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Abstract: As a result of the impact of energy consumption, research on ultra-low energy, nearly
zero-energy, and zero energy buildings has been conducted in China. However, the design of
the nearly zero-energy building is flexible; the traditional architectural design method is not fully
applicable to nearly zero-energy buildings. The paper proposed a performance-based design method
based on overall energy consumption and progress for the nearly zero-energy building. The design
process of the relevant cases was also analyzed. The factors of cold and heat sources, environment,
and renewable energy were combined to make a comprehensive analysis to get the optimal scheme
of the nearly zero-energy building in the case. In general, the performance-based design method has
a certain guiding significance for the design of nearly zero-energy buildings and certainly promotes
the expansion of the nearly zero-energy building industry in China.

Keywords: nearly zero-energy building; traditional design method; performance-based design
method; design process

1. Introduction

With the development of the social economy, the urbanization process has rapidly advanced,
and the living standards for humans have continuously improved. This has resulted in high
energy consumption and a large number of pollutant emissions. Energy supplies have become
increasingly exhausted, and environmental problems are raising significantly more concern. According
to previous statistics, global building energy consumption has reached 25–40% of the total global energy
consumption. In China, the energy consumption of building operations occupies about 20% of the
total energy consumption of the whole country [1]. Building energy conservation has become a global
focus that requires further development. At present, there are two main directions for building energy
conservation, namely “developing sources” and “reducing consumption”. “Developing sources”
refers to the development and use of new energy sources, while “reducing consumption” refers to the
reduction of building energy consumption through new techniques.

At the 21st UN General Assembly in December 2015, the prediction of the rapid growth of energy
consumption in the whole life cycle of buildings in the next 30 years has attracted wide attention from all
countries. There is a consensus on the importance of special energy conservation and emission reduction
work for buildings. Nearly zero energy consumption buildings show irreplaceable advantages in
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building energy saving, reducing consumption, and improving the efficiency of renewable energy
utilization [2].

The construction of nearly zero-energy buildings, which are designed with high-performance
building envelopes, high airtightness, efficient energy-consuming equipment, and renewable energy
utilization, is an important and efficient approach to reduce the building energy consumption and
achieve building energy conservation. The airtightness of the whole building directly affects the energy
consumption of the building. Taking Germany as an example, it is required that the ventilation times
of ordinary natural ventilation buildings should be less than or equal to 3.0 h−1, mechanical ventilation
buildings should be less than or equal to 1.5 h−1, and passive buildings should be less than or equal to
3.0 h−1 [3]. For this reason, Europe, the United States, and other countries have conducted a significant
amount of research on nearly zero-energy buildings and have also made energy strategic plans and
policy aims [4].

The development and promotion of nearly zero-energy buildings require “political priority”.
National energy laws and policies are an important way to promote energy efficiency in buildings and
to provide direction for the development of the construction industry. According to relevant research,
commercial and residential buildings can reduce electricity consumption by 10% if energy policies are
followed [5]. At the same time, a market analysis of qualitative and quantitative indicators has identified
the gaps in the carbon target policy, and the social and technical barriers to the implementation of
nearly zero energy consumption buildings have been clarified [6].

Unlike traditional architectural design methods that meet standards, the construction of nearly
zero-energy buildings involves rebuilding old buildings or designing solutions that are based on
climate to ensure comfort. The “combining simulation” method with energy consumption simulation
software is used to compare the primary energy demand and emission reduction of different schemes
and to improve the feasibility of nearly zero-energy building designs and rebuilding. Firstly, according
to previously-verified and widely used technology, different parameters can be changed to give a
large number of possible solutions, and the deviations between different solutions can be analyzed
to find the energy balance point so that energy-saving properties can be evaluated for different
schemes. Secondly, during the process of nearly zero-energy building development, improving the
performance of the envelope, the airtightness of buildings, and using high-tech equipment compared
to traditional buildings will inevitably lead to increased costs. High airtightness can ensure the
thermal insulation performance of building windows. The higher the airtightness level, the smaller
the heat loss. Therefore, economical and energy-saving cost-efficiency must be considered when
comparing schemes and conducting an energy and cost optimization analysis. In addition, some
researchers have suggested that the use of natural lighting, ventilation, and other natural phenomena
to improve indoor environment and comfort in nearly zero-energy buildings cannot be ignored; thus,
it is necessary to add common benefits to the comprehensive benefit evaluation method for nearly
zero-energy buildings [7–11]. Numerous studies have shown that human behavior patterns have a
potential impact on the energy required to heat and cool a building. In the design of nearly zero-energy
buildings, full consideration of building functions and human behavior patterns can effectively reduce
building energy consumption [12,13]. At the same time, the energy consumption monitoring system is
configured to not only ensure energy efficiency but also to detect whether the design purpose has been
achieved and to convey an awareness of actively reducing energy consumption to the user [14].

Nearly zero-energy building design, construction, and renovation require significant contributions
from all parts of the construction industry and are a challenge for the construction industry. A successful
nearly zero-energy building requires a reasonable design, new technology, and highly demanding
construction [15]. The design of nearly zero-energy buildings needs to take the impacts of different
climate zones and energy consumption of different functional buildings into account, and it should also
avoid damage to the surrounding ecology [16]. This is usually done using multi-objective optimization
algorithms (energy saving, cost, etc.) [17,18].
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Costanzo presents a comprehensive method in view of the problems related to the matching of
renewable energy generation and building energy demand. On the demand side, hourly energy profiles
are generated using dynamic building simulation, taking into account actual urban morphologies.
On the supply side, electricity generated from the system is predicted, considering both the direct and
indirect components of solar radiation, as well as local climate variables [19].

Srinivasan et al. proposed a method for assessing the balance of renewable energy use in buildings,
using the maximum building renewable energy utilization potential combined with building energy
efficiency measures to achieve an optimal nearly zero-energy building design [20].

From the perspective of zero carbon emissions, Whang studied the practical effects of using
passive building energy-saving technology (PDE) in residential buildings and analyzed the PDE of
existing residential buildings through the analytic hierarchy process to provide some guidance for the
selection of optimal architectural designs [21].

Mohamed Hamdy and other studies demonstrated that a nearly zero-energy building design
method that only meets the parameters of the envelope structure is not the most economical solution;
thus, they proposed a multi-objective optimization method based on the genetic algorithm to minimize
carbon dioxide emissions and the initial HVAC system investment. An analysis of the application of
this optimization method to three cases showed that the carbon dioxide emissions reduced by 32%,
and the initial investment reduction was 26% [22,23].

Berggren et al. summarized the overall design idea, construction, installation, and energy balance
of an office building including parameters, such as reducing building heat loss, improving heat recovery
efficiency; using energy-saving equipment to reduce the electricity demand; using passive solar energy
and solar-thermal energy, using photovoltaics; and configuring an energy monitoring system to allow
users to visualize their energy utilization [23].

Yao et al. used an extensive parametric analysis method of several passive strategies such as
building orientation, thermal insulation, glazing area, shading devices, airtightness, and natural
ventilation, for a typical apartment block to demonstrate the use of climate-sensitive passive design
solutions can help the improvement of indoor thermal conditions while reducing the energy needs and
ultimately carbon emissions [24] (see Table 1).

Table 1. Summary of the research results.

Research Team Research Contents

Costanzo et al. [19] the matching problem between renewable energy
generation and building energy demand

Srinivasan et al. [20] a method for assessing the balance of renewable energy use
in buildings

Whang et al. [21] the practical effects of using passive building
energy-saving technology (PDE) in residential buildings

Hamdy et al. [22] a nearly zero-energy building design method

Berggren et al. [23] the overall design idea, construction, installation, and
energy balance of an office building

Yao et al. [24] the effect of passive measures on thermal comfort and
energy conservation

Compared with foreign countries, research on building energy efficiency developed later in
China. In the early stage of development, research, and cooperation in the field of nearly zero-energy
consumption technology were mainly carried out abroad. The establishment of several demonstration
projects has achieved good energy conservation effects. With the release of relevant energy-saving
standards and relevant policies, from 1986 to 2016, the “30%–50%–65%” three-step energy-saving
goal of China’s building energy-saving work was basically achieved. The new three-step goal,
“30%–30%–30%” for the 2016–2030 period, will be a significant strategy in the development of China’s
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energy conservation [25]. Nearly zero energy consumption is an important milestone, and it is the
future development direction of China’s building energy conservation industry. In the construction of
nearly zero-energy consumption system, China has issued technical guidelines for passive ultra-low
energy consumption green building and technical standards for nearly zero-energy building. Standards
in the field of nearly zero energy consumption have been gradually improved.

At present, the research on the design methods of nearly zero-energy buildings in China is focused
on meeting the relevant needs of technology and equipment and following the design pattern that meets
certain indicators, so there is a lack of development of systematic design methods aimed at the overall
performance of buildings. In order to narrow the gap between nearly zero-energy buildings in China
and abroad, this lack of design needs to be addressed. This paper investigates the design requirements
and characteristics of nearly zero energy buildings to study and analyze the systematic design method
and process of nearly zero-energy building development, which provides some guidance for the
promotion and engineering application of nearly zero-energy buildings in China.

2. Methodology

In the paper, a performance-based design method based on overall energy consumption and
progress for the nearly zero-energy building was proposed. The research process of the paper
is as follows. Firstly, the paper introduced the concept of nearly zero-energy buildings and its
development and requirements in China. Then, the paper pointed out that passive energy-saving
technologies, low-energy systems, and renewable energy are the core components of nearly zero-energy
building performance design work and proposed a performance-based design method for the nearly
zero-energy building that meets the performance goals and requirements of the owners. Finally, the
performance-based design method for the nearly zero-energy building was used in a nearly zero-energy
building design case and achieved the design of the nearly zero-energy building.

3. Nearly-Zero-Energy Buildings

The definition and performance requirements of ultra-low-energy buildings and zero-energy
buildings in different countries are varied due to differences in climate and building use. As a transition
to zero-energy buildings, China has proposed the concept of nearly zero-energy buildings.

The concept of nearly zero energy consumption was first proposed by the Chinese government in
the 2015 “Passive Ultra Low Energy Building Technology Passive and Ultra low-energy systems Energy
Green Building Technology Guidelines” (residential building) [26]. The passive ultra-low energy green
buildings defined by the guidelines are actually nearly zero-energy buildings that are characterized
by adaptation to climate characteristics and natural conditions through thermal insulation and the
airtight performance of the envelope structure using efficient new wind-heat recovery technology to
minimize the heating and cooling needs of the building and to make full use of renewable energy to
provide a comfortable indoor environment with less energy consumption.

In order to implement the relevant national laws, regulations, guidelines and policies in China,
improve the indoor environmental quality and building quality, reduce energy demand, improve
energy efficiency, promote renewable energy building applications, and guide buildings to gradually
achieve nearly zero energy consumption, the standard “Technical Standards for Nearly Zero Energy
Building” [27] has been formulated, which will be released in 2019. The standard can apply to
the design, construction, operation, and evaluation of nearly zero-energy buildings. The definition
of a “nearly zero-energy building” was revised in the approved “Technical Standards for Nearly
Zero-Energy Building” [27]. According to these standards, the buildings should adapt to the climate and
natural conditions, the heating and cooling demands should be minimized through passive technical
approaches, the efficiency of the energy equipment and system should be maximized, renewable
energy sources should be used, the energy system operation should be optimized, a comfortable indoor
environment with minimum energy consumption should be provided, and indoor environmental
parameters and energy consumption indicators should meet the requirements given by this standard.
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Due to the large land area of China and its five climatic zones [28], the “Technical Standards for
Nearly Zero-Energy Building” have different energy consumption indicators for residential buildings
in different climatic zones, which indicate the direction for the design of nearly zero-energy buildings
in different climatic zones. The standard requires energy savings of more than 75% for residential
buildings and more than 60% for public buildings in hot and warm summer and cold winter areas.
Buildings in severe cold and cold areas no longer require traditional heating methods, and more than
60% of energy use can be saved in residential buildings. Energy saving in public buildings is over 70%.
In addition, the present values of the standard primary energy consumption and renewable energy
utilization indicators are also given, as shown in Tables 2 and 3. The related parameters of annual
cooling consumption and airtightness of buildings in Tables 2 and 3 are based on the technical standard
for nearly zero-energy buildings.

Table 2. Energy consumption indicators of residential buildings with nearly zero-energy consumption
in different areas [27].

Climate Classification
Severe
Cold
Area

Cold
Area

Hot Summer
Cold Winter

Area

Hot Summer
Warm Winter

Area

Moderate
Area

Energy
consumption

index

Annual heat consumption
(kWh/ m2

·a) ≤18 ≤15 ≤5

Annual cooling capacity for
cooling (kWh/ m2

·a) ≤3.5 + 2.0 ×WHD20 2O + 2.2 × DDH28 3O

Annual primary energy
consumption for heating, air

conditioning, and lighting
(kWh/m2

·a)

≤50

Renewable energy utilization
rate (%) ≥10%

Airtightness
index Number of air changes, N50 ≤0.6 ≤1.0

Remarks

1O m2 is the inner use area of the set, and the inner use area should include the sum of the used area
including the bedroom(s), living room (hall), dining room, kitchen, bathroom(s), hall, aisle, storage
room, closets, etc.;

2O WHD20 (Wet-bulb degree hours 20) is the cumulative value of the difference between the wet-bulb
temperature at the time when the outdoor wet-bulb temperature is 20 ◦C and higher than 20 ◦C
within a year (units: kKh);

3O DDH28 (Dry-bulb degree hours 28) is the cumulative value of the difference between the dry bulb
temperature at the time when the outdoor dry bulb temperature is 28 ◦C and higher than 28 ◦ C
within a year (units: kKh);

Table 3. Energy consumption indicators of public buildings with nearly zero-energy consumption in
different areas [27].

Climate Classification Severe Cold
Area Cold Area

Hot
Summer

Cold Winter
Area

Hot
Summer

Warm
Winter Area

Moderate
Area

Performance indicators
of building ontology

Energy-saving rate
of building body ≥30% ≥20%

Number of air
changes, N50

≤1.0 -

Renewable energy utilization rate (%) ≥10%

Comprehensive energy saving rate of buildings ≥60%

4. Systematic Design Method for Nearly Zero-Energy Buildings

Nearly zero-energy buildings require the design concept of “passive design priority and active
optimization” to be applied. Firstly, high-performance building insulation and doors and windows are
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used to reduce the building’s own heating and cooling load requirements, and then, efficient energy
systems are applied, which prioritize the use of renewable energy to reduce energy consumption
from traditional sources. The aim is to achieve the energy-saving goals established in the guidelines.
Through multi-parameter and multi-factor simulation analysis, a good energy-saving effect can
be obtained.

The nearly zero-energy building concept should be used throughout the whole process (planning,
design, construction, operation, etc.). The earlier relevant concepts are used in the implementation of
the project, and it is favorable to implement relevant technologies and work. The scheme and design
used for nearly zero-energy buildings are the foundations of the project. The systematic design method
of nearly zero-energy buildings was proposed based on the required features of these buildings.

4.1. Applicability Analysis of Traditional Design Methods

At present, the design method adopted by most buildings in China is regarded as a “prescriptive
method” [29]. Based on the provisions of national standards and the industry norms of various
professions, there are various design indicators that must be met to ensure that the design meets the
requirements of various parameters. This method has certain limitations for the design of nearly
zero-energy buildings.

1) The traditional design method selects and designs the envelope structure within the limits of the
standard value range. However, nearly zero-energy buildings should not only meet the standards
but should also “adapt to local conditions” to achieve energy-saving and cost optimization with
the most reasonable design.

2) Traditional design methods were designed by each specialty individually, and there is a lack
of balance in the overall performance of the buildings. Compared to traditional architectural
design methods, energy-saving goals are often not achieved due to a lack of communication
between the various specialties. Nearly zero-energy buildings have an improvement in terms of
the overall performance of the building and a reduction in overall energy consumption, which
requires coordination and cooperation among various specialties.

3) The design scheme of the traditional design method is not optimized. In the design of nearly
zero-energy buildings, many schemes are usually evaluated, and only the most optimized scheme
is implemented.

Based on the above analysis, due to the flexibility of the nearly zero-energy building design
process, multiple parameters are required. Multi-scheme analysis, the traditional fixed-mode design
method, obviously cannot satisfy this demand. The design of nearly zero-energy buildings should fully
consider the overall performance goals and energy-saving technology features to achieve energy-saving
and economic optimization.

4.2. Characteristics of Nearly Zero-Energy Building Design Methods

Nearly zero-energy buildings adopt a variety of energy-saving technologies, so it is necessary to
fully assess the effects of different energy-saving technologies and propose an ideal technical solution
for nearly zero-energy buildings. Therefore, to make full use of various energy-saving technologies,
at the planning and design stages, the comparison and optimization of building energy efficiency
programs must be completed to achieve energy efficiency and economic optimization. The nearly
zero-energy buildings mainly use the following three technologies, as shown in Figure 1.

1) Passive energy-saving technology: This emphasizes the integration of architecture and aspects of
the natural environment, such as temperature and humidity, lighting, wind, and other factors
that affect buildings. The main passive energy-saving technologies include natural ventilation,
the use of a high-performance envelope, the treatment and avoidance of a thermal bridge, high
airtightness, and high-efficiency shading.
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2) Low-energy systems: This mainly refers to reducing the active energy consumption in the building
by selecting a high-efficiency equipment system to meet the requirements for building lighting,
hot water supply, heating, cooling, ventilation, and so on. The main technologies include efficient
and suitable cooling and heating source systems, intelligent lighting and metering control, heat
reuse technology, and efficient ventilation systems.

3) Renewable energy utilization: This aims to reduce the primary energy consumption of buildings
by actively using renewable energy, for example, through the use of wind power, photovoltaic
power, and ground source heat pumps.
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Passive energy-saving technologies, low-energy systems, and renewable energy are the core
components of nearly zero-energy building performance design work. A large number of possible
solutions can be obtained by changing the design parameters, and continuous optimization and
adjustment occur to achieve the optimal performance target. However, because many factors affect
performance, the parameter changes of each individual energy-saving technology will affect the
building energy-saving effect of the entire scheme. At the same time, under the premise of using energy
consumption indicators as constraints, building design is also restricted by cost-effectiveness. Therefore,
the optimization process of performance-based design is a complex process of continuous optimization.

Hamdy et al. proposed a PR_GA optimization method in 2009 [30]. Firstly, this involves
optimizing passive energy-saving technology solutions. Using the idea of the single-variate, under the
condition that the other design parameters are constant, every single technical parameter of the passive
energy-saving technology is set as a variable, and the points of the building energy consumption
that change under the single-variable condition are obtained through a calculation. This determines
the influence of energy-saving technology parameters on the building energy of the project and
also establishes a standard passive energy-saving technology combination scheme. Secondly, based
on the passive energy-saving technology combination scheme obtained in the first stage, different
low-energy systems combinations are applied and using the same method, the building energy-saving,
and economic calculation results with different scheme combinations are obtained and displayed on a
scatter plot. Combined with the simulation, the best (energy-efficient or economically optimal) active
energy-saving solution is selected based on the result of the scatter plot. Finally, the project resource
conditions and energy consumption simulation method are used to complete the comparison and
selection of renewable energy utilization plans until the established energy conservation goals are
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achieved and the complete architectural design plan is developed. Figure 2 is the schematic diagram
of a scatter plot optimization.Sustainability 2019, 11, x FOR PEER REVIEW 8 of 19 
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4.3. Systematic Nearly Zero-Energy Building Design Method

In summary, the performance-based design method for nearly zero-energy buildings should
use a combination of different energy-saving technologies by utilizing energy-consuming simulation
software, weighting various energy-saving technologies, and iteratively optimizing the design scheme
to develop a design that meets the performance goals and requirements of the owners. The following
principles must be followed in the systematic design of nearly zero-energy buildings:

1) Based on the principle of “passive design priority and active optimization”, the building must be
adapted to local conditions;

2) Focusing on energy conservation goals, each professional department should cooperate closely
with others in the design process. The design process requires each professional department to
cooperate closely and to follow the subjective initiatives of the designer.

3) The standardized “prescriptive method” should be abandoned, and continuous iterative
optimization should be used.

Therefore, based on the characteristics of nearly zero-energy buildings and design requirements,
this paper proposes a systematic design method for nearly zero-energy buildings that considers the
overall performance of the building by utilizing an energy consumption simulation and scheme
optimization. In the analysis of energy consumption, the factors of cold and heat sources, environment,
and renewable energy can be combined to make a comprehensive analysis, so as to get the optimal
scheme. The main design flow is shown in Figure 3.

1) Analysis of basic conditions: Fully considering the local climatic conditions of the building,
the surrounding environment and the abundance of renewable energy, assess the potential for
achieving nearly zero-energy consumption targets and propose preliminary design conditions
and design suggestions.

2) Analysis of passive energy-saving technology solutions: Based on the initial architectural design,
carry out a dynamic simulation of the building’s heating and cooling demands, and, based on the
result of the calculation, propose a passive energy-saving technical solution that is applicable to
the project to reduce the cooling and heating load demand of the building.

3) Analysis of low-energy systems and renewable energy schemes: Considering the environmental
conditions and project requirements, design different HVAC systems and renewable energy
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solutions, simulate and compare energy-saving effects, and obtain a nearly zero-energy building
technology solution for the project.

4) Target comparison and selection of the energy-saving effect: Carry out a simulation to determine
the energy-saving effect of the nearly zero-energy building technology plan and compare it with
the energy-saving goals. If the energy-saving goals are achieved, each professional department can
complete design work based on the overall energy-saving technology plan; if the energy-saving
requirements are not satisfied, further optimization of the building’s energy efficiency technology
solutions must be completed, or the proportion of renewable energy utilization must be reduced,
until the energy consumption and other indicators are met.

5) Design drawing process: According to the final nearly zero-energy building technology plan,
each professional department keeps communicating closely to complete the design of the drawing
of the nearly zero-energy building and to provide a plan of the key processing technologies [26].
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5. Typical Case Design Method Application

The nearly zero-energy building design meeting to the energy-saving goal was obtained using
the systematic design method mentioned above, including the design and optimization process and
continuous parameter optimization.

5.1. Project Overview

The first opening area of the first stage of the nearly zero-energy building project of the Innovation
Bridge Industrial Park is located in Shijiazhuang City, Hebei Province. This paper introduces the
design method of the nearly zero-energy buildings in this area, including a detached building as an
example. The main function of the detached building is as an office area. The above-ground floor area
of the building is 2029.09 m2, and there are a total of five floors. The shape coefficient is 0.22. It is
intended to be a nearly zero-energy building. The following is an illustration of the initial scheme in
Figure 4. The detached building adopts conventional window-wall structure, and the architectural
style is mainly German style.

Combined with the nearly zero-energy building design method proposed in this paper, the design
ideas of this project are as follows:

1) Conduct a preliminary energy-saving analysis based on the initial design plans;
2) Use dynamic simulation calculations to analyze the actual energy-saving effects of different

energy-saving technologies;
3) Modify the plan according to the calculation results, compare it with the energy-saving targets,

and carry out iterative optimization to obtain the optimal building scheme;
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4) After confirming the main building plans, the energy system plan is analyzed to form a nearly
zero-energy technical building plan for the project.

5) Complete the design of various professional drawings of the building.
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5.2. Initial Building Plan Optimization

The initial construction effect of the detached building and the building plan is shown in Figure 5.
The figure coefficient of the detached building is 0.22. The total area of North-South elevation unit
is 592m2, the total area of windows is 279 m2, the ratio of windows to walls is 47%; the total area of
East-West elevation unit is 493 m2, the total area of windows is 232 m2, and the ratio of windows to
walls is 47%.

Sustainability 2019, 11, x FOR PEER REVIEW 10 of 19 

Combined with the nearly zero-energy building design method proposed in this paper, the 
design ideas of this project are as follows: 

1) Conduct a preliminary energy-saving analysis based on the initial design plans; 
2) Use dynamic simulation calculations to analyze the actual energy-saving effects of different 

energy-saving technologies; 
3) Modify the plan according to the calculation results, compare it with the energy-saving targets, 

and carry out iterative optimization to obtain the optimal building scheme; 
4) After confirming the main building plans, the energy system plan is analyzed to form a nearly 

zero-energy technical building plan for the project. 
5) Complete the design of various professional drawings of the building. 

5.2. Initial Building Plan Optimization 

The initial construction effect of the detached building and the building plan is shown in Figure 
5. The figure coefficient of the detached building is 0.22. The total area of North-South elevation unit 
is 592m2, the total area of windows is 279 m2, the ratio of windows to walls is 47%; the total area of 
East-West elevation unit is 493 m2, the total area of windows is 232 m2, and the ratio of windows to 
walls is 47%. 

 

Figure 5. Initial building plane. 

Regarding the nearly zero-energy building technology system and engineering, the main 
problems in the initial building plan are listed below: 

1) Glazing ratio and airtightness: The glazing ratio on each face of the detached building is about 
47%, and the airtight performance of the building is poor, which will lead to an increase in the 
cooling load of the building itself; 

2) Envelope structure: The insulation performance of the envelope structure does not meet the 
high-performance requirements of nearly zero-energy buildings. 

3) The initial building plan does not include energy conservation measures such as fresh air heat 
recycling, natural ventilation, and shading. 

In response to the above problems, an energy consumption simulation was used to analyze the 
changes in heating and cooling requirements of buildings under different energy-saving schemes. As 
shown in Figure 6, the factors that have the greatest impacts on the building’s heating demands are 
the performance of the building envelope structure, the building glazing ratio, and the exterior 
window performance. The factors that have the greatest impacts on the building’s cooling demands 
are the building’s shading measures and window performance, the glazing ratio, and the building’s 
internal heat. 

Figure 5. Initial building plane.

Regarding the nearly zero-energy building technology system and engineering, the main problems
in the initial building plan are listed below:

1) Glazing ratio and airtightness: The glazing ratio on each face of the detached building is about
47%, and the airtight performance of the building is poor, which will lead to an increase in the
cooling load of the building itself;

2) Envelope structure: The insulation performance of the envelope structure does not meet the
high-performance requirements of nearly zero-energy buildings.
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3) The initial building plan does not include energy conservation measures such as fresh air heat
recycling, natural ventilation, and shading.

In response to the above problems, an energy consumption simulation was used to analyze the
changes in heating and cooling requirements of buildings under different energy-saving schemes.
As shown in Figure 6, the factors that have the greatest impacts on the building’s heating demands
are the performance of the building envelope structure, the building glazing ratio, and the exterior
window performance. The factors that have the greatest impacts on the building’s cooling demands
are the building’s shading measures and window performance, the glazing ratio, and the building’s
internal heat.
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Scheme 7 adds intelligent lighting to scheme 6; Scheme 6 optimizes the window-wall ratio to
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According to the simulation and comparison results of the different energy-saving schemes for
the building’s cooling and heat load requirements mentioned above, we proposed the following
preliminary modifications to the initial design of the project:

1) Ensure that the heat transfer coefficient of the external wall and roof is 0.1–0.2 W/(m2
·K). In this

case, the thickness of the external insulation layer of the building should be 200–300 mm. The
building plan should consider the influence of external wall thickening on the shape of the building
and the window. Effective building thermal insulation treatment can reduce the phenomenon of
thermal bridge.

2) Reduce the glazing ratio of the building. It is suggested that the glazing ratio in the south-facing
side should reach 0.4–0.45, the glazing ratio on the east and west-facing sides should reach
0.35–0.4, and the glazing ratio on the north-facing side should reach 0.25–0.3.

3) Use external shading technology, also use high-performance doors and windows.

Changes in the annual heating demand and cooling demand of buildings with different
energy-saving schemes are shown in Figures 7–10.

Based on the proposed modifications to the initial construction plan of the project, the design
department revised the plan and produced drawings of the detached building. The modified picture is
shown in Figure 11. It can be seen that the glazing ratio is significantly reduced. Only the window
sleeves are retained at the position of previous window holes on the walls, which contributes to the
building’s aesthetic sense and gives its shape consistency. At the same time, due to the thick insulation
layer of the building, the sunk window is obvious; therefore, the transparent area of the ground floor is
significantly reduced.
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Figure 11. Picture of the detached building’s optimization plan.

According to the statistical results of the optimized building drawings, the area ratio of window
to wall of the detached building has the most significant change. The area ratio of the window to wall
of each orientation is close to 0.5, which is greatly reduced, and the area ratio of the window to wall of
each orientation is within the recommended value range. Among them, the ratio of the east window to
wall is 0.34, the ratio of the west window to wall is 0.34, the ratio of the north window to wall is 0.15,
and the ratio of the south window to wall is 0.33.

5.3. Optimization of Energy Efficiency Technical Solutions

The system design method of nearly zero-energy buildings needs to compare and optimize the
energy-saving effect of different building energy-saving schemes. The calculation and analysis of
energy-saving effects of building schemes need to establish a reference building (the standard building
set up according to the energy-saving requirements of “Design standard for energy efficiency of public
buildings” GB50189-2015) and the designed building (the optimized initial plan) model. The reference
building is the basic computational building which was designed according to the index of the envelope
structure parameters of the “Design standard for energy efficiency of public buildings” GB50189-2015,
and the building structure of the reference building is the same as the designed building. The energy
consumption of the designed building under different energy-saving schemes should be compared
and analyzed with reference to the energy consumption of the reference building.
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In this paper, IBE-e passive ultra-low energy consumption evaluation tool and building dynamic
energy consumption simulation software TRNSYS are combined to compare and analyze the
energy-saving effect of different energy-saving schemes based on building energy consumption.

Firstly, for passive energy-saving technical solutions, by using high-performance building
envelopes, high-performance windows and doors, high-efficiency external shading, optimized window,
and wall area ratio, new wind-heat recovery, and other energy-saving technical practices, different
passive energy-saving technical solutions are combined to give different solutions. The dynamic energy
consumption of the reference building and buildings under different schemes is calculated. Scheme 1
is a reference building designed according to the index of the envelope structure parameters of the
“Design standard for energy efficiency of public buildings” GB50189-2015. Scheme 2 increases the
insulation thickness of the building envelope structure, uses high-performance roofing, exterior walls,
and exterior windows, reducing the heat transfer coefficient of the building envelope structure and
realizing the design of the building without a thermal bridge. The detached building uses an external
window with a heat transfer coefficient of 0.8 W/(m2

·K). Scheme 3 adds a fresh air heat recycling system
based on scheme 2; the system’s heat recycle efficiency is 75%. Scheme 4 adds natural ventilation
measures based on scheme 3. Detailed parameter settings of the different Schemes are shown in Table 4.

Table 4. Detailed parameter settings of different schemes with different passive energy-saving
technical solutions.

Subitem
Scheme

1—Reference
Building

Scheme 2 Scheme 3 Scheme 4

Envelope Standard High-performance
envelope

High-performance
envelope

High-performance
envelope

Doors and
windows Standard High-performance

windows
High-performance

windows
High-performance

windows

Shading No External Shading External Shading External Shading

Heat Recycling No No Yes Yes

Natural Ventilation No No No Yes

East Facing
Glazing Ratio 0.34 0.34 0.34 0.34

West Facing
Glazing Ratio 0.34 0.34 0.34 0.34

North Facing
Glazing Ratio 0.15 0.15 0.15 0.15

South Facing
Glazing Ratio 0.33 0.33 0.33 0.33

Roof heat transfer
coefficient,
W/(m2

·K)
0.45 0.135 0.135 0.135

External wall heat
transfer coefficient,

W/(m2
·K)

0.5 0.185 0.185 0.185

External window
heat transfer
coefficient,
W/(m2

·K)

2.4 0.8 0.8 0.8

External window
shading coefficient 0.48 0.41 0.41 0.41

Heat recycling
efficiency No No 75% 75%

Shading No Automatic external
shading

Automatic external
shading

Automatic external
shading
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Through the simulation, the building energy consumption of different schemes is obtained, as
shown in Table 5 and Figure 12. After calculating and comparing the energy-saving rates of different
schemes with that of the reference building, it is found that the energy-saving rate of the detached
building reaches 42% using the high-performance envelope structure, external shading, heat recovery
system, and natural ventilation measures. Therefore, the passive energy-saving technical solution
of the building does not meet the energy-saving objectives of this project. It still requires the use of
cooling and heating sources, energy-saving lighting system technology, and efficient use of renewable
energy to reduce primary energy consumption to meet the 60% energy-saving target of the project.

Table 5. Calculation results of the building’s energy consumption with different passive energy-saving
technical solutions.

Subitem
Scheme

1—Reference
Building

Scheme 2 Scheme 3 Scheme 4

Annual Heating Demand,
kWh/m2

·a 39.68 17.72 7.17 7.17

Annual Cooling Demand,
kWh/m2

·a 61.57 37.1 34.16 29.66

Annual Heating Unit
Energy Consumption,

kWh/m2
·a

45.09 20.14 8.15 8.15

Annual Cooling Unit
Energy Consumption,

kWh/m2
·a

12.07 7.27 6.70 5.82

Annual Transmission and
Distribution System

Electricity consumption,
kWh/m2

·a

12.92 7.84 6.57 5.43

Annual Lighting Energy
Consumption kWh/m2

·a 21.48 21.48 21.48 21.48

Annual Equal Primary
Energy Consumption,

kWh/ m2
·a

181.29 127.38 109.98 104.06

Energy Conservation rate 29.73% 39.33% 42.60%
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In order to study the technical scheme suitable for this project, firstly, through the analysis of the
energy-saving effect of the project design under different low-energy technology schemes, the key
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energy-saving influencing factors are obtained, and the corresponding building scheme suggestions
are put forward. Combined with the characteristics of this project, the low-energy technology scheme
suitable for this project is put forward, as shown in Table 6.

Table 6. Passive ultra-low energy consumption technology scheme.

Technical Scheme The Detached Building

Main insulation of exterior wall Staggered joint bonding and rivet fixation of 95mm + 95mm thick graphite
polyphenyl board insulation board

Roof thermal insulation 220 mm thick extruded polystyrene board or rigid polyurethane board

Ground thermal insulation 200 mm thick extruded polystyrene insulation

Interior floor thermal insulation 30 mm thick graphite polyphenyl board

Insulation of partition wall Staggered seam lapping of 40 mm thick AEPS thermal insulation board

External windows The heat transfer coefficient K is 0.8 W/(m2.K) for high-performance
aluminum-clad wood windows and 0.41 for SHGC.

Sunshade External adjustable electric shade louvers are installed on the South and
east-west facades of buildings.

Fresh air heat recovery All of them adopt a new air heat recovery system, and the heat recovery
efficiency reaches 75%.

Natural draft Reducing Air Conditioning Energy Consumption in Transition Season by
Natural Ventilation Technology

Energy system Using Ground Source Heat Pump+Water Storage System

Terminal system Radiation terminal system

Intelligent lighting LED lamps + intelligent lighting system, lighting power density up to 4.5W/m2

In summary, for this case, the passive optimized technical solution cannot meet the nearly
zero-energy building energy-saving goals. It needs to be combined with an active technical solution.
Through software simulation, the final optimization scheme was determined to be scheme 6, that
is, using a high-performance envelope structure, external window and external shading technology,
passive technology to reduce the cooling and heating loads of the building, heat recycling, natural
ventilation, intelligent lighting, efficient cooling and heating source systems, and a renewable energy
source (geothermal energy). It finally achieved a 62.84% energy saving rate, which meets the energy
conservation goal.

5.4. Discussion

In the case, using a high-performance envelope structure, external window, and external shading
technology, heat recycling, natural ventilation, intelligent lighting, efficient cooling and heating source
systems, and a renewable energy source (geothermal energy) achieved the nearly zero-energy design
of the building. For other buildings, there are some differences in their characteristics, which lead to
differences in the final design schemes. However, the design concept and method are consistent, which
is suitable for the design of any nearly zero-energy building.

6. Conclusions

This paper analyzed the design requirements and characteristics of nearly zero-energy buildings.
Based on the principle of “passive design priority and active optimization, and adapting to local
conditions”, the paper proposed a performance-based design method for nearly zero-energy buildings.
Using the design method in an actual case, the final project energy saving rate was 62.84%
comparing with the reference building and achieved design standards for nearly zero-energy buildings.
The research on the systematic design method of nearly zero-energy buildings resulted in the following
conclusions:



Sustainability 2019, 11, 7032 17 of 18

1) The traditional “prescriptive method” design model has many limitations. The design of nearly
zero-energy buildings should abandon the traditional design mode of buildings, encourage
the subjective initiatives of designers, to achieve the optimal design of nearly zero-energy
consumption buildings.

2) In the performance-based design method of nearly zero-energy buildings, the core idea is the
overall performance of the building. Combining passive energy-saving technologies, low-energy
system technologies, renewable energy technologies, and carrying out iterative optimization
through a large number of schemes can achieve the goal of improving the energy-saving rate and
meet the design standards for nearly zero-energy buildings.

3) For the office building using the performance-based design method, six optimization design
schemes were proposed. By comparing the energy-saving effect of different schemes based on
building energy consumption, the final optimization scheme was determined to be scheme 6, using
a high-performance envelope structure, external window, and external shading technology, heat
recycling, natural ventilation, intelligent lighting, efficient cooling and heating source systems,
and a renewable energy source, and achieved a 62.84% energy saving rate which meets the energy
conservation goal of nearly zero-energy buildings.

The development of nearly zero-energy building design methods will certainly promote
the expansion of the nearly zero-energy building industry and the realization of China’s macro
energy-saving goals. At the same time, it will drive the comprehensive development of relevant
energy-saving technologies, energy-saving products, and energy-saving policies to comprehensively
promote the development of the nearly zero-energy construction industry.
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