
sustainability

Article

Minimizing Makespan in A Two-Machine Flowshop
Problem with Processing Time Linearly Dependent
on Job Waiting Time

Dar-Li Yang 1,2 and Wen-Hung Kuo 1,*
1 Department of Information Management, National Formosa University, Yun-Lin 632, Taiwan;

dlyang@nfu.edu.tw
2 Smart Machine and Intelligent Manufacturing Research Center, National Formosa University,

Yun-Lin 632, Taiwan
* Correspondence: whkuo@nfu.edu.tw

Received: 12 September 2019; Accepted: 24 November 2019; Published: 4 December 2019 ����������
�������

Abstract: This paper is aimed at studying a two-machine flowshop scheduling where the processing
times are linearly dependent on the waiting times of the jobs prior to processing on the second
machine. That is, when a job is processed completely on the first machine, a certain delay time is
required before its processing on the second machine. If we would like to reduce the actual waiting
time, the processing time of the job on the second machine increases. The objective is to minimize the
makespan. When the processing time is reduced, it implies that the consumption of energy is reduced.
It is beneficial to environmental sustainability. We show that the proposed problem is NP-hard in
the strong sense. A 0-1 mixed integer programming and a heuristic algorithm with computational
experiment are proposed. Some cases solved in polynomial time are also provided.

Keywords: flowshop scheduling; sustainability; NP-hard; integer programming; heuristic algorithm

1. Introduction

In this paper, we consider a two-machine flowshop scheduling problem where the processing
times are linearly dependent on the waiting times of the jobs prior to processing on the second machine.
The objective is to minimize the makespan. In this problem, when a job is processed completely
on the first machine, a certain delay time is required before its processing on the second machine.
If we can find a way to reduce the certain delay time at the cost of extra processing time added to
the processing time of the job on the second machine, the whole processing time of all jobs may be
reduced. When the whole processing time is reduced, the consumption of energy is reduced. This
contributes to environmental sustainability. In addition, the managerial implication of this approach
is that a production scheduler has more leeway to arrange a job sequence to reach the goal. One
realistic example of this kind of scheduling exists in a painting process. Generally, there are at least
two layer-painting stages in a painting engineering. After the first stage, the product has to wait for
some time until it is dry naturally. Then, the product goes to the second stage. If we want to reduce the
waiting time, we can use a dryer to accelerate the drying process. This implies that the cost of extra
processing time is added to the processing time of the job on the second machine. Another practical
scheduling problem arises at the cooking–chilling stage in a food plant [1]. The chilling process must
start within 30 min of the completion of cooking. Otherwise, the food has to be discarded as unfit for
human consumption. If there is an advantage in terms of the makespan minimization, we can reduce
the waiting time after the completion of cooking at the cost of an extra processing time of the chilling
process. In such a situation, it is good for the sustainability of the earth because it involves less food

Sustainability 2019, 11, 6885; doi:10.3390/su11246885 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://www.mdpi.com/2071-1050/11/24/6885?type=check_update&version=1
http://dx.doi.org/10.3390/su11246885
http://www.mdpi.com/journal/sustainability

Sustainability 2019, 11, 6885 2 of 18

waste. Also, the objective of the makespan is minimized. The processing time of all jobs is reduced.
The consumption of the energy is reduced. It is beneficial for environmental sustainability. For some
other scheduling problems related to sustainability, the reader is referred to the works of [2–8].

The two-machine, minimum makespan, flowshop scheduling problem was first solved by
Johnson [9]. Mitten [10] extended this problem with time lags. Sule and Huang [11] permitted the
setup and removal times to be independent of the processing time. Maggu et al. [12] considered the
problem with time lags and transportation time between machines. These problems proposed above
are solved by a polynomial time algorithm, which is similar to Johnson’s rule [9]. There are also
many studies considering scheduling problems with sequence dependent setup time. For example,
Ruiz [13] proposed an iterated greedy heuristic to solve the flowshop scheduling problem with
sequence dependent setup time. Nishi and Hiranaka [14] applied the Lagrangian relaxation and cut
generation method to minimize the total weighted tardiness in flowshop scheduling problems with
sequence dependent setup time. Wang et al. [15] presented a hybrid local search algorithm to solve the
sequence setup times flowshop scheduling problem with a makespan criterion.

For the two-machine flowshop scheduling problem with waiting time constraints (or intermediate
delays), Reddi and Ramamoorthy [16] proposed a polynomial time algorithm for the problem with
no-wait in process. Dell’Amico [17] showed that the two-machine flowshop scheduling problem with
intermediate delays is NP-hard in the strong sense if the solution space is not restricted to permutation
schedules. In addition, Yu et al. [18] showed that the two-machine flowshop machine problem with
intermediate delays is NP-hard in the strong sense, even if all processing times are 1. Fiszmann and
Mosheiov [19] studied the scheduling problem of minimizing total load on a proportionate flowshop.
They considered position-dependent job processing times in the most general way. They showed that
this problem is solved in O(n4) time, where n is the number of jobs. Yang and Chern [20] considered
a two-machine flowshop sequencing problem with limited waiting time constraints; they showed
that the permutation scheduling problem is NP-hard and proposed a branch-and-bound algorithm.
Su [21] extended the problem studied by Yang and Chern [20] and considered a two-stage flowshop
with a batch processor in stage 1 and a single processor in stage 2. Each batch processor can process a
batch (limited number) of jobs simultaneously. A heuristic algorithm and a mixed integer program
are proposed. Sriskandarajah and Goyal [22] considered a problem in which the processing times are
linearly dependent on the waiting times; they showed that the problem is NP-hard and proposed a
heuristic algorithm. Yang and Chern [23] further extended the problem studied by Sriskandarajah and
Goyal [22] and considered a problem in which the processing time of a job on the second machine is
linearly dependent on the waiting time if the waiting time is beyond a certain range. They proposed
an integer program and a heuristic algorithm to solve the problem.

Chung et al. [24] considered a two-stage hybrid flowshop scheduling problem with a waiting time
constraint. They provided two algorithms to solve the makespan minimization problem. Wang et al. [25]
investigated a permutation flowshop scheduling problem with a time lag between two consecutive
machines. They presented a two-stage constructive heuristic to minimize the makespan.

The proposed problem is different from those studied by Sriskandarajah and Goyal [22] and
Yang and Chern [23]. In the problem of Sriskandarajah and Goyal [22], when a job is processed
completely on the first machine, the job can be processed immediately on the second machine. No
delay time is required. If there is a delay time before a job to be processed on the second machine, the
processing time of the job on the second machine increases. In the problem of Yang and Chern [23],
when a job is processed completely on the first machine, there is a waiting time before its processing on
the second machine. If the waiting time is beyond a certain range, the processing time of a job on the
second machine increases. This problem is similar to the following problem. When a job is processed
completely on the first machine, a certain delay time (i.e., a certain waiting time) is required before
its processing on the second machine. However, the actual waiting time can be either decreased or
increased. The cost of the actual waiting time change is the increase of the processing time of a job on
the second machine. In the proposed problem, we only consider the case in which the actual waiting

Sustainability 2019, 11, 6885 3 of 18

time is allowed to be decreased at the cost of extra processing time added to the processing time of a
job on the second machine.

The organization of the remainder of this paper is as follows. In Section 2, there is a description of
the problem and its complexity. A 0-1 mixed integer programming formulation is given in Section 3 and
the heuristic algorithm is presented in Section 4. Thereafter, computational experiments are reported
in Section 5. Finally, in Section 6, we give the conclusions.

2. Problem Description and Complexity

The proposed two-machine makespan flowshop scheduling problem denoted T with processing
time linearly dependent on job waiting time is described as follows.

First, some notations are introduced in the following and additional notations will be given when
needed throughout the paper.

Ji: the ith job in the original sequence, i = 1, 2, 3, . . . , n
J[i]: the ith job in the actual sequence, i = 1, 2, 3, . . . , n
M1: the first machine on the flowshop
M2: the second machine on the flowshop
ai: the regular processing time of Ji on the first machine M1

bi: the regular processing time of Ji on the second machine M2

di: the delay time of Ji before its processing on machine M2

wi: the actual waiting time of Ji before its processing on machine M2

αi: the cost index, αi > 0
Ci,1: the completion time of Ji on machine M1

Ci,2: the completion time of Ji on machine M2

For a given set of jobs J = {J1, J2, . . . , Jn}, let ai and bi be the regular processing times of job Ji on
the first machine M1 and the second machine M2, respectively. We assume that for each job Ji, when Ji
is processed completely on machine M1, a delay time di is required before its processing on machine
M2. However, in some situations, the actual waiting time wi is allowed to be smaller than the delay
time di at the cost of extra processing time added to the processing time bi of job Ji on M2. That is, if the
actual waiting time wi of Ji is smaller than di, then the processing time of Ji on machine M2 is given by
bi + αi(di − wi), where αi > 0. However, if wi ≥ di, then the processing time on machine M2 is bi. The
objective is to find the optimal schedule minimizing the makespan.

First, in the proposed problem, if αi > 1, there is no benefit to reduce the actual time wi, and then
the proposed problem is reduced to the problem studied in Yu et al. [18]. Hence, if αi > 1, the proposed
problem is also NP-hard in the strong sense. Next, we will show that the partition problem [26]
reduces to the proposed problem if 0 < αi = α ≤ 1, i = 1, . . . , n. Consider the following well-known
NP-complete problem:

Partition: Given positive integers s1, s2, . . . , sk, does there exist a subset

E ⊆ N = {1, . . . , k} such that
∑
i∈E

si=
∑

i∈N−E

si= (
∑
i∈N

si)/2?

For a given instance of partition, s1, s2, . . . , sk, an instance of the proposed problem is constructed
as follows:

n = k + 2;
ai = 2Ssi, bi = si, di = 0 for i ∈ N = {1, . . . , k};
ak+1 = 1, bk+1 = 2 + 2S2, dk+1 = 0;
ak+2 = 2, bk+2 = 2S2

− S, dk+2 = 2S2 + S;
αi = α for i∈{1, 2, . . . , k + 2},

where
∑

i∈N
si = 2S.

Sustainability 2019, 11, 6885 4 of 18

We will show that Partition has a solution if and only if the above instance has an optimal schedule
with the minimum makespan Cmax = 4S2 + S + 3.

Lemma 1. For the above instance, it is sufficient to consider the schedules that have the same job processing
sequence on both machines for the job Ji, i ∈ {1, . . . , k + 1}.

Proof. If a schedule Π does not have the same job processing sequence on both machines for the job Ji,
i∈{1, . . . , k + 1}, then there are two cases:

(1) There is a job Ji, which directly precedes Jj on machine M1 and follows Jj on machine M2, i, j ∈ {1,
. . . , k + 1}, perhaps with intervening jobs (Figure 1a). We may interchange the order of Ji and Jj
on machine M1 without increasing the makespan, because di = dj = 0.

(2) There is a sequence (A1, Ji, Jk+2, Jj, A2) on machine M1, where A1 and A2 are subsequences, and
Ji follows Jj on machine M2, perhaps with intervening jobs (Figure 1b). We may interchange the
processing order of Ji and Jj in (A1, Ji, Jk+2, Jj, A2) as the following sequence (A1, Jk+2, Jj, Ji, A2) on
machine M1 without increasing the makespan (Figure 1c), because di = dj = 0.

Sustainability 2018, 10, x FOR PEER REVIEW 5 of 20

Figure 1. An illustration for the interchange of operations in Lemma 1.

This process of interchanging jobs may be repeated until a schedule Π' is obtained with the

same order on machine M1 as that on machine M2 for the job Ji, i{1, . . . , k+1}. Π' is clearly not worse

than Π. Therefore, Lemma 1 holds. □

Lemma 2. If Jk+1 is not processed first, then the makespan of any schedule is greater than 4S2 + S + 3.

Proof. For any given schedule, if Ji (iN) is processed first, then

 Cmax ai +
Ni

ib + bk+1 + bk+2

= 2Ssi + 2S + 2 + 2S2 + 2S2 − S

> 4S2 + S + 3.

Similarly, if Jk+2 is processed first, then

 Cmax ak+2 +
Ni

ib + bk+1 + bk+2

= 2 + 2S + 2 + 2S2 + 2S2 − S

> 4S2 + S + 3.

Thus, we only consider the schedules whose Jk+1 is processed first on both machines. □

Lemma 3. If Jk+2 is not processed second on machine M1, then the makespan of any schedule is greater

than 4S2 + S + 3.

Proof. Let U = { i Ji is processed between Jk+1 and Jk+2 on machine M1}. If there are jobs Ji, iU, then the

following two cases are considered:

(1) If any job Ji, iN, does not create any idle-time slot on machine M2, that is, the processing of these

jobs on machine M2 is continuous, then there are two subcases:

Figure 1. An illustration for the interchange of operations in Lemma 1.

This process of interchanging jobs may be repeated until a schedule Π’ is obtained with the same
order on machine M1 as that on machine M2 for the job Ji, i ∈ {1, . . . , k + 1}. Π’ is clearly not worse than
Π. Therefore, Lemma 1 holds. �

Lemma 2. If Jk+1 is not processed first, then the makespan of any schedule is greater than 4S2 + S + 3.

Proof. For any given schedule, if Ji (i ∈ N) is processed first, then

Cmax ≥ ai +
∑

i∈N
bi + bk+1 + bk+2

= 2SSi + 2S + 2 + 2S2 + 2S2
− S

> 4S2 + S + 3.

Sustainability 2019, 11, 6885 5 of 18

Similarly, if Jk+2 is processed first, then

Cmax ≥ ak+2 +
∑

i∈N
bi + bk+1 + bk+2

= 2 + 2S + 2 + 2S2 + 2S2
− S

> 4S2 + S + 3.

Thus, we only consider the schedules whose Jk+1 is processed first on both machines. �

Lemma 3. If Jk+2 is not processed second on machine M1, then the makespan of any schedule is greater than
4S2 + S + 3.

Proof. Let U = {i|Ji is processed between Jk+1 and Jk+2 on machine M1}. If there are jobs Ji, i∈U, then the
following two cases are considered:

(1) If any job Ji, i∈N, does not create any idle-time slot on machine M2, that is, the processing of
these jobs on machine M2 is continuous, then there are two subcases:

(i) If 2S2 + 2S − 2S
∑

i∈U
s j ≥ 0 (Figure 2),

then

Cmax ≥ a1 + bk+1 +
∑

i∈N
bi + l + bk+2 + α max{0, dk+2 −wk+2},

= 1 + 2 + 2S2 + 2S + l + 2S2
− S + α max{0, 2S2 + S− 2S2

− 2S + 2S
∑

i∈U
s j − l}

= 4S2 + S + 3 + l + α max{0, (2
∑

i∈U
s j − 1)S− l} > 4S2 + S + 3,

where wk+2 = bk+1 +
∑

i∈N
bi + l −

∑
i∈U

a j − ak+2 = 2S2 + 2S − 2S
∑

i∈U
s j + l and l ≥ 0.

(ii) If 2S2+ 2S − 2S
∑

i∈U
s j < 0, then Jk+2 creates an idle-time slot lk+2 = 2S

∑
i∈U

s j − 2S2
− 2S >

0 on machine M2. From Lemma 2, if Jk+1 is scheduled first and there is no idle time
on machine M2, except during operation 1 of Jk+1, there is a lower bound of the Cmax,
which is 4S2 + S + 3. In this case, Jk+2 creates an idle-time slot lk+2 > 0; therefore, Cmax >

4S2 + S + 3.

(2) Similarly, if a job Jr, r∈N, creates an idle-time slot lr > 0, then Cmax > 4S2 + S + 3.

Sustainability 2018, 10, x FOR PEER REVIEW 6 of 20

(i) If 2S2 + 2S − 2S 0
Ui

js (Figure 2),

Figure 2. Gantt diagram for the case that job Ji is processed between Jk+1 and Jk+2.

then

Cmax ak+1 + bk+1 +
Ni

ib + l + bk+2 + max{0, dk+2 − wk+2},

= 1+2+2S2+2S+l+2S2 − S+ max{0, 2S2 + S − 2S2 − 2S + 2S
Ui

js − l }

= 4S2 + S + 3 + l + max{0, (2
Ui

js −1)S − l } > 4S2 + S + 3,

where wk+2 = bk+1 +
Ni

ib + l −
Ui

ja − ak+2 = 2S2 + 2S − 2S
Ui

js + l and l 0.

(ii) If 2S2+ 2S − 2S
Ui

js <0, then Jk+2 creates an idle-time slot lk+2 = 2S
Ui

js − 2S2 − 2S > 0 on machine

M2. From Lemma 2, if Jk+1 is scheduled first and there is no idle time on machine M2, except

during operation 1 of Jk+1, there is a lower bound of the Cmax, which is 4S2 + S + 3. In this case,

Jk+2 creates an idle-time slot lk+2 > 0; therefore, Cmax > 4S2 + S + 3.

(2) Similarly, if a job Jr , rN, creates an idle-time slot lr > 0, then Cmax > 4S2 + S + 3.

Thus, we only consider the schedules whose Jk+2 is processed second on machine M1. □

Theorem 1. For any given positive number > 0, i = , i = 1, . . . , n, the two-machine makespan

flowshop scheduling problem T is NP-hard.

Proof. If partition has a solution, then there is an optimal schedule with the makespan Cmax = 4S2+S+3

(Figure 3(a)). We note that, in this case, the waiting time wi di for each i.

If partition has no solution, we will show that the makespan of any schedule for the above

instance is greater than 4S2+S+3. For given schedule in which Jk+1 is processed first on two machines

and Jk+2 is processed second on machine M1, we let E = { i Ji is processed between Jk+1 and Jk+2 on

machine M2}. By the assumption that partition has no solution and
Ei

is − S = c 0, we consider the

following two cases:

(1) If c < 0 and l > 0 (Figure 3(b)), we have

Cmax ak+1 + bk+1 +
Ei

ib + l + bk+2 + max{0, dk+2 − wk+2 }+
− ENi

ib

= 1 + 2 + 2S2 + 2S + l + 2S2 − S + max{0, dk+2 − wk+2 }

Figure 2. Gantt diagram for the case that job Ji is processed between Jk+1 and Jk+2.

Thus, we only consider the schedules whose Jk+2 is processed second on machine M1. �

Theorem 1. For any given positive number α > 0, αi = α, i = 1, . . . , n, the two-machine makespan flowshop
scheduling problem T is NP-hard.

Proof. If partition has a solution, then there is an optimal schedule with the makespan Cmax = 4S2 + S
+ 3 (Figure 3a). We note that, in this case, the waiting time wi ≥ di for each i.

Sustainability 2019, 11, 6885 6 of 18

Sustainability 2018, 10, x FOR PEER REVIEW 7 of 20

= 4S2 + S + 3 + l + max{0, 2S2 + S − (2S2 +
Ei

is + l)}

= 4S2 + S + 3 + l + max{0, − c − l} > 4S2 + S + 3,

where wk+2 = bk+1 +
Ei

ib + l − ak+2 = 2S2 +
Ei

is + l.

(2) If c > 0 (c 1/2, because s1, s2, . . . , sk are positive integers), without loss of generality, we let Jj, j

E, be the last processed job in E (Figure 3(c)), then there are two cases:

(i) If any job Ji, i E-{j}, does not create any idle-time slot, then we will show that job Jj creates

an idle-time slot lj > 0 on machine M2 (Figure 3(c)). The idle-time slot is

lj = max{0, ak+2 +
Ei

ia − bk+1 −

− jEi

ib }

= max{0, 2 + 2S
Ei

is − 2 − 2S2 −
Ei

is + sj}

= max{0, 2S(S + c) − 2S2 − S − c + sj}

= max{0, 2Sc − S − c + sj} = max{0, 2(S − 1/2)(c − 1/2) −1/2 + sj}

= 2(S − 1/2)(c − 1/2) − 1/2 + sj > 0, since S 1, c 1/2 and sj 1.

Hence, Cmax > 4S2 + S + 3.

(ii) If a job Jr, r E-{j}, creates an idle-time slot lr > 0, then Cmax > 4S2 + S + 3.

Thus, the makespan is greater than 4S2 + S + 3 if partition has no solution. It follows that partition

has a solution if and only if the optimal schedule of the above instance has the minimum makespan

Cmax = 4S2 + S + 3. □

Figure 3. Optimal schedule with the makespan Cmax = 4S2 + S + 3.

3. A 0-1 Mixed Integer Programming Formulation

Figure 3. Optimal schedule with the makespan Cmax = 4S2 + S + 3.

If partition has no solution, we will show that the makespan of any schedule for the above instance
is greater than 4S2 + S + 3. For given schedule in which Jk+1 is processed first on two machines and
Jk+2 is processed second on machine M1, we let E = {i|Ji is processed between Jk+1 and Jk+2 on machine
M2}. By the assumption that partition has no solution and

∑
i∈E

si − S = c , 0, we consider the following

two cases:

(1) If c < 0 and l > 0 (Figure 3b), we have

Cmax ≥ ak+1 + bk+1 +
∑
i∈E

bi + l + bk+2 + α max{0, dk+2 −wk+2}+
∑

i∈N−E
bi

= 1 + 2 + 2S2 + 2S + l + 2S2
− S + α max{0, dk+2 −wk+2}

= 4S2 + S + 3 + l + α max{0, 2S2 + S− (2S2 +
∑
i∈E

si + l)}

= 4S2 + S + 3 + l + α max{0,−c− l} > 4S2 + S + 3,

where wk+2 = bk+1 +
∑
i∈E

bi + l − ak+2 = 2S2 +
∑
i∈E

si + l.

(2) If c > 0 (c ≥ 1/2, because s1, s2, . . . , sk are positive integers), without loss of generality, we let Jj, j
∈ E, be the last processed job in E (Figure 3c), then there are two cases:

(i) If any job Ji, i ∈ E-{j}, does not create any idle-time slot, then we will show that job Jj
creates an idle-time slot lj > 0 on machine M2 (Figure 3c). The idle-time slot is

l j = max{0, ak+2 +
∑
i∈E

ai−bk+1 −
∑

i∈E−{ j}
bi}

= max{0, 2 + 2S
∑
i∈E

si−2− 2S2
−
∑
i∈E

si + s j}

= max{0, 2S(S + c) − 2S2
− S− c + s j}

= max{0, 2Sc− S− c + s j} = max{0, 2(S− 1/2)(c− 1/2) − 1/2 + s j}

= 2(S− 1/2)(c− 1/2) − 1/2 + s j > 0, since S ≥ 1, c ≥ 1/2 and s j ≥ 1.

Sustainability 2019, 11, 6885 7 of 18

Hence, Cmax > 4S2 + S + 3.
(ii) If a job Jr, r ∈ E-{j}, creates an idle-time slot lr > 0, then Cmax > 4S2 + S + 3.

Thus, the makespan is greater than 4S2 + S + 3 if partition has no solution. It follows that partition
has a solution if and only if the optimal schedule of the above instance has the minimum makespan
Cmax = 4S2 + S + 3. �

3. A 0-1 Mixed Integer Programming Formulation

According to the similar analysis in Yang and Chern [23], a 0-1 mixed integer programming of the
problem is developed as follows. First, we denote that

Ai = the starting time of job i on machine M1;
Bi = the starting time of job i on machine M2;
wi = the actual waiting time of job i before its processing on machine M2 = Bi − Ai − ai;
Wi = max{di − wi, 0}= max{di − Bi + Ai + ai, 0};
yijk = 1, if job i precedes job j on machine Mk;
yijk = 0, otherwise;
Cmax = the makespan.

For each job i, it is clear to have

Bi ≥ Ai + ai, 1 ≤ i ≤ n. (1)

In addition, it is necessary to assure that no two operations can be processed simultaneously by
the same machine. Suppose, for example, that job j precedes job i on machine 1, then it is necessary
to have

Ai ≥ Aj + aj.

On the other hand, if job i precedes job j on machine 1, then it is necessary to have

Aj ≥ Ai + ai.

These inequalities are called disjunctive constraints, because one and only one of these inequalities
must hold. In order to accommodate these constraints in the formulation, these disjunctive constraints
can be rewritten as follows:

Ai + Myij1 ≥ Aj + aj, 1 ≤ i < j ≤ n, (2)

Aj + M(1 − yij1) ≥ Ai + ai, 1 ≤ i < j ≤ n, (3)

where M represents a sufficiently large positive number.
By the same way, these disjunctive constraints of job i and job j processed on machine 2 can be

expressed as follows:
Bi + Myij2 ≥ Bj + bj + αjWj, 1 ≤ i < j ≤ n, (4)

Bj + M(1 − yij2) ≥ Bi + bi + αiWi, 1 ≤ i < j ≤ n. (5)

We note that
Wi = max {di − Bi + Ai + ai, 0},

then it is necessary to have Wi ≥ 0 and

Wi ≥ di − Bi + Ai + ai, 1 ≤ i ≤ n. (6)

Sustainability 2019, 11, 6885 8 of 18

For the makespan problem, it is necessary to have

Cmax ≥ Bi + bi + αiWi, 1 ≤ i ≤ n. (7)

Then, a disjunctive integer programming formulation of the proposed problem can be given by

minimize Cmax

subject to Cmax ≥ Bi + bi + αiWi 1 ≤ i ≤ n,
Bi ≥ Ai+ ai 1 ≤ i ≤ n,
Ai + Myij1 ≥ Aj + aj 1 ≤ i < j ≤ n,
Aj + M(1 − yij1) ≥ Ai + ai 1 ≤ i < j ≤ n,
Bi + Myij2 ≥ Bj + bj + αjWj 1 ≤ i < j ≤ n,
Bj + M(1 − yij2) ≥ Bi + bi + αiWi 1 ≤ i < j ≤ n,
Wi ≥ di − Bi + Ai + ai 1 ≤ i ≤ n,
Cmax, Ai, Bi, Wi ≥ 0, 1 ≤ i ≤ n, yijk = 0 or 1, 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ 2.

The total number of type (1), (6), and (7) constraints is equal to 3n. The total number of type (2)
and (3) constraints is equal to n(n − 1). The total number of type (4) and (5) constraints is equal to n(n −
1). Hence, the total number of constraints is n(2n + 1). There are 3n + 1 nonnegative variables of Cmax,
Ai, Bi, and Wi. We note that if yijk is in the formulation, then yjik needs to be defined. Hence, there are
n(n − 1)/2 0 − 1 integer variables of yij1 and the same number of yij2. The total number of variables is
thus n(n + 2) + 1.

4. Heuristic Algorithm and Its Worst-Case Performance

As a reducible waiting time is considered in the proposed problem, somehow, the proposed
problem is similar to the two-machine flowshop scheduling problem with start and stop lags. Therefore,
we first use the Maggu and Das’s algorithm [27] to determine a sequence A (Algorithm 1).

Algorithm 1. Maggu and Das’s algorithm

Step 1. Let J = {J1, J2, . . . , Jn}.
Step 2. Determine the job processing order in the following way:

2.1 Decompose set J into the following two sets:

U = {Ji | ai ≤ bi} and V = {Ji | ai > bi}.

2.2. Arrange the members of set U in nondecreasing order of ai + di, and arrange the members of set V in
nonincreasing order of bi + di.
2.3. A sequence A is the ordered set U followed by the ordered set V .

Some solvable cases are described in the following.
First, if min

1≤i≤n
{αi}≥1, the proposed problem is the same as that in Dell’Amico [17]. Therefore,

if max
1≤i≤n

{di} ≤ min
1≤i≤n

{bi + di} or max
1≤i≤n

{di} ≤ min
1≤i≤n

{ai + di}, an optimal schedule is given by Maggu and

Das’s Algorithm.

Theorem 2 ([23]). In the problem, the case considered here is with max
1≤i≤n

{αi}≤1, max
1≤i≤n

{ai + di} ≤ min
1≤i≤n

{bi + di},

and ai* +αi*di* = min
1≤i≤n

{ai +αidi}. If there is a job Jj, such that aj + dj ≤ bi* +αi*di*, then (Ji*, Jj, B) is an optimal

schedule, where B is an arbitrary subsequence of the jobs without Ji*, Jj.

Proof. Please see the proof in Appendix A. �

Theorem 3 ([23]). If max
1≤i≤n

{αi} ≤ 1, min
1≤i≤n

{ai} ≥ max
1≤i≤n

{bi + αidi} and bi* + αi*di* = min
1≤i≤n

{bi + αidi}, then (B, Ji*)

is an optimal schedule, where B is an arbitrary subsequence of the jobs without Ji*, and we schedule the jobs with
no-wait manner as shown in Figure 4.

Sustainability 2019, 11, 6885 9 of 18

Sustainability 2018, 10, x FOR PEER REVIEW 10 of 20

Theorem 3 [23]. If
ni

max
1

i} 1,
ni

min
1

ai
ni

max
1

bi + idi} and bi* + i*di* =
ni

min
1

bi + idi}, then (B, Ji*)

is an optimal schedule, where B is an arbitrary subsequence of the jobs without Ji*, and we schedule

the jobs with no-wait manner as shown in Figure 4.

Proof. It is clear that a lower bound on the makespan is
=

n

i

ia
1

+
ni

min
1

bi + idi}. If
ni

max
1

i} 1,
ni

min
1

ai
ni

max
1

bi + idi}, then the makespan of (B, Ji*) with no-wait manner, as shown in Figure 4, is equal

to the lower bound
=

n

i

ia
1

+ bi* + i*di*. Hence, (B, Ji*) is an optimal schedule. □

Figure 4. Optimal schedule for the case that
ni

max
1

i} 1,
ni

min
1

ai
ni

max
1

bi + idi}, and J[i] is the

job scheduled at the i-th position in the processing sequence.

In the following, we propose a heuristic algorithm for the problem. The heuristic algorithm is

presented for the problem with ai 0, bi 0, i > 0, and di > 0 for all of the jobs. In this problem, if i

1, then it is useless to reduce the waiting time. However, if 0 < i < 1, then it is useful to reduce the

waiting time as much as possible. A stepwise description of the algorithm is given as follows:

Heuristic algorithm

Step 0. (Initialization) Check those conditions stated in Theorem 2 and Theorem 3. If any one of

conditions holds, the optimal schedule is obtained. Otherwise, generate a heuristic solution in the

following steps. Determine a sequence π by using Maggu and Das’s algorithm. Set k = 1 and C[0],1 =

C[0],2 = 0.

Step 1. (Determining the reduced period of waiting time and the additional time on machine M2

for each job) Set Ck,1 = Ck-1,1+a[k].

If C[k-1],2 − C[k-1],1 < a[k] (Figure 5(a)), then go to Step 1.1.

If a[k] C[k-1],2 − C[k-1],1 a[k] +d[k] (Figure 5(b)), then go to Step 1.2.

If a[k] + d[k] < C[k-1],2 − C[k-1],1 (Figure 5(c)), then go to Step 1.3.

Figure 4. Optimal schedule for the case that max
1≤i≤n

{αi} ≤ 1, min
1≤i≤n

{ai} ≥ max
1≤i≤n

{bi + αidi}, and J[i] is the job

scheduled at the i-th position in the processing sequence.

Proof . It is clear that a lower bound on the makespan is
n∑

i=1
ai + min

1≤i≤n
{bi + αidi}. If max

1≤i≤n
{αi} ≤ 1, min

1≤i≤n
{ai}

≥ max
1≤i≤n

{bi + αidi}, then the makespan of (B, Ji*) with no-wait manner, as shown in Figure 4, is equal to

the lower bound
n∑

i=1
ai+ bi* + αi*di*. Hence, (B, Ji*) is an optimal schedule. �

In the following, we propose a heuristic algorithm for the problem. The heuristic algorithm is
presented for the problem with ai ≥ 0, bi ≥ 0, αi > 0, and di > 0 for all of the jobs. In this problem, if αi
≥ 1, then it is useless to reduce the waiting time. However, if 0 < αi < 1, then it is useful to reduce
the waiting time as much as possible. A stepwise description of the algorithm is given as follows
(Algorithm 2):

Algorithm 2. Heuristic algorithm

Step 0. (Initialization) Check those conditions stated in Theorem 2 and Theorem 3. If any one of conditions
holds, the optimal schedule is obtained. Otherwise, generate a heuristic solution in the following steps.
Determine a sequence π by using Maggu and Das’s algorithm. Set k = 1 and C[0],1 = C[0],2 = 0.

Step 1. (Determining the reduced period of waiting time and the additional time on machine M2 for each job)
Set C[k],1 = C[k−1],1 + a[k].

If C[k−1],2 − C[k−1],1 < a[k] (Figure 5a), then go to Step 1.1.

If a[k] ≤ C[k−1],2 − C[k−1],1 ≤ a[k] + d[k] (Figure 5b), then go to Step 1.2.

If a[k] + d[k] < C[k−1],2 − C[k−1],1 (Figure 5c), then go to Step 1.3.

1.1 If 0 < α[k] < 1, then C[k],2= C[k],1 + b[k] + α[k] · d[k].

If 1 ≤ α[k], then C [k],2 = C[k],1 + d[k] + b[k].

Go to Step 2.
1.2 If 0 < α[k] < 1, then C [k],2 = C [k−1],2 + b[k] + α[k] ·(C[k],1 + d[k] − C [k−1],2).

If 1 ≤ α[k], then C [k],2 = C[k],1 + d[k] + b[k].

Go to Step 2.
1.3 C [k],2 = C [k−1],2 + b[k]. Go to Step 2.

Step 2. Set k = k + 1

If k ≤ n, go to Step 1. Otherwise, stop.

In the heuristic algorithm, Step 0 first determines a sequence A by using Maggu and Das’s
algorithm. Step 1 adjusts the reduced period of waiting time and the additional time on machine 2 for
each job. In Step 1.1 and Step 1.2, if α[k] ≥ 1, then it is useless to reduce the waiting time. However, if 1
> α[k] > 0, then it is useful to reduce the waiting time as much as possible and the calculation of the

Sustainability 2019, 11, 6885 10 of 18

completion times on both machines is given. Step 1.3 depicts that if a[k],1 + d[k] < C [k−1],2 − C [k−1],1,
then it is useless to reduce the waiting time either α[k] ≥ 1 or 1 > α[k] > 0.
Sustainability 2018, 10, x FOR PEER REVIEW 11 of 20

Figure 5. Gantt diagrams for three cases in the heuristic algorithm.

1.1 If 0 < [k] < 1, then Ck,2= Ck,1 +b[k]+[k] d[k] .

If 1 [k], then C k,2 = Ck,1 +d[k]+b[k].

Go to Step 2.

1.2 If 0 < [k] < 1, then C k,2 = C k-1,2+b[k] +[k] (Ck,1+ d[k] − C k-1,2).

If 1 [k], then C k,2 = Ck,1 + d[k] + b[k].

Go to Step 2.

1.3 C k,2 = C k-1,2+ b[k]. Go to Step 2.

Step 2. Set k = k+1

If k n, go to Step 1. Otherwise, stop.

In the heuristic algorithm, Step 0 first determines a sequence A by using Maggu and Das’s

algorithm. Step 1 adjusts the reduced period of waiting time and the additional time on machine 2

for each job. In Step 1.1 and Step 1.2, if [k] 1, then it is useless to reduce the waiting time. However,

if 1 > [k] > 0, then it is useful to reduce the waiting time as much as possible and the calculation of the

completion times on both machines is given. Step 1.3 depicts that if a[k],1 + d[k] < C [k-1],2 − C [k-1],1, then it is

useless to reduce the waiting time either [k] 1 or 1 > [k] > 0.

In the following, an example of five jobs is given to illustrate the heuristic algorithm.

Example. There are five jobs; that is, J1, J2, J3, J4, and J5, to be processed on machine M1 and machine

M2. The processing times of these jobs on machine M1 are a1 = 1, a2 = 3, a3 = 2, a4 = 3, and a5 = 2,

respectively. The processing times on machine M2 are b1 = 5, b2 = 4, b3 = 1, b4 = 2, and b5 = 3, respectively.

Figure 5. Gantt diagrams for three cases in the heuristic algorithm.

In the following, an example of five jobs is given to illustrate the heuristic algorithm.

Example 1. There are five jobs; that is, J1, J2, J3, J4, and J5, to be processed on machine M1 and machine M2.
The processing times of these jobs on machine M1 are a1 = 1, a2 = 3, a3 = 2, a4 = 3, and a5 = 2, respectively. The
processing times on machine M2 are b1 = 5, b2 = 4, b3 = 1, b4 = 2, and b5 = 3, respectively. The delay times
required before its processing on machine M2 are d1 = 2, d2 = 3, d3 = 1, d4 = 2, and d5 = 5, respectively. The
cost indices are α1 = 0.2, α2 = 0.3, α3 = 0.1, α4 = 0.5, and α5 = 1.2, respectively.

According to the above heuristic algorithm, we obtain that the makespan of these five jobs is 16.6.
Please see the details in Appendix B.

Lower bound

First, we assume that processing on each machine may be continuous, D1 = {i?αi ≥ 1 for iN} and
D2 = N–D1. We can see that, if αi ≥ 1, then it is useless to reduce the waiting time. However, if 1 > αi
> 0, then it is useful to reduce the waiting time as much as possible. Because all the jobs have to be
processed on machine M1 and M2, if the delay time is short relative to the corresponding processing

time, we have an immediate lower bound LB1 = max {
n∑

i=1
ai + min {min

i∈D1
{di + bi}, min

i∈D2
{αidi + bi}}, min

{min
i∈D1

{ai + di}, min
i∈D2

{ai + αidi}}+
n∑

i=1
bi}. On the other hand, if one of the delay times is long enough relative

Sustainability 2019, 11, 6885 11 of 18

to the corresponding processing time, we have the second lower bound LB2 = max {max
i∈D1

{ai + di + bi},

max
i∈D2

{ai + αidi + bi}}. Hence, a lower bound is calculated as follows:

Clow= max{
n∑

i=1
ai+min{min

i∈D1
{d + bi}, min

i∈D2
{αidi + bi}},

min{min
i∈D1
{a + di }, min

i∈D2
{a + αidi}}+

n∑
i=1

bi,

max
i∈D1
{i + d + bi}, max

i∈D2
{i + αidi + bi}}.

In the following, we will find the worst case of the heuristic algorithm. First, some notations
are defined. Given a solution of the proposed problem, we define the critical job J[c] as the job with
maximum starting time on machine M2, such that C[c],1 + w[c] = B[c], where 0 ≤ w[c] ≤ d[c] and C[c],1,
d[c], w[c], and B[c] are the completion time of J[c] on machine M1, the delay time of J[c], the actual waiting
time of J[c], and the starting time of J[c] on machine M2, respectively. We also define JP as the set of jobs
proceeding J[c] on machine M1, and JF as the set of jobs following J[c] on machine M2. Then, considering
the schedule in which the jobs are arranged by Maggu and Das’s algorithm, there are three cases of the
makespan, as follows.

Case 1. 0 < α[c] < 1 and C[c],1 ≥ C[c−1],2 (See Figure 6a)

Cmax(π) =
∑
i∈JP

ai + a[c] + α[c]d[c] + b[c] +
∑
i∈JF

bi

Sustainability 2018, 10, x FOR PEER REVIEW 13 of 20

Figure 6. Gantt diagrams for three cases of the critical job.

Theorem 4. Let π* be an optimal schedule and π be the Maggu and Das’s schedule for the heuristic

algorithm. If []0 1c and [],1 [1],2c cC C − , then max max() / (*) 2C C = and the bound is

tight.

Proof. Considering the schedule in which the jobs are arranged by Maggu and Das’s algorithm, if

[]0 1c and [],1 [1],2c cC C − , then the makespan is as follows:

max [] [] [] []() i c c c c i

i JP i JF

C a a d b b

= + + + + .

Therefore, if [] []c ca b , the jobs iJ JP have the property of i ia b . Then, we have the

following results:

()max [] [] []

1

()
n

c c c i

i

C d b b
=

 + +
2i D

max

 {ai + idi + bi}+ min {
1Di

min

 {ai + di },
2Di

min

 {ai +

idi}}+
=

n

i

ib
1

1 2LB LB + 2 lowC .

Similarly, if [] []c ca b , the jobs iJ JF have the property of i ia b . Thus,

()max [] [] []

1

()
n

c c c i

i

C a d a
=

 + +
2i D

max

{ai + idi + bi}+
=

n

i

ia
1

+ min {
1Di

min

{di + bi},
2Di

min

{idi + bi}} 2 1LB LB + 2 lowC .

Figure 6. Gantt diagrams for three cases of the critical job.

Sustainability 2019, 11, 6885 12 of 18

Case 2. 0 < α[c] < 1 and C[c],1 < C[c−1],2 (See Figure 6b)

Cmax(π) =
∑

i∈JP
ai + a[c] + w[c] + α[c]l[c] + b[c] +

∑
i∈JF

bi

=
∑

i∈JP
ai + a[c] + d[c] − (1− α[c])l[c] + b[c] +

∑
i∈JF

bi, where l[c] = d[c] −w[c]

Case 3. α[c] ≥ 1 (See Figure 6c)

Cmax(π) =
∑
i∈JP

ai + a[c] + d[c] + b[c] +
∑
i∈JF

bi

Theorem 4. Let π* be an optimal schedule and π be the Maggu and Das’s schedule for the heuristic algorithm.
If 0 < α[c] < 1 and C[c],1 ≥ C[c−1],2, then ρ = Cmax(π)/Cmax(π∗) ≤ 2 and the bound is tight.

Proof. Considering the schedule in which the jobs are arranged by Maggu and Das’s algorithm, if
0 < α[c] < 1 and C[c],1 ≥ C[c−1],2, then the makespan is as follows:

Cmax(π) =
∑
i∈JP

ai + a[c] + α[c]d[c] + b[c] +
∑
i∈JF

bi

Therefore, if a[c] ≤ b[c], the jobs Ji ∈ JP have the property of ai ≤ bi. Then, we have the following
results:

Cmax(π) ≤ (α[c]d[c] + b[c]) +
n∑

i=1
bi ≤ max

i∈D2
{a + αidi + bi}+ {min

i∈D1
{a + di },

min
i∈D2
{a + αidi}}+

n∑
i=1

bi≤ LB1 + LB2≤ 2Clow.

Similarly, if a[c] > b[c], the jobs Ji ∈ JF have the property of ai > bi. Thus,

Cmax(π) ≤ (a[c] + α[c]d[c]) +
n∑

i=1
ai ≤ max

i∈D2
{a + αidi + bi}+

n∑
i=1

ai+min{min
i∈D1
{di

+bi}, min
i∈D2
{αidi + bi}} ≤ LB2 + LB1≤ 2Clow.

Hence, ρ = Cmax(π)/Cmax(π∗) ≤ Cmax(π)/Clow ≤ 2.
To prove the tightness of the bound, consider J1 with a1 = 1, b1 = 1, d1 = n, and 0 < α1 < 1, and

Ji (i = 2, 3, . . . , n) with ai = 1, bi = 1, di = 0, and αi = 0.5. By applying Maggu and Das’s algorithm,
the job sequence is J2, J3, . . . , Jn, J1 on both machine M1 and M2. Then, Cmax(π) = n + α1n + 1 =

(1 + α1)n + 1 < 2n + 1.
On the other hand, an optimal schedule can be obtained by arranging the job sequence

J1, J2, J3, . . . , Jn on machine M1 and the job sequence J2, J3, . . . , Jn, J1 on machine M2. Then,
Cmax(π∗) = n + 2. Hence, ρ = Cmax(π)/Cmax(π∗) = (2n + 1)/(n + 2), which tends to 2 as n→∞. �

Theorem 5. Let π* be an optimal schedule and π be the Maggu and Das’s schedule for the heuristic algorithm.
If α[c] ≥ 1, then ρ = Cmax(π)/Cmax(π∗) ≤ 2 and the bound is tight.

Proof. The proof is the similar to that of Theorem 4. Thus, we omit it here. �

5. Computational Experiments

Although we find the worst case of the heuristic algorithm under some certain situations (case 1
and case 3), the upper bound of case 2 is still unknown. Therefore, in order to evaluate the overall
efficiency of the heuristic algorithm, we generate several groups of random problems as follows:

Sustainability 2019, 11, 6885 13 of 18

(1) n is equal to 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200.
(2) ai is uniformly distributed over [1,100].
(3) bi is uniformly distributed over [1,100].
(4) αi is uniformly distributed over [1,2].
(5) di is uniformly distributed over [0,50], [50,100], or [100,200] depending on the group.

In the computational experiment, a total of 720 test problems are generated. The computation
times of algorithms for all the test problems are within one second. For each of these random problems,
the percentage of the error e = (Ch − Clow) ∗ 100/Clow is computed, where Ch is the makespan of the
heuristic solution and Clow is the lower bound on the makespan.

The result is given in Table 1. There are 20 test problems for each problem type. To evaluate the
overall performance of the heuristic algorithm, we compute the mean of all the average percentage
errors reported in Table 1. The mean value is 1.97%, which suggests that the heuristic algorithm,
on average, finds schedules that are within 1.97% of optimality. From Theorem 4 and 5, we can see
that the upper bound of the heuristic algorithm is 2 ∗Clow; therefore, the performance of the heuristic
algorithm is quite satisfactory. From Figure 7, the larger the value of di, the greater the percentage of the
error. Because the proposed heuristic algorithm is restricted to searching a near-optimal permutation
schedule, it may imply that the optimal schedule is likely to be a non-permutation schedule when the
values of delay times of jobs are larger. Therefore, the performance of the heuristic algorithm is better
when di is smaller. We can also see that the average percentage of errors decreases as the job number n
increases for different values of di. Especially, when the job number n is more than 100, the mean value
of the average percentage of errors is less than 1%. In view of the NP-hardness of the problem, this
result is quite encouraging as it provides efficient procedures for solving large-sized problems.Sustainability 2018, 10, x FOR PEER REVIEW 15 of 20

Figure 7. The average percentages of errors in the computational experiments.

Table 1. Computational results for Algorithm 1.

n di

Observed in 20 test problems

Minimum
percentage error

(%)

Average percentage
error (%)

Maximum
percentage error (%)

10

[0,50]

[50,100]
[100,200]

0

0
0

3.8172

5.9864
8.1236

10.6325

11.8965
19.3263

20
[0,50]

[50,100]
[100,200]

0
0

1.2547

2.7115
2.9658
5.1579

5.3269
10.1268
9.8852

30

[0, 50]

[50,100]
[100,200]

0

0
3.6278

1.2363

2.6636
5.6986

3.9986

6.2355
12.3023

40
[0,50]

[50,100]
[100,200]

0.1321
0.1036
1.2233

2.1506
1.5367
3.9968

5.3330
3.7795
7.4862

50

[0,50]

[50,100]
[100,200]

0

0.1007
1.0023

0.9865

1.2233
3.0559

1.2296

3.0125
6.7756

60
[0,50]

[50,100]
[100,200]

0.0553
0.3054
0.9562

1.0021
0.9953
2.0013

2.9140
1.2235
3.9240

70
[0,50]

[50,100]

[100,200]

0.0345
0.1602

0.6058

1.0782
0.9866

2.6158

2.6835
2.2012

3.9671

80
[0,50]

[50,100]
[100,200]

0
0.2365
0.5523

0.2212
0.9968
1.2633

1.2369
2.0123
2.1825

90
[0,50]

[50,100]

[100,200]

0.0327
0.2305

0.6813

0.3223
0.6696

2.0362

1.0023
1.2354

3.7182

100
[0,50]

[50,100]
[100,200]

0.0173
0.0235
0.2103

0.1211
0.9071
1.5981

1.2310
2.3261
3.6682

150
[0,50]

[50,100]

[100,200]

0
0.0636

0.1015

0.4355
0.3693

1.1036

0.8908
1.0032

1.9936

0

2

4

6

8

10

0 50 100 150 200

Job number (n)

er
ro

r
(%

) di (0-50)

di(50-100)

di(100-200)

Figure 7. The average percentages of errors in the computational experiments.

Sustainability 2019, 11, 6885 14 of 18

Table 1. Computational results for Algorithm 1.

n di

Observed in 20 Test Problems

Minimum
Percentage Error (%)

Average Percentage
Error (%)

Maximum
Percentage Error (%)

10
[0,50] 0 3.8172 10.6325

[50,100] 0 5.9864 11.8965
[100,200] 0 8.1236 19.3263

20
[0,50] 0 2.7115 5.3269

[50,100] 0 2.9658 10.1268
[100,200] 1.2547 5.1579 9.8852

30
[0,50] 0 1.2363 3.9986

[50,100] 0 2.6636 6.2355
[100,200] 3.6278 5.6986 12.3023

40
[0,50] 0.1321 2.1506 5.3330

[50,100] 0.1036 1.5367 3.7795
[100,200] 1.2233 3.9968 7.4862

50
[0,50] 0 0.9865 1.2296

[50,100] 0.1007 1.2233 3.0125
[100,200] 1.0023 3.0559 6.7756

60
[0,50] 0.0553 1.0021 2.9140

[50,100] 0.3054 0.9953 1.2235
[100,200] 0.9562 2.0013 3.9240

70
[0,50] 0.0345 1.0782 2.6835

[50,100] 0.1602 0.9866 2.2012
[100,200] 0.6058 2.6158 3.9671

80
[0,50] 0 0.2212 1.2369

[50,100] 0.2365 0.9968 2.0123
[100,200] 0.5523 1.2633 2.1825

90
[0,50] 0.0327 0.3223 1.0023

[50,100] 0.2305 0.6696 1.2354
[100,200] 0.6813 2.0362 3.7182

100
[0,50] 0.0173 0.1211 1.2310

[50,100] 0.0235 0.9071 2.3261
[100,200] 0.2103 1.5981 3.6682

150
[0,50] 0 0.4355 0.8908

[50,100] 0.0636 0.3693 1.0032
[100,200] 0.1015 1.1036 1.9936

200
[0,50] 0 0.1036 0.3679

[50,100] 0.3012 0.4250 0.5587
[100,200] 0.2963 0.3972 0.8572

6. Conclusions

In this paper, we investigate a two-machine flowshop scheduling problem in which the processing
times of the second operations are linearly dependent on the waiting times of the jobs. This problem
is shown to be NP-hard. A 0-1 integer programming and an efficient heuristic algorithm with
computational experiment are also proposed. In addition, the worst case of the heuristic algorithm
under some situations is provided. From the computational experiments, the overall performance
of the proposed algorithm is quite satisfactory, especially when the job number is large. Some cases
solved in polynomial time are also provided.

There are some limitations in this study. For example, the proposed heuristic algorithm only
searches a near-optimal permutation schedule. In the future research, to develop a heuristic algorithm
to find both permutation and non-permutation schedules may improve this scheduling performance
(makespan). In addition, another performance measure, such as total tardiness or maximum lateness,
may be considered for the proposed problem. Actually, in real situations, the cost of the reduction of

Sustainability 2019, 11, 6885 15 of 18

the waiting time may be non-linear or the compression of the waiting time may be limited. Therefore,
future research may focus on these issues, too.

Author Contributions: Conceptualization, D.-L.Y.; Methodology, D.-L.Y. and W.-H.K.; Software, W.-H.K.;
Validation, D.-L.Y. and W.-H.K.; Formal Analysis, D.-L.Y. and W.-H.K.; Investigation, W.-H.K.; Resources, D.-L.Y.;
Data Curation, W.-H.K.; Writing-Original Draft Preparation, W.-H.K.; Writing-Review & Editing, W.-H.K.;
Visualization, D.-L.Y.; Supervision, D.-L.Y.; Project Administration, D.-L.Y.; Funding Acquisition, D.-L.Y.

Funding: This research was partially supported by the Ministry of Science and Technology of the Republic of
China under grant MOST 103-2221-E-150-028.

Acknowledgments: The authors wish to thank the anonymous reviewers for their helpful comments on an earlier
version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Theorem 2. In the problem, the case considered here is with max
1≤i≤n

{αi}≤1, max
1≤i≤n

{ai + di} ≤ min
1≤i≤n

{bi + di}, and ai*

+αi*di* = min
1≤i≤n

{ai +αidi}. If there is a job Jj, such that aj + dj ≤ bi* +αi*di*, then (Ji*, Jj, B) is an optimal schedule,

where B is an arbitrary subsequence of the jobs without Ji*, Jj.

Proof. Without loss of the generality, let Ji* = J1 and Jj = J2. It is clear that a lower bound on the

makespan is min
1≤i≤n

{ai +αidi}+
n∑

i=1
bi. In the following, we will show that if max

1≤i≤n
{αi} ≤ 1, max

1≤i≤n
{ai + di} ≤

min
1≤i≤n

{bi + di}, and aj + dj ≤ bi* +αi*di*, then the makespan of (Ji*, Jj, B), as shown in Figure A1, is equal to

the lower bound ai* +αi*di* +
n∑

i=1
bi. Hence, (Ji*, Jj, B) is an optimal schedule.

Sustainability 2018, 10, x FOR PEER REVIEW 16 of 20

200
[0,50]

[50,100]
[100,200]

0
0.3012
0.2963

0.1036
0.4250
0.3972

0.3679
0.5587
0.8572

6.Conclusions

In this paper, we investigate a two-machine flowshop scheduling problem in which the

processing times of the second operations are linearly dependent on the waiting times of the jobs.

This problem is shown to be NP-hard. A 0-1 integer programming and an efficient heuristic algorithm

with computational experiment are also proposed. In addition, the worst case of the heuristic

algorithm under some situations is provided. From the computational experiments, the overall

performance of the proposed algorithm is quite satisfactory, especially when the job number is large.

Some cases solved in polynomial time are also provided.

There are some limitations in this study. For example, the proposed heuristic algorithm only

searches a near-optimal permutation schedule. In the future research, to develop a heuristic

algorithm to find both permutation and non-permutation schedules may improve this scheduling

performance (makespan). In addition, another performance measure, such as total tardiness or

maximum lateness, may be considered for the proposed problem. Actually, in real situations, the cost

of the reduction of the waiting time may be non-linear or the compression of the waiting time may

be limited. Therefore, future research may focus on these issues, too.

Author Contributions: Conceptualization, D.L. Yang; Methodology, D.L. Yang and W.H. Kuo; Software, W.H.

Kuo; Validation, D.L. Yang and W.H. Kuo; Formal Analysis, D.L. Yang and W.H. Kuo; Investigation, W.H. Kuo;

Resources, D.L. Yang; Data Curation, W.H. Kuo; Writing-Original Draft Preparation, W.H. Kuo; Writing-Review

& Editing, W.H. Kuo; Visualization, D.L. Yang; Supervision, D.L. Yang; Project Administration, D.L. Yang;

Funding Acquisition, D.L. Yang.

Funding: This research was partially supported by the Ministry of Science and Technology of the Republic of

China under grant MOST 103-2221-E-150-028.

Acknowledgments: The authors wish to thank the anonymous reviewers for their helpful comments on an

earlier version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A.

Theorem 2. In the problem, the case considered here is with
ni

max
1

i1,
ni

max
1

ai + di
ni

min
1

bi + di},

and ai* +i*di* =
ni

min
1

ai +idi }. If there is a job Jj, such that aj + dj bi* +i*di*, then (Ji*, Jj, B) is an optimal

schedule, where B is an arbitrary subsequence of the jobs without Ji* , Jj.

Proof. Without loss of the generality, let Ji* = J1 and Jj = J2. It is clear that a lower bound on the makespan

is
ni

min
1

 ai +idi }+
=

n

i

ib
1

. In the following, we will show that if
ni

max
1

i 1,
ni

max
1

ai + di}
ni

min
1

bi +

di}, and aj + dj bi* +i*di* , then the makespan of (Ji*, Jj, B), as shown in Figure A1, is equal to the lower

bound ai* +i*di* +
=

n

i

ib
1

. Hence, (Ji*, Jj, B) is an optimal schedule.

Figure A1. Optimal schedule for the case that max

1≤i≤n
{αi} ≤ 1, max

1≤i≤n
{ai + di} ≥ min

1≤i≤n
{bi + di}, ai + bi ≤ bi* +

αi*di*, and B = {J1, . . . , Jn} − {Ji* − Jj}.

The constraint of max
1≤i≤n

{αi} ≤ 1 implies that it is worth reducing the delay time of a job if the

finishing time of the job on machine M2 can be earlier. However, in such a case, only the delay time of
the first job in the sequence is worthy to be reduced. Therefore, the constraint of aj + dj ≤ bi* +αi*di*
guarantees that the finishing time of Jj on machine M1 plus the delay time of the job is earlier than
the finishing time of Ji* (the first job) on machine M2. The constraint of max

1≤i≤n
{ai + di} ≤ min

1≤i≤n
{bi + di}

guarantees the finishing times of jobs (except for Ji* and Jj) on machine M1, plus the delay times of
these jobs are earlier than the finishing time of their previous jobs on machine M2. It also implies that
ai ≤ bi for i = 1, 2, . . . , n.

We proceed by induction. First, we can obtain that the finishing time of Ji* on machine M2 is (ai* +

bi* + αi*di*). The finishing time of Jj (the second job) on machine M1 plus the delay time of the job is (ai*
+ aj + dj). If (aj + dj) ≤ (bi* + αi*di*), then (ai* + aj + dj) ≤ (ai* + bi* + αi*di*). This means that the finishing
time of Jj (the second job) on machine M1 plus the delay time of the job is earlier than the finishing time
of Ji* on machine M2. There is no room for the reduction of the actual waiting time of Jj. Therefore,
job Jj can be processed on machine M2 immediately after job Ji* is finished on machine M2. Then, the

Sustainability 2019, 11, 6885 16 of 18

completion time of Jj on machine M2 is ai* +αi*di* + bi* + bj. Therefore, the case m = 2 (Jj = J2) is true.

If the mth case is assumed to be true, that is, (ai∗ + a j +
m∑

k=3
ak + dm) ≤ (ai∗ + bi∗ + αi∗di∗ + b j +

m−1∑
k=3

bk),

and the completion time of the mth job on machine M2 is (ai∗ + bi∗ + αi∗di∗ + b j +
m−1∑
k=3

bk + bm), then we

show that the (m + 1)st case is also true.
The finishing time of the (m + 1)st job (say Jm+1) on machine M1 plus the

delay time of the job is A = (ai∗ + a j +
m∑

k=3
ak + am+1 + dm+1). Because max

1≤i≤n
{ai +

di} ≤ min
1≤i≤n

{bi + di} and (ai∗ + a j +
m∑

k=3
ak + dm) ≤ (ai∗ + bi∗ + αi∗di∗ + b j +

m−1∑
k=3

bk), A =

(ai∗ + a j +
m∑

k=3
ak + dm) +(am+1 + dm+1 − dm) ≤ (ai∗ + bi∗ + αi∗di∗ + b j +

m−1∑
k=3

bk) +(bm + dm − dm) =

(ai∗ + bi∗ + αi∗di∗ + b j +
m∑

k=3
bk) and the completion time of the (m + 1)st job on machine M2 is

(ai∗ + bi∗ + αi∗di∗ + b j +
m∑

k=3
bk + bm+1). This completes the proof.

min
1≤i≤n

{bi + di}, a + d j ≤ b + αi∗di∗andB = {J1, . . . , Jn} − {Ji∗, }.

�

Appendix B

Example . There are five jobs; that is, J1, J2, J3, J4, and J5, to be processed on machine M1 and machine M2. The
processing times of these jobs on machine M1 are a1 = 1, a2 = 3, a3 = 2, a4 = 3, and a5 = 2, respectively. The
processing times on machine M2 are b1 = 5, b2 = 4, b3 = 1, b4 = 2, and b5 = 3, respectively. The delay times
required before its processing on machine M2 are d1 = 2, d2 = 3, d3 = 1, d4 = 2, and d5 = 5, respectively. The
cost indices are α1 = 0.2, α2 = 0.3, α3 = 0.1, α4 = 0.5, and α5 = 1.2, respectively.

Step 0. Because max
1≤i≤n

{αi} = α5 =1.2 > 1, Theorem 2 and Theorem 3 cannot apply to this example. A

sequence π using Maggu and Das’s algorithm is determined as follows: U = {J1 J2 J5} and
V = {J4 J3}. Therefore, sequence π = {J[1] J[2] J[3] J[4] J[5]}={J1 J2 J5 J4 J3}. Set k = 1 and C[0],1 =

C[0],2 = 0.
Step 1. (k = 1)

Set C[k],1 = C[k−1],1+a[k] = C[1],1 = C[0],1+a[1] = 0 + 1 = 1.

C[k−1],2 − C[k−1],1 = C[0],2 − C[0],1= 0 < a[k] = a[1] = 1. Go to Step 1.1.
Step 1.1. 0 < α[k] = α[1] = 0.2 < 1.

C[k],2= C[k],1 +b[k]+α[k] · d[k] = C[1],2 = C[1],1 +b[1]+α[1] · d[1] =1 + 5 +(0.2)(2) = 6.4.

Go to Step 2.
Step 2. Set k = k +1=2 ≤ 5. Go to Step 1.
Step 1. (k = 2)

Set C[2],1 = C[1],1+a[2] = 1 + 3 = 4.

C[1],2 − C[1],1= 6.4 − 1 =5.4 < a[2] = 3. Go to Step 1.1.
Step 1.1. 0 < α[2] = 0.3 < 1.

C[2],2= C[2],1 +b[2]+α[2] · d[2] = 4 + 4 + (0.3)(3) = 8.9.

Sustainability 2019, 11, 6885 17 of 18

Go to Step 2.
Step 2. Set k = k + 1 = 3 ≤ 5. Go to Step 1.
Step 1. (k = 3)

Set C[3],1 = C[3],1+a[3] = 4 + 2 = 6.

a[3] = 2 < C[2],2 − C[2],1= 8.9 − 4 = 4.9 < a[3] + d[3]= 2 + 5 = 7. Go to Step 1.2.
Step 1.2. α[3] = 1.2 > 1.

C[3],2 = C[3],1 + d[3] + b[3] = 6 + 5 +3 = 14.

Go to Step 2.
Step 2. Set k = k + 1 =4 ≤ 5. Go to Step 1.
Step 1. (k = 4)

Set C[4],1 = C[4],1+a[4] = 6 + 3 = 9.

C[3],2 − C[3],1= 14 − 6 = 8 > a[4] = 3. Go to Step 1.3.
Step 1.3. C[4],2 = C[3],2 + b[4] = 14 + 2 = 16.

Go to Step 2.
Step 2. Set k = k + 1 = 5 ≤ 5. Go to Step 1.
Step 1. (k = 5)

Set C[5],1 = C[4],1+a[5] = 9 + 2 = 11.

a[5] = 2 < C[4],2 − C[4],1= 16 − 9 = 7. Go to Step 1.2.
Step 1.2. 0 < α[5] = 0.1 < 1.

C[5],2 = C [4],2+b[5] +α[5] ·(C[5],1+ d[5] − C[4],2) = 16 + 1 + 0.1(11 + 1−16) = 16.6.

Go to Step 2.
Step 2. Set k = k + 1 = 6 > 5. Stop

Therefore, the makespan of these five jobs is C[5],2 = 16.6.

References

1. Hodson, A.; Muhlemann, A.; Price, D. A microcomputer based solution to a practical scheduling problem.
J. Oper. Res. Soc. 1985, 36, 903–914. [CrossRef]

2. Chen, S.-H.; Liou, Y.-C.; Chen, Y.-H.; Wang, K.-C. Order Acceptance and Scheduling Problem with Carbon
Emission Reduction and Electricity Tariffs on a Single Machine. Sustainability 2019, 11, 5432. [CrossRef]

3. Giret, A.; Trentesaux, D.; Prabhu, V. Sustainability in manufacturing operations scheduling: A state of the art
review. J. Manuf. Syst. 2015, 37, 126–140. [CrossRef]

4. Gong, L.; Li, Y.; Xu, D. Combinational Scheduling Model Considering Multiple Vehicle Sizes. Sustainability
2019, 11, 5144. [CrossRef]

5. Liu, Y.; Liao, X.; Zhang, R. An Enhanced MOPSO Algorithm for Energy-Efficient Single-Machine Production
Scheduling. Sustainability 2019, 11, 5381. [CrossRef]

6. Shiue, F.-J.; Zheng, M.-C.; Lee, H.-Y.; Khitam, A.F.K.; Li, P.-Y. Renovation Construction Process Scheduling
for Long-Term Performance of Buildings: An Application Case of University Campus. Sustainability 2019,
11, 5542. [CrossRef]

7. Theophilus, O.; Dulebenets, M.A.; Pasha, J.; Abioye, O.F.; Kavoosi, M. Truck Scheduling at Cross-Docking
Terminals: A Follow-Up State-Of-The-Art Review. Sustainability 2019, 11, 5245. [CrossRef]

8. Torkjazi, M.; Huynh, N. Effectiveness of Dynamic Insertion Scheduling Strategy for Demand-Responsive
Paratransit Vehicles Using Agent-Based Simulation. Sustainability 2019, 11, 5391. [CrossRef]

9. Johnson, S.M. Optimal two-and three-stage production schedules with setup times included. Nav. Res. Logist.
Q. 1954, 1, 61–68. [CrossRef]

http://dx.doi.org/10.1057/jors.1985.160
http://dx.doi.org/10.3390/su11195432
http://dx.doi.org/10.1016/j.jmsy.2015.08.002
http://dx.doi.org/10.3390/su11195144
http://dx.doi.org/10.3390/su11195381
http://dx.doi.org/10.3390/su11195542
http://dx.doi.org/10.3390/su11195245
http://dx.doi.org/10.3390/su11195391
http://dx.doi.org/10.1002/nav.3800010110

Sustainability 2019, 11, 6885 18 of 18

10. Mitten, L. Sequencing n jobs on two machines with arbitrary time lags. Manag. Sci. 1959, 5, 293–298.
[CrossRef]

11. Sule, D.R.; Huang, K.Y. Sequency on two and three machines with setup, processing and removal times
separated. Int. J. Prod. Res. 1983, 21, 723–732. [CrossRef]

12. Maggu, P.L.; Smghal, M.L.; Mohammad, N.; Yadav, S.K. On n-job, 2-machine flow-shop scheduling problem
with arbitrary time lags and transportation times of jobs. J. Oper. Res. Soc. Jpn. 1982, 25, 219–227. [CrossRef]

13. Ruiz, R.; Stützle, T. An iterated greedy heuristic for the sequence dependent setup times flowshop problem
with makespan and weighted tardiness objectives. Eur. J. Oper. Res. 2008, 187, 1143–1159. [CrossRef]

14. Nishi, T.; Hiranaka, Y. Lagrangian relaxation and cut generation for sequence-dependent setup time flowshop
scheduling problems to minimise the total weighted tardiness. Int. J. Prod. Res. 2013, 51, 4778–4796.
[CrossRef]

15. Wang, Y.; Li, X.; Ma, Z. A Hybrid Local Search Algorithm for the Sequence Dependent Setup Times Flowshop
Scheduling Problem with Makespan Criterion. Sustainability 2017, 9, 2318. [CrossRef]

16. Reddi, S.; Ramamoorthy, C. On the flow-shop sequencing problem with no wait in process. J. Oper. Res. Soc.
1972, 23, 323–331. [CrossRef]

17. Dell’Amico, M. Shop problems with two machines and time lags. Oper. Res. 1996, 44, 777–787. [CrossRef]
18. Yu, W.; Hoogeveen, H.; Lenstra, J.K. Minimizing makespan in a two-machine flow shop with delays and

unit-time operations is NP-hard. J. Sched. 2004, 7, 333–348. [CrossRef]
19. Fiszman, S.; Mosheiov, G. Minimizing total load on a proportionate flowshop with position-dependent

processing times and job-rejection. Inf. Process. Lett. 2018, 132, 39–43. [CrossRef]
20. Yang, D.-L.; Chern, M.-S. A two-machine flowshop sequencing problem with limited waiting time constraints.

Comput. Ind. Eng. 1995, 28, 63–70. [CrossRef]
21. Su, L.-H. A hybrid two-stage flowshop with limited waiting time constraints. Comput. Ind. Eng. 2003, 44,

409–424. [CrossRef]
22. Sriskandarajah, C.; Goyal, S. Scheduling of a two-machine flowshop with processing time linearly dependent

on job waiting-time. J. Oper. Res. Soc. 1989, 40, 907–921. [CrossRef]
23. Yang, D.-L.; Chern, M.-S. A generalized two-machine flowshop scheduling problem with processing time

linearly dependent on job waiting-time. Comput. Ind. Eng. 1999, 36, 365–378. [CrossRef]
24. Chung, T.-P.; Sun, H.; Liao, C.-J. Two new approaches for a two-stage hybrid flowshop problem with a single

batch processing machine under waiting time constraint. Comput. Ind. Eng. 2017, 113, 859–870. [CrossRef]
25. Wang, B.; Huang, K.; Li, T. Permutation flowshop scheduling with time lag constraints and makespan

criterion. Comput. Ind. Eng. 2018, 120, 1–14. [CrossRef]
26. Johnson, D.; Garey, M. A Guide to the Theory of NP-Completeness. Computers and Intractability; WH Freeman

and Company: New York, NY, USA, 1979.
27. Maggu, P.L.; Das, G. On 2×n sequncing problem with transportation times of jobs. Pure Appl. Math. Sci.

1980, 12, 1–6.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1287/mnsc.5.3.293
http://dx.doi.org/10.1080/00207548308942406
http://dx.doi.org/10.15807/jorsj.25.219
http://dx.doi.org/10.1016/j.ejor.2006.07.029
http://dx.doi.org/10.1080/00207543.2013.774469
http://dx.doi.org/10.3390/su9122318
http://dx.doi.org/10.1057/jors.1972.52
http://dx.doi.org/10.1287/opre.44.5.777
http://dx.doi.org/10.1023/B:JOSH.0000036858.59787.c2
http://dx.doi.org/10.1016/j.ipl.2017.12.004
http://dx.doi.org/10.1016/0360-8352(94)00026-J
http://dx.doi.org/10.1016/S0360-8352(02)00216-4
http://dx.doi.org/10.1057/jors.1989.159
http://dx.doi.org/10.1016/S0360-8352(99)00137-0
http://dx.doi.org/10.1016/j.cie.2016.11.031
http://dx.doi.org/10.1016/j.cie.2018.04.021
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Description and Complexity
	A 0-1 Mixed Integer Programming Formulation
	Heuristic Algorithm and Its Worst-Case Performance
	Computational Experiments
	Conclusions
	
	
	References

