exceeded the threshold value,
implying that the impact of energy infrastructure on energy intensity has already switched from a low
impact regime to a high impact regime.
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as transition variable.

Considering Model 4, which uses the stock of information infrastructure as the transition
variable, the results clearly demonstrate a nonlinear relationship. The two threshold parameters
in Model 4 are estimated to be approximately 5.58 subscribers per km2 (estimated location parameter
is 1.7189) and 2163.11 subscribers per km2 (estimated location parameter is 7.6793). This result
implies that information infrastructure could make energy infrastructure more efficient and thus
strengthens the positive impact of the energy infrastructure on energy intensity, which is consistent
with Laitner’s results [77]. But when the information infrastructure stock exceeds the larger threshold
value, the positive influence of the energy infrastructure on energy intensity will gradually decrease
to 0.1048, which is consistent with the findings of Wang et al. [90]. Our results provide an integrated
interpretation to the different impacts of energy infrastructure on energy intensity as described
by Laitner and Wang et al. Figure 5 clearly shows the nonlinear impact of energy infrastructure
on energy intensity and the smooth switching from one regime to another regime as information
infrastructure increases. Additionally, according to Figure 5, the information infrastructure stock
in three eastern provinces (i.e., Shanghai, Beijing and Tianjin) has already surpassed the larger
threshold value, thus weakening the positive influence of energy infrastructure on energy intensity.
However, the information infrastructure in the remaining provinces remains at a relatively lower level
and should be improved in the future.

The results of Model 5 show that there is a significantly negative relationship between information
infrastructure on energy intensity, since the estimated coefficients of information infrastructure
are both significantly negative (−0.0963 and −0.1691) in the two regimes, which is similar to
Zhou et al. [13]. These results suggest that as information infrastructure stock rises, energy intensity
slowly decreases during the early stage of information infrastructure development, and then rapidly
decreases during the later stage, after the level of information infrastructure exceeds 2543.76 subscribers
per km2 (estimated location parameter is 7.8414). Figure 6 shows the marginal effect of information
infrastructure on energy intensity as information infrastructure grows. In Figure 6, we also presented
the influences of the 30 provinces. According to Figure 6, the information infrastructure stocks are
still below the threshold value, except for three eastern provinces (i.e., Shanghai, Beijing and Tianjin).
This means that improving the information infrastructure in most of the provinces would reduce
the energy intensity.
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In addition, the estimated coefficients of industry structure and energy endowment, are positive
in all the models, although the coefficients of energy endowment in Model 2 and Model 4 are
insignificant, implying that energy intensity will increase when the proportion of secondary industry or
the ratio of provincial energy production to national energy production increases, which is consistent
with economic theory and the existing literature [4,49]. The significantly negative coefficients of
income per capita mean that energy intensity will decrease when income per capita increases, which is
consistent with Greening et al. [74].

5. Conclusions and Policy Implications

Using a panel smooth transition regression model, this paper empirically assessed the nonlinear
relationship between public infrastructure and energy intensity in 30 Chinese provinces
from 2001 to 2016. Noticing that different types of public infrastructure may have different impact
patterns on energy intensity, we used three types of public infrastructure (i.e., transportation, energy,
and information infrastructure) as the proxy variables, respectively. The results show that there exists
a clear nonlinear relationship between energy intensity and public infrastructure.
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The main conclusions are as follows. First, transportation infrastructure has a significantly
negative effect on energy intensity, and this negative effect could be gradually strengthened when
the transportation infrastructure stock exceeds the threshold value. Adversely, energy infrastructure
has a significantly positive effect on energy intensity, and this positive effect will be gradually
strengthened during the development of energy infrastructure. Second, the development of
information infrastructure could not only strengthen its own significantly negative effect on
energy intensity, but it could also promote the negative effect of transportation infrastructure
on energy intensity. Moreover, the positive impact of energy infrastructure on energy intensity
gradually decreases when the stock of information infrastructure surpasses the larger threshold
value. Finally, different types of public infrastructure have different nonlinear impact patterns on
energy intensity, which may explain why existing studies on the nexus between public infrastructure
and energy intensity appear to exhibit diverse and dissimilar results.

The above results can provide guidance on developing appropriate infrastructure and energy
policies and reconcile the dilemma of economic growth, energy consumption, and environmental
protection in China. The important policy implications of these conclusions are as follows:
First, the findings suggest that policy makers could reduce energy intensity by accelerating
the development of transportation infrastructure. Moreover, they could further strengthen the negative
effect of transportation infrastructure on energy intensity in Xinjiang and Qinghai through the increase
of transportation infrastructure investment, since the stock of transportation infrastructure is still
below the threshold value in these two provinces. Second, policy makers could also reduce energy
intensity by accelerating the development of information infrastructure. Furthermore, they could
strengthen the negative effects of transportation infrastructure and information infrastructure on energy
intensity and weaken the positive effect of energy infrastructure on energy intensity by increasing
information infrastructure investment since the scale of information infrastructure in most of provinces
is still below the threshold values. Finally, paying more attention to accelerating the development of
information infrastructure in western provinces will be beneficial to strengthening the negative effects
of public infrastructure on energy intensity, because western provinces are lagging behind the middle
and eastern provinces in the construction of information infrastructure.

Although using transportation, energy and information infrastructure as proxy variables of public
infrastructure correspondingly provides valuable insights, it has limitations, which should serve to
stimulate further research. First, our research is limited to the sample data. Extending the study to
evaluate other types of public infrastructure to confirm our findings and test the sensitivity of the results
is one area where we could extend this study. Second, this paper could not provide more information
about the relationship between energy intensity and aggregated measures of public infrastructure.
In further research, we may consider building an aggregative indicator of public infrastructure using
two methods. One is by using the principal components analysis method to aggregate different types
of physical public infrastructure. The other is by calculating the capital stock of the different types of
public infrastructure that could be aggregated directly. Then we can further analyze the nexus between
energy intensity and aggregated public infrastructure.
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Appendix A

A1. Description of Model 1 to Model 5

Based on Equation (7), in order to analyze the impacts of different types of public infrastructure
on energy intensity and the effects of interaction between different types of public infrastructure on
energy intensity, we can use the stocks of transportation infrastructure (STI), energy infrastructure
(SEI), and information infrastructure (SII) as the proxy variables of INF, respectively, and the specific
infrastructure stock itself as the transition variable. Furthermore, we can use information infrastructure
stock (SII) as the transition variable while STI and SEI can be used as proxy variables of INF.
Therefore, we have five different empirical models.

Model 1 is presented as follows.

ln EIit = µi + β1 ln INDit + β2 ln YPCit + β3 ln EEit + β4 ln STIit
+β5 ln STIit · g(STIit; γ, c) + uit

(A1)

where the stock of transportation infrastructure STIit is used as the proxy variable of public
infrastructure INFit and transition variable qit in Equation (7) at the same time. Other symbols
have the same meanings as the symbols in Equation (7).

Model 2 is presented as follows.

ln EIit = µi + β1 ln INDit + β2 ln YPCit + β3 ln EEit + β4 ln STIit
+β5 ln STIit · g(SIIit; γ, c) + uit

(A2)

where the stock of transportation infrastructure STIit is still used as the proxy variable of public
infrastructure INFit, but the stock of information infrastructure is used as the transition variable.
Other symbols have the same meaning as the symbols in Equation (7).

Model 3 is presented as follows.

ln EIit = µi + β1 ln INDit + β2 ln YPCit + β3 ln EEit + β4 ln SEIit
+β5 ln SEIit · g(SEIit; γ, c) + uit

(A3)

where the stock of energy infrastructure SEIit is used as the proxy variable of public infrastructure
INFit and the transition variable qit in Equation (7) at the same time. Other symbols have the same
meaning as the symbols in Equation (7).

Model 4 is presented as follows.

ln EIit = µi + β1 ln INDit + β2 ln YPCit + β3 ln EEit + β4 ln SEIit
+β5 ln SEIit · g(SIIit; γ, c) + uit

(A4)

where the stock of transportation infrastructure STIit is used as the proxy variable of public
infrastructure INFit, and the stock of information infrastructure is used as transition variable.
Other symbols have the same meaning as the symbols in Equation (7).

Model 5 is presented as follows.

ln EIit = µi + β1 ln INDit + β2 ln YPCit + β3 ln EEit + β4 ln SIIit
+β5 ln SIIit · g(SIIit; γ, c) + uit

(A5)

where the stock of information infrastructure SIIit is used as the proxy variable of public infrastructure
INFit and transition variable qit in Equation (7) at the same time. Other symbols have the same meaning
as the symbols in Equation (7).
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A2. Estimation Results of Quadratic Polynomial Models

Table A1. Estimation results of quadratic polynomial models.

Variable Model 6 Model 7 Model 8 Model 9 Model 10

lnSTI 0.2620 ** 0.0722
(0.1031) (0.0895)

lnSEI 0.5217 ** 0.1619
(0.2050) (0.1125)

lnSII 0.2119 ***
(0.0748)

(lnSTI)2 −0.0313 ***
(0.0100)

lnSTI *lnSII −0.0134 *
(0.0072)

(lnSEI)2 0.0319 **
(0.0122)

lnSEI *lnSII −0.0052
(0.0072)

(lnSII)2 −0.0130 ***
(0.0044)

IND 0.2437 * 0.2706 ** 0.2037 0.2534 * 0.1733
(0.1345) (0.1213) (0.1374) (0.1283) (0.1434)

YPC −0.3018 −0.2818 −0.3045 * −0.3196 * −0.3602 **
(0.1896) (0.2071) (0.1526) (0.1677) (0.1703)

EE 0.0383 ** 0.0509 ** 0.0388 ** 0.0540 ** 0.0352 **
(0.0164) (0.0207) (0.0158) (0.0204) (0.0152)

cons −1.0182 * −0.7119 −2.4368 ** −1.5823 * −0.8382
(0.5875) (0.6173) (0.9366) (0.8552) (0.5273)

N 480 480 480 480 480
FE Y Y Y Y Y

Wald test 9.82 *** 3.42 * 6.83 ** 0.53 8.76 ***
Adj.R2 0.8565 0.8423 0.8559 0.8435 0.8600

Notes: (1) ***, ** and * denote significance at the 1%, 5% and 10% levels, respectively; standard errors are
given in brackets. (2) Energy intensity is the explained variable in all five models used to explore the nonlinear
relationship between public infrastructure and energy intensity. (3) Model 6 uses transportation infrastructure
(lnSTI) and quadratic term of lnSTI as explanatory variables. Model 7 uses transportation infrastructure (lnSTI)
and interaction term of lnSTI and information infrastructure (lnSII) as explanatory variables. Model 8 uses energy
infrastructure (lnSEI) and quadratic term of lnSEI as explanatory variables. Model 9 uses energy infrastructure
(lnSEI) and interaction term of lnSEI and lnSII as explanatory variables. Model 10 uses lnSII and quadratic term of
lnSII as explanatory variables. (4) Null hypothesis of Wald test is that the coefficient of quadratic term in the model
is equal to zero.

A3. Marginal Effect of Public Infrastructure on Energy Intensity

Based on Equation (7), if the transition variable qit is different from the specific public
infrastructure lnINF, the marginal effect of specific public infrastructure on energy intensity is,

Marginal e f f ect = β4 + β5 · g(qit; γ, c) (A6)

If the transition variable qit is proxied by the specific public infrastructure lnINF, the marginal
effect of specific public infrastructure on energy intensity is,

Marginal e f f ect = β4 + β5 · g(qit; γ, c) + β5 · lnINF · g′(qit; γ, c) (A7)

where g’ (qit; γ,c) denotes the derivative of transition function with respect to transition variable lnINF.
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A4. The Stock of Three Types of Public Infrastructure in 30 Provinces in 2016

Table A2. The stock of three types of public infrastructure in 30 provinces in 2016.

Province Transportation
Infrastructure

Energy
Infrastructure

Information
Infrastructure

Eastern Provinces

Beijing 7.151 9.212 8.043
Fujian 6.311 8.603 6.498

Guangdong 6.774 8.881 7.108
Hainan 5.865 8.174 6.162
Hebei 6.429 8.851 6.442

Heilongjiang 5.024 7.412 5.225
Jiangsu 7.245 9.574 6.991

Jilin 5.691 8.080 5.366
Liaoning 6.336 8.883 6.113

Shandong 6.823 8.953 6.739
Shanghai 7.864 10.090 8.940

Tianjin 7.609 9.447 7.762
Zhejiang 6.747 9.186 7.065

Middle Provinces

Anhui 6.397 8.753 6.472
Henan 6.556 8.732 6.649
Hubei 6.476 8.700 6.186
Hunan 6.010 8.208 5.845
Jiangxi 6.279 8.239 5.566
Shanxi 6.337 8.749 5.828

Western
Provinces

Chongqing 6.213 8.603 6.195
Gansu 5.068 7.222 4.385

Guangxi 5.686 7.924 5.419
Guizhou 5.997 8.094 5.665

Neimenggu 4.569 7.169 4.047
Ningxia 6.110 7.974 5.367
Qinghai 4.035 6.047 2.900
Shannxi 5.923 7.987 5.595
Sichuan 5.354 7.966 5.834
Xinjiang 3.781 6.013 3.685
Yunnan 5.095 8.009 5.021

Notes: The stocks of the three types of public infrastructure in the 30 provinces were calculated according
to Equation (4) to (6), and the original data were taken from China Statistical Yearbook, China Electrical
Yearbook, and China Energy Yearbook. All variables are expressed in natural logarithm. The units of the stocks
of transportation infrastructure, energy infrastructure and information infrastructure are km per 104 km2,
km per 104 km2 and subscribers per km2 respectively.
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