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Abstract: The spatial structure and configuration of land-use patches, i.e., landscape patterns
could affect the flow of energy and materials in inner-urban ecosystems, and hence the sustainable
development of urban areas. Studying landscape pattern changes under the process of urbanization
would have implicational significance to urban planning and urban sustainability. In this paper,
land-use change and urban expansion intensity (UEI) were treated as the inducement factors for
changes in landscape patterns, and stepwise regression and geographically weighted regression
(GWR) were adapted to quantify their integrated and distributed magnitude effects on landscape
patterns, respectively. The findings suggested that land-uses have different contributions to changes
in landscape patterns at different urban development zones (downtown, suburban plain area and
mountainous suburban areas). Furthermore, the GWR analysis results indicated that the effect of UEI
on landscape patterns has spatial and temporal heterogeneity. From 1987 to 2000, the UEI had great
explanatory capacity on changes in landscape patterns and helped the landscape assemble faster in
the downtown and adjacent areas. However, with the shifting of the center of urban construction from
downtown to the suburbs, the high explanatory ability was oriented towards suburban areas during
2000–2016 and the magnitude of influence spatially changed. Therefore, a compact city and protection
policy should be adapted to different regions in the study area to achieve strong urban sustainability.
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1. Introduction

The concentrations of population and socioeconomic activities in urban areas have led to fast urban
expansion all around the world in recent decades [1,2]. If this aggregation phenomenon continues,
land transformed into urban areas will nearly triple by the end of 2030 [3]. Meanwhile, other land-use
types such as agricultural and forest land around urban areas will be embezzled during the rapid
expansion of cities. These tremendous land-use changes and intensive human activities put forward
serious challenges to human and natural environment [4,5], such as the loss of biodiversity [6], an
increase of the urban heat island effect [7], continuous environmental degradation [8,9], decreased
watershed runoff and increased flood potential in urban areas [10], and enhanced CO2 emissions [11].
Furthermore, changes in the spatial structure and configuration of land-use patches, i.e., landscape
patterns, have a direct impact on urban sustainability because they determine energy flow efficiency and
air pollution [12,13]. Therefore, the magnitude of influence from variations of land-use on landscape
patterns determines their impact on urban sustainability. Thus, the quantitative relationship between
land-use and landscape patterns is an important issue to study.
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A lot of previous studies have observed land-use change and its impact on landscape patterns
in rapidly urbanizing regions [1,12,14–21]. However, most of these studies have only qualitatively
analyzed this relationship. For example, the conversion of agricultural land and forest land into built-up
land in these areas has led to a prominent, tremendously fragmented landscape, but the magnitude
of this influence has not been articulated. At the same time, the few studies using a quantitive
analysis of this relationship have done so just from a perspective of their study area [15,16]. However,
the effect of land-use changes on landscape patterns has been shown to vary between different urban
development zones [1]. Learning the behaviors of land-use changes and the corresponding change in
landscape patterns in and around urban core areas will be conductive to urban planning and urban
sustainability. In this study, we analyze changes in land-use change and landscape patterns, and we
describe quantitative relationships between them at different urban development zones.

Amidst land-use types, changes in built-up land is indicative of urbanization [22–27]. Urban
expansion intensity, the growth rate of built-up land in an unit time interval, has been used to
investigate urbanization’s impact on agricultural landscape patterns [28] and landscape patterns in
land utilization [15]. However, these studies were conducted at the block and pixel levels with only
several landscape metrics. However, the intensity of urbanization is more related to local government
behaviors such as regional urban planning and attracting investment decisions [29]. Thus, spatial
relationships between urban expansion and landscape patterns would be better conducted at the
administrative division level, a comprehensive study of which could enhance the understanding of the
influence of urban expansion on landscape patterns and, ultimately, benefit urban sustainable planning.

It has become easier to characterize a landscape and quantify its structural changes with advanced
developments in remote sensing and geographic information science (GIS) techniques. In recent
decades, a set of indices has been created to measure landscape patterns from the perspective of
area, shape, aggregation and diversity [30–32]. In fact, these landscape indices are algorithms for
quantifying specific spatial characteristics of patches, classes of patches, or entire landscape mosaics [23].
FRAGSTATS—which integrates most of the landscape indices in categories of patch, class and landscape
levels—is widely used to calculate landscape metrics [33].

Qingdao, like most of the eastern cities of China, has experienced intensified urbanization during
the last few decades [34,35]. This urban land expansion has caused great transformation in land-use
and landscape patterns. Agricultural land has been converted to urban land, causing the landscape
patterns to become fragmented [36]. As a result, the patch size for the remaining habitat has been
reduced, and the edge effects and the isolation of patches through the destruction of connecting
corridors have increased [37]. Thus, it is necessary to analyze the effect of land-use changes and
urbanization on landscape pattern changes in Qingdao and to apply the results in sustainable urban
planning and policymaking.

Consequently, the objectives of this study are listed as follows: (1) Identify the spatial–temporal
changes of land-use and landscape patterns in three urban development zones in Qingdao; (2) quantify
the effect of land-use changes on landscape pattern changes; (3) evaluate the impact of urban expansion
intensity on the spatial changes of landscape patterns. Studies of these questions could provide support
for urban planning and urban sustainability.

2. Materials and Methods

2.1. Study Area

Qingdao (35◦35′ N–37◦09′ N and 119◦30′ E–121◦00′ E) is in the eastern Shandong Peninsula on the
east coast of China, encompassing a total land area of 1174.56 km2. Surrounded by the Yellow Sea to
the east and south, Qingdao has a typical maritime climate with a mean annual temperature of 12.6 ◦C
with a cold winter (an average temperature in December–February of 0.9 ◦C) and mild summers (an
average temperature in June–August of 23.3 ◦C). The mean annual precipitation is around 662 mm, and
it is mostly distributed in summer (http://www.weather.com.cn/; http://www.data.ac.cn/). A natural
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inlet of the Yellow Sea named Jiaozhou Bay is located on the southern coast of the Shandong Peninsula.
The bay is 32 km long and 27 km wide, and it has witnessed a fast development of urbanization.
Qingdao City has 6 districts. We excluded Huangdao, so the other 5 districts of Shinan, Shibei, Licang,
Laoshan and Chengyang were selected as the study area (Figure 1). These districts are geographically
contiguous and have experienced great landscape changes during the last few decades in the process
of urbanization. The terrain in this area is high in the east and low in the west, with elevation between
0 and 1133 m. Like most cities in coastal China, Qingdao has had documented high economic growth
rates since 1990. Except for the global financial crisis year (2007–2008), the GDP and GDP per capita
of Qingdao grew annually by double digits from 1998 to 2009 [38]. Huge economic growth resulted
in great urban expansion and landscape changes in the study area. The study of these changes in
response to urban sprawl could provide a clear basis for promoting the coordinated development
between economics and the urban ecosystem in Qingdao.
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and Landsat 8 OLI (Operational Land Imager, one sensor type) acquired on 7 October 1987, 26 
October 2000, and 16 June 2016 were sought out. The classification system was determined as 6 one-
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as main road (C) of the study area.

2.2. Mapping and Analysis of Land-Use/Land Cover

Landsat images downloaded from the Geospatial Data Cloud Platform (http://www.gscloud.cn/)
were used to produce the land-use/cover map of the study area. Before images were selected, two
criteria were considered: (1) the date acquired must have been in the growing season (typically from
around March 18 to around November 25) (https://weatherspark.com/y/136066/Average-Weather-
in-Qingdao-China-Year-Round) which could be beneficial for dividing bare land and built-up land
from other land types; (2) the cloud coverage had to be less than 1%. Finally, three images of
Landsat 5 TM (Thematic Mapper, one sensor type) and Landsat 8 OLI (Operational Land Imager,
one sensor type) acquired on 7 October 1987, 26 October 2000, and 16 June 2016 were sought out.
The classification system was determined as 6 one-class level land-use types—forest land, agricultural
land, built-up land, grassland, bare land and waterbody—according to previous studies and the
aim of learning the influence of urbanization on agricultural and forest land [1,15,39]. During the
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process of classification, the images were first radiometrically calibrated and clipped with the vector
boundary of the study area in the ENVI 5.3 software (Exelis Visual Information Solutions, Inc., Boulder,
CO 80301 USA). Then, the spectral indices of a normalized difference vegetation index (NDVI) and
normalized difference built-up index (NDBUI) [40] were calculated and stacked into multispectral
bands to improve classification. Next, regions of interest (ROI), evenly distributed in the study area for
both types, were delineated through visual interpretation to train and test the subsequent classification,
respectively. In total, the training ROIs were 28,082, 56,484 and 45,751 pixels, and the testing ROIs were
9911, 59,464 and 36,410 pixels, respectively, for images of 1987, 2000 and 2016. Finally, the maximum
likelihood classification method was used to classify images into the six land-use categories mentioned
above. The overall accuracy was 92.76%, 89.66%, and 93.07% for the years of 1987, 2000 and 2016,
respectively. Moreover, the Kappa coefficients were 0.90, 0.86 and 0.90, respectively, and indicated that
the accuracy of land-use classification maps was high.

The conversion matrix method in ENVI was used to analyze changes in land-use/cover.
The conversion matrix could provide the magnitude and intensity of changes between the different
land-use types.

2.3. Analysis of Landscape Patterns

Landscape patterns have been often analyzed through landscape metrics [41]. All the metrics,
which are classified into the three levels of patch, class, and landscape, quantify such aspects as the
fragmentation, heterogeneity, and connectivity of the landscape pattern [21]. However, it is vital to
select appropriate metrics when analyzing landscape patterns. Some methods have been used for
metric selection by predecessors. For example, in order to remove surplus or redundant metrics,
Schindler et al. [42] tested methods including expert knowledge, decision tree analysis, principal
component analysis, and principal component regression for metric selection. On the other hand,
Su et al. [39] selected metrics for an agriculture landscape pattern analysis based on the three key
criteria: (1) Metrics should have some ecological significance in categories of edge/density/area, shape,
and contagion; (2) metrics should be comparable with previous studies; and (3) metrics should be of
low redundancy.

To comprehensively examine the urban expansion on landscape patterns, 15 frequently used
landscape-level metrics [43–46] were initially selected: total area (TA), patch density (PD), the largest
patch index (LPI), total edge (TE), edge density (ED), large shape index (LSI), mean shape index
(SHAPE_MN), area-weighted mean shape index (SHAPE_AM), mean fractal dimension index
(FRAC_MN), area-weighted fractal dimension index (FRAC_AM), contagion (CONTAG), effective
mesh size (MESH), splitting index (SPLIT), Shannon’s diversity index (SHDI), and aggregation
index (AI). Based on a two-tailed Pearson’s correlation analysis, 4 metrics with the least correlation
between each other were chosen in this study: the LPI, SHAPE-AM, PD and CONTAG. These metrics
were categorized into three groups [47]: area and edge metrics (LPI), shape metrics (SHAPE-AM),
and aggregation metrics (PD and CONTAG). The area and edge metrics describe the patches’
number, size, and edge, and the shape metrics measure the geometric complexity of the patches.
The aggregation metrics calculate landscape texture to describe the tendency of patch types to be
spatially aggregated. All the metrics for each sub-district area were computed in FRAGSTATS
4.2 (http://www.umass.edu/landeco/research/fragstats/fragstats.html), and their change ratios were
calculated based on the following Formula (1).

R∆t =
Mt+∆t −Mt

Mt
× 100% (1)

where R∆t is the change ratio of landscape metrics from time t to t + ∆t; Mt and Mt+∆t represent the
value of metrics for the target unit in time t and t + ∆t, respectively; and ∆t is the time interval for the
study period (measured in years).

http://www.umass.edu/landeco/research/fragstats/fragstats.html
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2.4. Urban Expansion Intensity

In our study, the urban expansion intensity (UEI) was selected to identify urban expansion. UEI
indicates the annual spatial changes of urban land area per unit area [24,25] by using Formula (2).

UEI∆t =
UAt+∆t −UAt

TA
×

1
∆t
× 100% (2)

where UEI∆t. is the urban expansion intensity during the time t and t + ∆t; UAt and UAt+∆t indicate
the urban area of calculated unit at time t and t + ∆t, respectively; ∆t is the time interval of the study
period (measured in years); and TA is the total land area for the target subdistrict.

2.5. Statistical and Regression Analysis

The two-tailed Pearson’s correlation method was used to analyze correlations between change in
land-use and landscape metrics’ change ratio at different urban development zones and the whole
study area. In addition, stepwise linear regressions were performed to quantify and compare the
effects of land-use change (a unit of km2 was designated) on landscape pattern changes. To evaluate
the explanatory ability of models, the adjusted R2 value was calculated for each model. All analyses
were performed using IBM SPSS Statistics version 22 software (SPSS Inc., Chicago, IL, USA).

To assess the spatial influence of urban expansion on landscape pattern changes, geographically
weighted regression (GWR) was applied to explore the relationship between urban expansion intensity
and landscape metrics. Under the assumption that nearer observations exert more significant influences,
GWR can accurately describe a spatial relationship by taking neighbor effects into consideration [48].
It expresses the spatial relationships of a variable by generating a group of local coefficients containing
a local R2 value, local residuals, local parameter estimates, and t-test values. The formulation of the
GWR model can be expressed as Formula (3).

y j = β0
(
u j, v j

)
+

k∑
i

βi
(
u j, v j

)
xi j + ε j (3)

where u j and v j indicate the spatial coordinates of location j; β0
(
u j, v j

)
and βi

(
u j, v j

)
are the intercept

value and the local-specific coefficient of the independent variable xi j, respectively; k is the number of
independent variable; and ε j represents the error. GWR uses kernel bandwidth to calculate the spatial
dependency range, and the weight for all observations are computed by a distance–decay function
within the spatial range. This distance decay function is given as Formula (4).

wi j = exp
(
−d2

i j/b2
)

(4)

where wi j represents the weight of observation i relative to neighborhood observation j; di j is the
Euclidean distance between locations i and j; and b represents the kernel bandwidth. Coarser kernel
bandwidth leads to a slowed weight decrease with distance and generates more global relationships [49].
The weight value equals 1 when the observation points i and j are located at the same place; conversely,
the weight value decay is close to 0 when the distance between them increases toward the spatial scope
of kernel bandwidth.

The spatial regression model was performed with the GWR tool in the ArcGIS 10.3 software
(Environmental Systems Research Institute, Redlands, CA, USA). The spatial map for the changes of
each of the metrics during a time interval was taken as a dependent variable and the corresponding
urban expansion intensity change was entered as an independent factor. There are two types of kernel
function in the spatial regression tool: FIXED and ADAPTIVE. This means that the spatial context (the
Gaussian kernel) can be a fixed distance or a function of a specified number of neighbors. In this study,
the basic unit for the GWR modeling are sub-districts whose boundary and the area were irregular
and unequal, i.e., the spatial distribution of observations was not uniform. Therefore, we adapted the
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ADAPTIVE type of kernel matched up with the lowest Akaike information criteria (AICc) to determine
the extent of the kernel.

3. Results

3.1. Changes in Land-Use/Cover

The land-use changes during the years 1987 and 2016 were examined by using spatial maps
(Figure 2) and a conversion matrix (Appendix A, Tables A1–A4). The results showed that urbanization
has led to significant land-use changes over the years 1987–2016. Therefore, the most obvious changes
occurred in built-up land, with 14,416.2 ha (growth rate of 98.04%) and 27,635.04 ha (growth rate of
94.90%) increases in the periods of 1987–2000 and 2000–2016, respectively. As a result, the proportion
of built-up land in the total land has increased from 13.03% to 50.28%. This rapid urbanization process
has mainly occurred around the Jiaozhou Bay, which occupies a flat terrain area near the sea. With
the dramatic upsurge in built-up land, other land-use types such as forest land, agricultural land and
waterbodies have been bulldozed. For example, the forest land, agricultural land and waterbody
had 6160.32, 6967.98, and 1744.74 ha converted to built-up land during 1987–2000, which account for
59.19%, 48.20% and 90.95% in the changed area of the three types, respectively. This trend was more
pronounced from 2000 to 2016, with the above-mentioned proportion reached 95.21%, 69.33% and
91.67%, respectively. At the same time, the built-up land had transformed into other land-use types
such as waterbody and forest land during this period. This could be due to river regulation, reservoir
building, and old villages’ reconstruction, all of which would generate urban green space.
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Land-use changes exhibited distinct variations among different urban development zones. In the
downtown area, the built-up land continuously increased from 6176.97 to 8275.32 ha during the
years 1987–2016, which is 88.09% of the total downtown area. Among the augmenter in built-up
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land, the forest land had the largest contribution, with 49.06% land transformed during the period of
1987–2000 and 54.31% land converted from 2000 to 2016. The sea reclamation in the east of downtown
is the most important inducement of the decrease of waterbody, whose area declined 62.26% and
88.69% in the periods of 1987–2000 and 2000–2016, respectively. At the same time, the other three
land-use types experienced dramatic decreases because of urbanization progress. The grassland
and bare land had disappeared, and the agricultural land almost vanished in 2016. However, there
were also 159.75 and 301.41 ha of built-up land transformed into forest land during 1987–2000 and
2000–2016, respectively. This may benefit from the restoration and conservation of several big parks
(e.g., Zhongshan Park, Beiling Mountain Forest Park, Jiading Mountain Park, Guanxiang Mountain
Park and Shuangshan Park) and the construction of the coastal green belt.

In the suburban plain area, the built-up land area grew 141.83% and 123.48% during the years
of 1987–2000 and 2000–2016, respectively, indicating an extreme urban expansion in this region.
The increase in built-up land area was stronger across the transportation network around the Jiaozhou
Bay. In other land-use types, the agricultural land had the greatest decline, with 7208.19 ha (33.45%)
and 11,927.79 ha (83.17%) decreases in the periods of 1987–2000 and 2000–2016, respectively. Among
the decrement, 74.39% and 75.77% of agricultural land, respectively, in the periods of 1987–2000 and
2000–2016 were converted to built-up land. Similarly, a large amount of forest land, grassland and bare
land were transformed into urban land, resulting in continuous declinations for these types. On the
contrary, during the years 1987–2000, the waterbody area increased 1631.25 ha, with the growth rate
being 12.98%. This increase was mainly due to the construction of Jihongtan Reservoir in the north
of this region. However, this trend turned in the opposite direction, with 35.66% (5063.49 ha) of the
waterbody transformed into other land-use types—mainly built-up land.

In the mountainous suburban areas, the increase of built-up land in southwestern and northeastern
Laoshan district reached 4254.84 ha (during 1987 and 2000) and 10,622.88 ha (during 2000 and 2016),
which is 11.08% and 27.66% of the total area. At the same time, the forest land area increased 2332.71 ha
from 1987 to 2016 under the influence of the Grain for Green Project and forest conservation policy in
this region. In contrast, the agricultural land and bare land areas significantly declined 99.17% and
93.68%, respectively, in the years of 1987–2016, whereas the grassland completely vanished by the end
of 2016. The waterbody area increased 73.17 ha from 1987 to 2016, but a great decrease of 246.42 ha
followed because of the encroachment of urban land.

3.2. Spatial and Temporal Change of Landscape Patterns

The landscape patterns of different urban development zones in the study area were analyzed
through four landscape metrics during the periods of 1987, 2000 and 2016. As shown in Figure 3,
the changes were obviously different across different zones for the metrics: (1) The LPI significantly
increased in the downtown and mountainous suburban areas, but it decreased in the suburban plain
area from 1987 to 2000. However, the LPI had a huge increase in the suburban plain area when it
slightly increased in the downtown and mountainous suburban areas. The significant increase of the
LPI in the downtown and mountainous suburban areas was due to the expansion and infilling of
built-up land and forest land, respectively (Figure 2). As a result, the largest patch of area increased.
The changes of the LPI in the suburban plain area was because the largest patch of agricultural land
decreased and was finally replaced by a large patch of built-up land. (2) The area-weighted mean shape
index (SHAPE-AM) continually increased in the downtown area, whereas it firstly decreased and then
enormously increased in the suburban plain area and exhibited a first increasing and then decreasing
tendency in the mountainous suburban areas. (3) The urbanization transformed other land-use types
into built-up land and promoted the appearance of green space in the downtown area. As a result, PD
significantly decreased in the period of 1987–2000 and increased in the period of 2000–2016. However,
there had been consistent, slight growth and a sustained, great decrease in the suburban plain and
mountainous areas, respectively. The conversion of a large patch of agricultural land and waterbody
into dispersed built-up land in the suburban area, and the infilling of forest land by disappeared bare
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land in the mountainous suburban areas was responsible for these changes. (4) CONTAG significantly
increased in downtown and slightly increased in the other two places from 1987 to 2000. However,
during 2000–2016, it increased a lot in suburban plain and mountainous areas but had a slight increase
in downtown.
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Figure 3. Changes of four landscape metrics in different urban development zones during
1987–2016. LPI: largest patch index; SHAPE-AM: area-weighted mean shape index; PD: patch density;
CONTAG: contagion.

3.3. The Influence of Land-Use Change and UEI on Landscape Patterns

A correlation analysis was conducted to identify the relationships between selected landscape
metrics and land-use changes and UEI (Tables 1 and 2). The results indicate that there have been great
variations across three urban development zones and the whole study area at different time stages.
From the perspective of the whole region, none of four metrics were related with land-use changes
during 1987–2000. However, in the last period, the LPI was sensitive to waterbody, agricultural and
built-up land; SHAPE-AM was not significantly related to grassland and bare land; PD was well-related
with forest land and grassland; and CONTAG was only sensitive to built-up land. In terms of UEI, it
was strongly related to all the landscape metrics in the two periods other than SHAPE-AM from 1987
to 2000.

In the downtown area, the area-edge metrics (LPI) and aggregation metrics (PD, CONTAG) were
significantly related to all the land-use types except waterbody during the period of 1987–2000, whereas
CONTAG was no longer significantly related to any land-use types, and the LPI and CONTAG were
not sensitive to bare land during the period of 2000–2016. The shape metric (SHAPE-AM) related well
to agricultural, grassland and bare land from 1987 to 2000, and it was correlated well with forest and
built-up land in 2000 and 2016, respectively. In the suburban plain area, only the metrics of SHAPE-AM
and PD were strongly related to forest and agricultural land during the stage of 2000–2016. In the
mountainous suburban areas, only SHAPE-AM had a significant relationship with the land use of
grassland from 1987 to 2000.
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Table 1. Pearson’s correlation coefficients between landscape metrics changes and urbanization related
to land-use changes and urban expansion intensity in different urban development zones and the
whole region from 1987 to 2000.

Urban Development
Zones

Landscape
Metrics Waterbody Forest Agricultural

Land Built-up Land Grassland Bare
Land UEI

Downtown area

LPI –0.069 –0.673 ** –0.705 ** 0.797 ** –0.532 ** –0.776 **
SHAPE–AM –0.073 0.039 –0.416 * 0.281 –0.377 * –0.440 *

PD –0.182 0.637 ** 0.551 ** –0.602 ** 0.567 ** 0.566 **
CONTAG –0.018 –0.595 ** –0.638 ** 0.684 ** –0.563 ** –0.554 **

Suburb
(mountainous area) SHAPE-AM 0.802 –0.750 0.143 0.415 –0.974 * 0.319

The whole region

LPI –0.124 –0.027 0.206 –0.126 0.071 –0.037 0.696 **
SHAPE-AM –0.067 0.067 0.023 0.025 –0.080 –0.147 0.068

PD 0.057 0.119 –0.240 0.161 –0.079 –0.050 –0.691 **
CONTAG –0.081 –0.087 0.220 –0.127 0.045 –0.008 0.756 **

The superscripts ** and * indicate a significantly correlation at the 0.01 level (two-tailed) and the 0.05 level (two-tailed),
respectively. LPI: largest patch index; SHAPE-AM: area-weighted mean shape index; PD: patch density; CONTAG:
contagion; UEI: urban expansion intensity.

Table 2. Pearson’s correlation coefficients between landscape metrics changes and urbanization related
to land-use changes and urban expansion intensity in different urban development zones and the
whole region from 2000 to 2016.

Urban Development
Zones

Landscape
Metrics Waterbody Forest Agricultural

Land Built-up Land Grassland Bare
Land UEI

Downtown area

LPI −0.391 * −0.724 ** –0.706 ** 0.853 ** −0.463 ** –0.149
SHAPE-AM −0.023 0.695 ** 0.304 −0.413 * 0.228 –0.192

PD 0.103 0.376 * 0.493 ** −0.407 * 0.354 * 0.141
CONTAG −0.268 −0.193 −0.255 0.315 −0.098 0.316

Suburb (plain area) SHAPE-AM −0.299 0.367 −0.582 ** 0.388 0.309 0.013
PD −0.308 0.642 ** −0.267 0.063 0.378 0.332

The whole region

LPI −0.341 * −0.013 −0.343 ** 0.392 ** 0.108 −0.123 0.630 **
SHAPE-AM −0.291 * 0.429 ** −0.639 ** 0.404 ** 0.081 −0.240 0.319 *

PD −0.061 0.307 * 0.060 −0.214 0.323 * 0.246 −0.489 **
CONTAG −0.191 −0.154 −0.246 0.367 ** −0.150 −0.251 0.511 **

The superscripts ** and * indicate a significantly correlation at the 0.01 level (two-tailed) and the 0.05 level (two-tailed),
respectively. LPI: largest patch index; SHAPE-AM: area-weighted mean shape index; PD: patch density; CONTAG:
contagion; UEI: urban expansion intensity.

A stepwise regression model was used to assess which land-use was more important to the
change of landscape patterns across different types of urban development zones (Tables 3 and 4).
During the period of 1987–2000, the changes of built-up land, grassland, waterbody and bare land
played a significant role in predicting the LPI and CONTAG, and forest land and bare land were more
important in the prediction of SHAPE-AM and PD in the downtown area. However, grass land was
the only land-use type that could effectively predict SHAPE-AM in the mountainous suburban areas.
Furthermore, in the period of 2000–2016, built-up land, waterbody and agricultural land played an
important role in predicting the LPI in downtown, forest and agricultural land were more important
to SHAPE-AM and PD in the downtown and suburban plain areas. These results indicated that the
influence of land-use changes on landscape patterns was significantly different across three urban
development zones.
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Table 3. Stepwise regression models of land-use changes during 1987–2000 and the related landscape
metrics in different urban development zones. The regression equations were selected because the
probabilities of their F values were less than 0.05.

Urban Development Zones Dependent Variables Final Model Adjusted R2 p Value

Downtown area

LPI LPI = 1.925 + 22.801 built-up land +
89.567 grassland – 69.838 bare land 0.718 0.000

SHAPE-AM SHAPE-AM = -0.004 – 2.359 bare land +
0.504 forest land 0.285 0.002

PD PD = -0.852 + 6.439 forest land 0.387 0.000
CONTAG CONTAG = 0.010 + 0.220 built-up land 0.451 0.000

Suburb (mountainous area) SHAPE-AM SHAPE-AM = -0.179 – 1.195 grassland 0.922 0.026

LPI: largest patch index; SHAPE-AM: area-weighted mean shape index; PD: patch density; CONTAG: contagion;
UEI: urban expansion intensity.

Table 4. Stepwise regression models of land-use changes during 2000–2016 and the related landscape
metrics in different urban development zones. The regression equations were selected because of the
probabilities of their F values were less than 0.05.

Dependent Variables Final Model Adjusted R2 p Value

Downtown area
LPI LPI = -0.783 + 24.866 built-up land +

13.121 waterbody – 25.781 agricultural 0.871 0.000

SHAPE-AM SHAPE-AM = 0.138+ 0.784 forest land 0.466 0.000
PD PD = 1.474 + 18.293 agricultural 0.219 0.004

Suburb (plain area) SHAPE-AM SHAPE-AM = 0.290 – 0.047 agricultural 0.299 0.009
PD PD = 0.156 + 0.214 forest land 0.377 0.003

LPI: largest patch index; SHAPE-AM: area-weighted mean shape index; PD: patch density; UEI: urban
expansion intensity.

3.4. Spatial Relationships between Urban Expansion Intensity and Landscape Patterns

The Pearson’s correlation analysis indicated that the area–edge metrics (LPI) and aggregation
metrics (PD and CONTAG) were strongly related to UEI from 1987 to 2016. However, the shape metric
(SHAPE-AM) was sensitive to UEI only in the period of 2000–2016.

The spatial relationships between UEI and changes in the landscape metrics at the subdistrict
level through GWR are presented in Figure 4. A high explanatory ability of UEI on landscape pattern
changes was detected with adjusted R2 values ranged from 0.377 to 0.622 for area–edge metrics (LPI)
and aggregation metrics (PD and CONTAG). However, this explanatory ability exhibited obvious
spatial variations. The highest adjusted R2 values shifted from the core urban area in the first stage to
the adjacent area where high urbanization was experienced during 2000–2016. It can be concluded that
higher urban expansion intensity would explain more landscape pattern changes. The spatial patterns
of coefficients revealed that the LPI and CONTAG were positively related, whereas PD was negatively
related to UEI in most of the regions from 1987 to 2016.
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Natural Breaks classification method was used, and 0 was set as the bread value when the value of
coefficients crossed it.

4. Discussion

4.1. How Much Does Land-Use Change Affect Landscape Patterns?

Changes in land-use could effectively lead to landscape pattern changes [29,50]. The linear
regression equations conducted in our study revealed that a strong relationship existed between
land-use change and landscape pattern changes (Tables 3 and 4). This result is similar to the
result of Dadashpoor et al. (2019 B) who concluded that landscape pattern changes have a strong
relationship with changes in agricultural land, garden land, bare land and built-up land [15]. However,
the relationship conducted in our study was varied among different urban development zones and
time intervals.

In the downtown area, a 1 km2 increase in built-up land caused a 22.801 increase in the LPI
and a 0.220 increase in CONTAG from 1987 to 2000, and a 1 km2 decrease in forest land was
usually accompanied with decreases of 0.504 and 6.439 in SHAPE-AM and PD, respectively (Table 3).
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In addition, changes in grass land and bare land also contributed to the landscape pattern changes.
The reason for this might be that there was no great difference among the changes in these land-use
types. However, the dominant influence on landscape patterns was attributed to agricultural land
from 2000 to 2016. A 1 km2 decrease in agricultural land led to a 25.781 increase in the LPI and caused
18.293 decrease in PD. Meanwhile, the forest land, built-up land and waterbody contributed to the LPI
and SHAPE-AM.

In the suburban plain area, the changes in land-use had no significant influence on the four
landscape metrics during 1987 and 2000. However, from 2000 to 2016, forest land and agricultural
land had a slight influence on landscape pattern change. A 1 km2 decrease in forest and agricultural
land were usually together with a 0.214 decrease in PD and a 0.047 increase in SHAPE-AM. This may
be related to the dispersion of change in forest land. This implied that changes of forest land can
fragmentate the landscape [3]. The embezzlement of forest land in the west and the encroachment of
built-up land in the center reduced the patch numbers and increased the concentration of patches.

In the mountainous suburban areas, only grassland had a significant effect on changes in
SHAPE-AM. A 1 km2 decrease in grassland caused a 1.195 increase in SHAPE-AM. This change in the
shape properties of the landscape pattern was mainly due to the spatial distribution change in the
grassland in this region.

4.2. How Does Urban Expansion Influence Landscape Pattern Changes?

Over the last three decades, the urban expansion in the area has transformed agricultural land,
forest land, bare land and so on into built-up land, a transformation which has then led to changes in
landscape patterns. The quantitative relationship between them was conducted through the GWR
method (Figure 4). Ours findings show that the effect of urban expansion on landscape patterns has
spatial and temporal heterogeneity. During the period of 1987–2000, urban expansion was mainly
in the form of infilling and edge expansion from the urban core areas. Therefore, UEI has strong
explanatory power for landscape patterns among these areas, and the coefficients indicated that the
fragmentation level (reflected by PD and the LPI) was significantly, negatively correlated with the
intensity of urban expansion. However, in regions far from downtown, the landscape pattern change
was relatively less related with urban expansion than the urban core areas. Furthermore, the urban
expansion even led to fragmentation in the northwestern area. This agrees with the result of the study
of Dadashpoor et al. [15]. They concluded that the growth of built-up lands in a Tabriz metropolitan
area has resulted in an increase in aggregation and integration in central and adjacent urban areas,
whereas it was opposite in areas far away from built-up lands. Similarly, a few previous studies have
also discovered that the expansion of built-up land has reduced the diversity of landscapes and created
fragmentation and heterogeneity [1,14,51,52].

From 2000 to 2016, the high explanatory ability has shifted towards suburban areas along with a
shift of urban focus, and the correlation coefficients also spatially changed (Figure 4). It can be said that
urban expansion has had a significant effect on landscape pattern changes. Chowdhury et al. [4] and
Islam [5] also believed that urbanization directly influences the degree of fragmentation in landscapes.
Their results also indicated that the built-up landscape has been aggregating in the suburbs where the
fragmentation of landscapes was once increased (Table A3 and Figure 4).

Both regression analyses revealed that urbanization has a strong influence on landscape pattern
changes, and the effect was different in the three urban development zones. However, the GWR models
could give a precise and detailed relationship at each location, which was suitable for questions with
spatial heterogeneity [1,53,54].

4.3. Implications

Qingdao has experienced high economic growth since 1990, with an annual growth rate of GDP
greater than 6% [38]. This sustained and rapid economic growth has greatly changed the spatial pattern
of land-use types in the study area. As a result, a simplified land-use structure has emerged in the
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downtown area. Meanwhile, the profound influence from urbanization on landscape patterns has
been shifting from the city center to the suburbs (Figure 4). According to weak sustainability theory,
this region may still be considered sustainable since the total capital of natural and manufactured has
increased [7]. However, this sustainability is not sustainable over the long haul. Thus, weak sustainable
regions such as well-planned natural areas, agricultural systems and urban centers should be spatially
configurated at a large scale in order to reach long-term sustainability, i.e., strong sustainability [6,7,10].
For this purpose, three recommendations are drawn for long-term sustainable development in Qingdao.

Firstly, priority should be given to protect large forest patches and to plant more trees in the
downtown. Urban forests play an important role in improving environmental quality and public
health in urban areas [55]. Just 20% more trees could double the benefits of urban forests and make
cities more environmentally sustainable [50]. In 1987, there are various land-use types in this area, but
almost only the forest and construction land have been retained over three decades of urbanization.
As a result, the landscape diversity has decreased, and the AI of built-up land has intensified, both of
which are not conducive to the sustainable development of urban landscapes. Thus, decision-makers
should concentrate on protecting existing forest plots and exploiting new green spaces.

Secondly, the concept of a compact city should be adapted to guide urban planning in the suburban
plain area. A compact city is an idea for sustainable urban development to avoid unorderly urban
sprawl and achieve harmony between human beings and the natural environment [8,56]. During the
process of urban expansion from 1987 to 2016, a large amount of contiguous agricultural land, forest
land and water body patches was encroached on by built-up land, leading to a stronger concentration
landscape of construction land. Therefore, rational land development strategies, such as establishing
limited development zones and retaining large patches of forest and agricultural land with equal
distribution, should be made in this region.

Thirdly, anthropogenic disturbances should be continued to be controlled in the suburban
mountainous area to protect the forest landscapes and maintain the ecosystem resilience. Due to
forest protection policies on Mountain Lao, the forest land area in this region grew from 1987 to 2016
(Table A4). However, it should be noticed that built-up land also had great increases of 179.05% and
149.67% from 1987 to 2000 and from 2000 to 2016, respectively, indicating an increase in anthropic
influence. Therefore, decision-makers should focus on setting up prohibited development zones to
protect the integrity of the forest ecosystem in this region.

5. Conclusions

This paper aimed to recognize changes in land-use and landscape patterns and to investigate the
quantitative influence of land-use change and UEI on landscape patterns in three urban development
zones in Qingdao during 1987–2016. For this purpose, firstly, a land-use transform matrix and the
landscape metrics of the LPI, SHAPE-AM, PD and CONTAG were used to identify land-use and
landscape pattern changes. The results suggested that the growth of the economy in Qingdao has
transformed other land-use types such as agricultural and forest land to built-up land in the study
area. Therefore, land-use change has caused aggregation and homogeneity in the landscape. Then, a
correlation analysis and a stepwise regression were adapted to investigate the quantitative relationship
between land-use change and landscape patterns. It has been observed that the influence magnitude
of different land-use types on landscape patterns varied for different urban development zones and
periods of time. In the downtown area, all the land-use types significantly influenced landscape
patterns, and the change in agricultural and forest land had the greatest contribution, especially during
the period 2000–2016. However, the agricultural and forest land, respectively, became the dominant
factors of landscape pattern changes during 1987–2000 and 2000–2016 in the suburban plain area.
The change in grass land had the biggest impact on landscape change in the mountainous suburban
areas. Finally, to evaluate urbanization’s impact on landscape pattern changes, GWR regression
was used to identify the spatial relationship between UEI and the change in the landscape patterns.
The result showed that the effect of UEI on landscape patterns has spatial and temporal heterogeneity.
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From 1987 to 2000, the UEI strongly explained the change in the landscape patterns and made the
landscape assemble faster in the downtown and adjacent areas. However, the a high explanatory
ability shifted towards suburban areas during 2000–2016, and the correlation coefficients also spatially
changed. The reason for this is the shifting of the focus of urban construction from downtown to the
suburbs. Thus, it can be said that UEI has a significant effect on the landscape pattern changes. From
this point of view, a compact city and protection policy should be adapted to different regions in the
study area to achieve a strong sustainability of urban development.
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Appendix A

Table A1. Land-use/cover conversion matrix for the whole region during the period 1987–2016 (in ha).

1987

Forest Agricultural Built-Up Grassland Bare Land Water Class Total

2000 Forest 36460.8 5893.11 658.71 923.76 1609.38 117.09 45662.85
Agricultural 1863.63 13950.63 241.65 459.18 980.91 35.1 17531.1

Built-up 6160.32 6967.98 12318.57 463.95 1464.39 1744.74 29119.95
Grassland 172.26 64.8 5.49 29.16 135.72 0.09 407.52
Bare land 1290.6 872.82 148.95 49.05 2486.79 21.42 4869.63

Water 920.16 656.46 1330.38 322.02 64.71 11990.61 15284.34
Class Total 46867.77 28405.8 14703.75 2247.12 6741.9 13909.05

Image Difference –1204.92 –10874.7 14416.2 –1839.6 –1872.27 1375.29
Image Difference (%) –2.57 –38.28 98.04 –81.86 –27.77 9.89

2000

2016 Forest 33714.99 4623.57 1713.33 216.63 2659.50 509.04 43437.06
Agricultural 248.58 1783.71 194.85 7.38 132.30 101.25 2468.07

Built-up 11375.28 10918.53 25729.83 164.79 1762.38 6804.18 56754.99
Grassland 11.07 50.13 10.62 18.63 9.99 6.30 106.74
Bare land 25.83 11.97 31.05 0.09 233.19 1.89 304.02

Water 287.10 143.19 1440.27 0.00 72.27 7861.68 9804.51
Class Total 45662.85 17531.1 29119.95 407.52 4869.63 15284.34

Image Difference –2225.79 –15063.03 27635.04 –300.78 –4565.61 –5479.83
Image Difference (%) –4.87 –85.92 94.90 –73.81 –93.76 –35.85

Table A2. Land-use/cover conversion matrix for the downtown area during the period 1987–2016 (in ha).

1987

Waterbody Forest Agricultural Built-Up Grassland Bare Land Class Total

2000 Waterbody 190.71 4.14 0 1.08 3.06 0 198.99
Forest 22.32 812.7 56.52 159.75 49.32 11.97 1112.58

Agricultural 4.68 19.89 29.7 10.98 13.68 4.59 83.52
Built-up 305.91 954.72 333.9 5997.24 138.06 213.57 7943.4

Grassland 0 3.33 0.09 0 0 0 3.42
Bare land 3.6 13.5 6.93 7.92 3.69 16.92 52.56

Class Total 527.22 1808.28 427.14 6176.97 207.81 247.05
Image Difference –328.23 –695.7 –343.62 1766.43 –204.39 –194.49

Image Difference (%) –62.26 –38.47 –80.45 28.60 –98.35 –78.72

2000

2016 Waterbody 3.42 8.91 0.09 9.99 0 0.09 22.50
Forest 19.80 753.12 7.02 301.41 1.80 11.70 1094.85

Agricultural 0 0.45 0 1.35 0 0 2.00
Built-up 175.77 350.10 76.41 7630.65 1.62 40.77 8275.32

Grassland 0 0 0 0 0 0 0
Bare land 0 0 0 0 0 0 0

Class Total 198.99 1112.58 83.52 7943.4 3.42 52.56
Image Difference –176.49 –17.73 –81.52 331.92 –3.42 –52.56

Image Difference (%) –88.69 –1.59 –97.61 4.18 –100 –100
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Table A3. Land-use/cover conversion matrix for the suburb (plain area) during the period 1987–2016
(in ha).

1987

Waterbody Forest Agricultural Built-Up Grassland Bare Land Class Total

2000 Waterbody 11104.83 855.63 629.37 1257.75 318.33 34.38 14200.29
Forest 77.94 13770.72 3206.34 276.3 497.61 342.09 18171.00

Agricultural 22.23 1488.78 11903.85 159.75 406.62 360.36 14341.59
Built-up 1355.76 4063.86 5361.84 5208.03 289.35 620.46 16899.3

Grassland 0 56.07 32.04 5.49 29.07 66.78 189.45
Bare land 8.28 280.71 416.34 80.64 30.87 278.64 1095.48

Class Total 12569.04 20515.77 21549.78 6987.96 1571.85 1702.71
Image Difference 1631.25 –2344.77 –7208.19 9911.34 –1382.4 –607.23

Image Difference (%) 12.98 –11.43 –33.45 141.83 –87.95 –35.66

2000

2016 Waterbody 7325.91 270.36 140.31 1329.39 0.00 70.83 9136.80
Forest 467.82 10234.71 3335.22 1041.66 74.70 315.54 15469.65

Agricultural 101.16 236.16 1776.69 189.18 7.29 103.32 2413.80
Built-up 6299.10 7418.43 9037.62 14326.83 88.47 595.71 37766.16

Grassland 6.30 11.07 50.13 10.62 18.99 9.99 107.10
Bare land 0.00 0.27 1.62 1.62 0.00 0.09 3.60

Class Total 14200.29 18171.00 14341.59 16899.3 189.45 1095.48
Image Difference –5063.49 –2701.35 –11927.79 20866.86 –82.35 –1091.88

Image Difference (%) –35.66 –14.87 –83.17 123.48 –43.47 –99.67

Table A4. Land-use/cover conversion matrix for the suburb (mountainous area) during the period
1987–2016 (in ha).

1987

Waterbody Forest Agricultural Built-Up Grassland Bare Land Class Total

2000 Waterbody 679.23 59.67 27.09 69.93 0.18 30.15 866.25
Forest 16.74 21812.76 2621.52 221.85 372.69 1252.35 26297.91

Agricultural 8.19 352.44 1972.44 70.92 37.26 613.71 3054.96
Built-up 79.38 1138.14 1271.07 1101.60 34.38 630.27 4254.84

Grassland 0.09 112.86 32.67 0 0.09 67.95 213.66
Bare land 9.45 992.79 447.93 60.48 14.49 2186.28 3711.42

Class Total 793.08 24468.66 6372.72 1524.78 459.09 4780.71
Image Difference 73.17 1829.25 –3317.76 2730.06 –245.43 –1069.29

Image Difference (%) 9.23 7.48 –52.06 179.05 –53.46 –22.37

2000

2016 Waterbody 517.68 5.04 2.79 93.42 0 0.90 619.83
Forest 20.70 22669.65 1273.86 369.81 139.41 2327.94 26801.37

Agricultural 0.09 11.79 7.56 4.32 0.09 28.98 52.83
Built-up 325.89 3585.87 1760.40 3757.86 74.07 1118.79 10622.88

Grassland 0 0 0 0 0 0 0
Bare land 1.89 25.56 10.35 29.43 0.09 234.81 302.13

Class Total 866.25 26297.91 3054.96 4254.84 213.66 3711.42
Image Difference –246.42 503.46 –3002.13 6368.04 –213.66 –3409.29

Image Difference (%) –28.45 1.91 –98.27 149.67 –100 –91.86
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