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Abstract: The GJR-GARCH model is frequently used by researchers and academic institutions.
However, the model conveys limited information, using zero as a threshold without considering
other possible thresholds. This study shows that a favorable econometric model could be formed
by constructing a hybrid momentum HMTAR-GARCH model. Our findings indicate that higher
asymmetry momentum threshold effects exist on the gold return volatility during highly fluctuating
periods. Sustainable Enterprise Resource Planning (S-ERP) systems could help in the formation
of a good risk management strategy by using the HMTAR-GARCH model. Perhaps gold is more
sustainable than many other financial assets in the creation of an investment portfolio.
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1. Introduction

Gold is an underlying asset in which volatility is an important factor for option pricing. The issue
of gold return volatility has been empirically discussed. There have been many insightful investigations
published previously that use various sorts of econometric models to study the gold return volatility
and the asymmetric effect of positive and negative shocks [1–5].

The core idea of sustainable investing has two elements. Firstly, it has value in helping investors
to spot reputational risk threat and offset such a risk in advance. Secondly, it is an economic moat
helping investors to identify what makes a company sustainable in the financial sense, leading to
strong brands and healthy end-markets. If investors concern themselves with long-term future trends,
the sustainable invest rating can help them to decide whether or not the investment target is worth the
long-term investment and whether it will provide stable profits. Investors should definitely consider
the target of sustainable investing, ethical investing, or socially responsible investing [6–8].

Only in an efficient market would the price of gold momentarily adjust and completely reflect the
new information. As such, no tendency of future increases and decreases is predicted [3,5]. Sustainable
Enterprise Resource Planning (S-ERP) systems could be a robust multi-function platform providing
real-time and integration services and finding the most up-to-the-minute information available on
trading metrics throughout the trading day [9–13]. Based on the principle of diversification, a
multiple-asset portfolio has almost no unsystematic risk. Gold is known as the anti-complex asset.
It could be the safe haven or hedge asset in times of an unstable economy or a highly adverse
environment. During market fluctuation periods, it might be a good time to invest in the gold
market [2,4,14]. In this context, we conclude that gold is more sustainable than many other financial
assets in an investment portfolio. Figure 1 shows the evolution of the price of gold over a 40 year
sample period.
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Figure 1. Daily gold price data, 1980/1/2–2019/4/10. 
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ARCH-GARCH (autoregressive conditional heteroskedasticity - generalized autoregressive
conditional heteroskedasticity) models are applied to account for empirical nonlinear time-series
properties of gold return. Furthermore, the GJR (Glosten-Jagannathan-Runkle) -GARCH model has
been widely applied to determine the asymmetric effects of positive or negative shocks to conditional
volatility in financial research. The GJR-GARCH model uses the positive or negative previous residual
term as a threshold to measure the asymmetric effect due to innovation shocks. The difference between
the GARCH (p,q) and GJR-GARCH (p,q) models is the additional assumption that all leverage terms
are equal to zero. However, using zero as a cut-off threshold in general does not guarantee an overall
optimization fit in empirical estimation, according to the abovementioned studies [1,15–17].

The GARCH model can capture thick-tailed returns and volatility clustering. However, neither
the ARCH model, which examines variance or volatility clustering, nor the GARCH model, which
examines the dependence on the forecast variance of the previous period, can capture volatility
asymmetry. To further account for the asymmetric and steepness asymmetric effects of the inter-period
gold return’s change and volatility, the threshold autoregressive (TAR) and the momentum threshold
autoregressive (MTAR or momentum TAR) econometric models could be jointly applied with the
GARCH model [18–20].

The TAR and MTAR econometric models have been well documented as tools for measuring
the asymmetric and nonlinear phenomenon in time-series analyses. However, in most cases both
models are estimated separately, resulting in unbiased but inefficient estimators. The TAR dummy
variable could measure asymmetric effects due to past residual shocks to the system, while the MTAR
dummy variable tries to capture residual difference effects for measuring the incremental momentum
(nonlinearity) during a highly volatile period. This paper thus proposes a hybrid integrated mean
equation so that both asymmetric and nonlinear properties can be measured simultaneously [21–23].

Therefore, this paper proposes a hybrid momentum TAR/MTAR-GARCH (HMTAR-GARCH)
model to explore a better functional fit in empirical estimation. A new programming algorithm is
proposed for simulating two random thresholds for both TAR and MTAR components in the equations
of mean and variance simultaneously. The paper also aims to investigate the gold return volatility in
the following circumstances. First, the gold return volatility is greater during the financial tsunami
period (i.e., extreme market conditions) than the non-financial tsunami period. Second, the effect
on gold return volatility is greater whenever the lagged residual falls below its threshold during the
financial tsunami period (TAR effect). Third, the effect on gold return volatility is greater whenever
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the first differencing of the lagged residual falls below its momentum threshold during the financial
tsunami period (MTAR effect). Forth, the MTAR effect is even stronger than the TAR effect on gold
return volatility.

The rest of the paper is organized as follows: Section 2 introduces the hypotheses, data set, and
methodology; Section 3 provides the empirical results; and Section 4 summarizes the discussion and
concludes the paper.

2. Materials and Methods

2.1. Hypotheses and Data Set

Baur [2] tested the asymmetric volatility of gold return in the GJR-GARCH model framework
and indicated that the gold returns exhibit highly significant ARCH, GARCH, and asymmetric effects.
The unexpected negative market shocks tend to increase the gold return volatility. In addition, Enders
and Siklos [21] found that TAR and MTAR econometric models could test for the presence of nonlinear
adjustment and have good power. We assessed whether a higher asymmetry momentum threshold
has an effect on the gold return volatility during highly fluctuating periods.

Based on the arguments of [2,21] and our intuition, the following hypotheses on the gold return
volatility were tested within GARCH, GJR-GARCH, and HMTAR-GARCH models:

Hypothesis 1. The gold return volatility is greater during the financial tsunami period (i.e., extreme market
conditions) than the non-financial tsunami period (i.e., a stable or tranquil regime).

Hypothesis 2. The effect of gold return volatility is greater whenever the lagged residual falls below its threshold
during the financial tsunami period (TAR effect).

Hypothesis 3. The effect of gold return volatility is greater whenever the first differencing of lagged residual
falls below its momentum threshold during the financial tsunami period (MTAR effect).

Hypothesis 4. The MTAR effect is even stronger than the TAR effect on gold return volatility during the
financial tsunami period.

The main variable in this study is the gold return (RET), which is equal to the natural log of gold
price at time t divided by gold price at time t−1, i.e., RETt = ln(Pt/Pt−1).

Daily gold spot prices in US$ were obtained through Bloomberg.com over the period of
3 January 2000 to 30 December 2016, including a total of 4432 observations. The sample period
covers the extreme market conditions of the financial tsunami period in gold prices and uses balanced
sampling. Following [2], we used a financial tsunami period from 1 August 2007 to 31 December 2008.
The financial tsunami timeline was provided by the Federal Reserve Board of St. Louis (Fed) and the
Bank for International Settlements (BIS). Furthermore, the Chow test was applied to test and confirm
the structural break existing during the financial tsunami period [24,25].

2.2. Linear and Nonlinear Unit Root Tests

Many economic and financial time series exhibit trending behavior or non-stationarity in the
mean. This paper tested the stationary time series by applying the augmented Dickey–Fuller (ADF)
test [26,27], the Phillips–Perron (PP) test [28], the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test [29]
and the Kapetanios–Shin–Snell (KSS) test [30]. The ADF test’s regression includes lags of the first
differences of Yt, and its three models are expressed in the following forms:

∆ Yt = φYt−1 +
k∑

i=1

βi∆Yt−i + εi (1)
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∆ Yt = α+ φYt−1 +
k∑

i=1

βi∆Yt−i + εi (2)

∆ Yt = α+ φYt−1 + λt +
k∑

i=1

βi∆Yt−i + εi (3)

where t is the time index, α is an intercept constant called a drift, λ is the coefficient on a time trend,
φ is the coefficient presenting the process root, i.e., the focus of testing, k is the lag order of the
first-differences autoregressive process, and εt is an independent identically distributed residual term.

Model (1) is a pure random walk with the lag terms. Model (2) possesses a drift. Model (3)
includes a drift and a time trend. The null hypothesis for the ADF test is: H0: φ = 0, with the alternative
H1: −2 < φ < 0. The ADF t-test statistic is φ̂/se(φ̂).

The PP test differs from the ADF test mainly in how it deals with serial correlation and
heteroscedasticity in the error term. The PP test does not require the specification of the form of the
serial correlation of ∆Yt under the null, or require that the errors εt be conditionally homoscedastic.
The KPSS tests are intended to complement ADF and PP unit root tests, for obtaining consistent
estimates in unit root tests. In addition, the KSS nonlinear unit test is applied since the above linear
unit root tests might suffer from important power distortions in the presence of nonlinearities in the
data generating process [26–30].

2.3. Traditional TAR and MTAR Models

Testing for the long-run relationship between the gold return of current and previous trading days,
this study utilized the threshold co-integration techniques proposed by [19,21,31]. The techniques
comprise two tests, the TAR and MTAR models, given as follows:

Y1t = α+ βY2t + ut (4)

∆ut = Itρ1ut−1 + (1− It)ρ2ut−1 +
k∑

i=1

γi∆ut−i + εt (5)

where Y1t and Y2t are co-integrated variables, εt is a white noise residual term, and ρ1, ρ2, and ri
represent regression coefficients. Finally, It is an indicator function such that τ is an unknown threshold
to be simulated:

It =

{
1 i f ut−1 ≥ τ1

0 i f ut−1 < τ1
. (6)

As an alternative adjustment process, the MTAR model, by using first differencing of the residual
series, presents as follows:

∆ut = Mtρ1ut−1 + (1−Mt)ρ2ut−1 +
k∑

i=1

γi∆ut−i + εt (7)

Mt =

{
1 i f ∆ut−1 ≥ τ2

0 i f ∆ut−1 < τ2
. (8)

Traditionally, Equations (4) and (5) and Equations (4) and (7) are estimated separately. It could
be shown that by omitting important variables, separate estimation would result in unbiased but
inefficient estimators. Thus, by combining Equations (4), (5), and (7), a hybrid TAR and MTAR model
could be specified in the next section.
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2.4. The HMTAR-GARCH Model

The mean and variance equations are proposed as follows [17,22]. The TAR coefficients δ2 and γ1

measure the asymmetric threshold impacts while observing previous innovative shocks. The MTAR
coefficients δ3 and γ2, which are the lagged residual differencing effect, demonstrate the tendency of
nonlinear reaction during a volatile time period. The inclusion of lagged dependent variable terms
might mitigate autocorrelation problems and trend the residuals toward a white noise process:

RETt = δ0 + δ1 RETt−1 + δ2It + δ3Mt + δ4 D1 + δ5 D1·It + δ6 D1·Mt + εt (9)

ht = α0 + β1 ht−1 + α1 ε
2
t−1 + γ1It + γ2Mt + θ1D1 + θ2D1 ·It + θ3 D1·Mt (10)

where

It =

{
1 i f εt−1 ≥ τ1,

0 i f εt−1 < τ1,
(11)

Mt =

{
1 i f ∆εt−1 ≥ τ2,

0 i f ∆εt−1 < τ2,
(12)

εt =
√

htvt is the residual of the time series, vt is the innovation, vt ∼ i.i.d.

α0 ≥ 0, β1 ≥ 0, α1 ≥ 0, 0 ≤ β1 + α1 + γ1 + γ2 + θ1 + θ2 + θ3 < 1.
D1 is the dummy of the financial tsunami period.

The combination of TAR, MTAR, and GARCH is applied in gold return volatility forecasting.
The GARCH model is useful for modeling the volatility characteristics, while TAR and MTAR reflect
the two thresholds and are used to capture the historical residual shock feedback effects derived
from the inter-period change of gold return and gold return volatility, especially sharp movements.
Consequently, the HMTAR-GARCH model might be flexible enough to represent the intrinsic threshold
structure of the gold return volatility time series.

Notice that if τ1 = τ2 = 0, Equations (9) and (10) are similar to the GJR-GARCH model. All
proposed models are estimated using the Maximum Likelihood Estimation method with the BHHH
(Berndt–Hall–Hall–Hausman) optimization algorithm based on [31].

To test hypothesis 1, we tested whether the volatility of gold return in the financial tsunami
period was greater than the volatility of gold return in the stable or tranquil regime (i.e., θ1 > 0 and
statistically significant). To test hypotheses 2 (TAR effect), we tested whether the effect on gold return
volatility would be greater whenever the lagged residual falls below its threshold (i.e., εt−1 < τ1)
during the financial tsunami period (i.e., θ2 < 0 and statistically significant). Then to test hypotheses 3
(MTAR effect), we tested whether the effect on gold return volatility would be greater whenever the
first differencing of lagged residual falls below its momentum threshold (i.e., ∆εt−1 < τ2) during the
financial tsunami period (i.e., θ3 < 0 and statistically significant).

Finally, to test hypothesis 4, we tested whether the MTAR effect is even stronger than the TAR
effect on gold return volatility during the financial tsunami period (i.e., θ3 < θ2 and statistically
significant). Another way to test hypothesis 4 is known as the Wald test, used to verify the joint
significance alternatives of (γ2 + θ3) < (γ1 + θ2), which is the total volatility effect of TAR and MTAR
during the financial tsunami period. Furthermore, the Ljung-Box test was applied to test and perform
the residual diagnostic for each model [32].

2.5. The HMTAR-GARCH Estimation Algorithm

Traditionally, Chan’s method [33] has been adopted to identify a single optimal threshold either
in the TAR or MTAR model. This study modified Chan’s method to estimate two random thresholds
simultaneously. The intrinsic problem of Chan’s method is that because the estimated residuals can be
very close, they could result in over-simulation. Thus, this study designed a new grid search algorithm,
as described the following section.
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2.5.1. Estimating the GJR-GARCH model

Use Equations (9) and (10), and obtain residual series εt. Find the maximum and minimum values
of εt and ∆εt as maxE, minE, maxDE, and minDE, respectively. Then, the HMTAR-GARCH model is
applied for searching optimal double thresholds. In order to avoid extreme thresholds, multiply these
four residual series by 70%. In practice, only the middle 70% of these series is tested for the threshold.
The reason for this restriction is to keep an adequate amount of observations on each regime when
estimating the threshold and the other parameters in the threshold-GARCH model [8,16,17,19].

2.5.2. Setting Double Thresholds Searching Intervals

Find the threshold increments of INC1 and INC2 by using (maxE−minE)/k for the TAR threshold
(τ1) and (maxDE−minDE)/k for the MTAR threshold (τ2), where “k” is simulating from 5 through 13,
respectively. The improvement of result is limited when the values of k is higher than 11. Therefore,
this study sets the parameter “k” equal to 11.

2.5.3. Finding Optimal Double Thresholds

Design a three-layered do-loop procedure of a searching algorithm and embed the estimation
within the do-loop using RATS econometrics software programming language.

The first layer controls the threshold increments. The threshold increments, INC1 and INC2, are
narrowed down to half distances on the next run. Based on the minimum Akaike information criterion
(AIC) and Schwarz’s Bayesian criterion (SBC), as well as the maximum log-likelihood, the second and
third layers in searching algorithm were designed for improving potential thresholds (i.e., τ1 and τ2).
The best thresholds re kept each time until the end of the simulation [17,19,31,33].

3. Results

The sample in this study was the daily data from 3 January 2000 to 30 December 2016, and thus
contains the low-volatility period as well as the high-volatility period [2–5]. In order to observe the
variation of the gold return (RET) in different sorts of periods, the original time-series data set was
divided into three periods (pre-financial tsunami, financial tsunami, and post-financial tsunami), as
shown in Table 1.

Table 1. Segmented periods from 3 January 2000 to 30 December 2016.

Period Trading Days

Pre-Financial Tsunami 3 January 2000 31 July 2007 1977
Financial Tsunami 1 August 2007 31 December 2008 371

Post-Financial Tsunami 1 January 2009 30 December 2016 2084

Overall Observed Time 3 January 2000 30 December 2016 4432

Table 2 reports a summary of RET descriptive statistics over each sample period. During the
financial tsunami period, the RET, in contrast to other periods, obviously displays a larger dispersion,
ranging from a high of 10.7883 to a low of −6.9149, with a mean of 0.0921. The mean value is positive
and approaches zero over time. These statistics are similar to other financial markets’ performance,
with a standard deviation larger than the mean.

Furthermore, Table 3 reports a summary of statistics of the structural break test between the
financial tsunami period and the non-financial tsunami period. The coefficient ρ3 (=0.0732) is
significantly positive, while the t-statistic of Chow test are significant at less than the 5% implying the
beta difference between financial tsunami and non-financial tsunami periods. The total gold return
volatility effect would be 0.0338 (i.e., ρ1 + ρ3) during the financial tsunami period. This indicates the
structural break exists during the financial tsunami periods [24,25].
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Table 2. Descriptive statistics of the gold return (RET) in each segmented period.

Period Mean Standard Deviation Maximum Minimum

Pre-Financial Tsunami 0.0474 1.0129 7.9492 −6.9839
Financial Tsunami 0.0921 1.7744 10.7883 −6.9149

Post-Financial Tsunami 0.0185 1.0780 4.9943 −9.0737

Overall Observed Time 0.0375 1.1257 10.7883 −9.0737

Table 3. Estimated results of the structural break test (n = 4432).

Variable Coeff. Std Error t-Stat p-Value

Constant 0.0338 0.0177 1.9117 * 0.0559
RETt−1 −0.0394 0.0169 2.3375 ** 0.0195

D1 0.0553 0.0611 0.9051 0.3655
D1 .RETt−1 0.0732 0.0370 1.9772 ** 0.0481

Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

The mean model extended from Equation (9) is as follows:

RETt = ρ0 + ρ1 RETt−1 + ρ2 D1 + ρ3 D1·RETt−1 + εt

where D1 is the dummy of the financial tsunami period.
Figure 2 illustrates the daily gold return (RET) denominated in US$ over a 17 year period.

Figure 3 shows the daily conditional volatility HMTAR-GARCH (1, 1) estimates of the gold return (H)
denominated in US$ over a 17 year period. Figure 4 illustrates the gold return (RET) and the daily
conditional volatility HMTAR-GARCH (1, 1) estimates of the gold return (H) denominated in US$ over
a 17 year period.
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As many financial variables are not stationary or are not residual stationary of regression and may
lead to spurious regression, the ADF, PP, KPSS, and KSS unit root tests were conducted for the level of
gold prices (GP) and the RET [26–30]. Table 4 shows the results of the ADF, PP, KPSS and KSS tests
and concludes that GP is non-stationary.
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Table 4. Unit root test results for the price of gold (GP).

Linear test Nonlinear test

Lags ADF [26,27]
t-Stat

PP [28]
Adj. t-Stat

KPSS [29]
Adj. t-Stat

KSS [30]
t-Stat

5 −1.1765 −1.1587 64.5504 *** −1.9302 *
10 −1.1673 −1.1569 35.2389 *** −1.9205 *
20 −1.1651 −1.1517 18.4887 *** −1.9072 *

Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Furthermore, Table 5 shows the results of the ADF, PP, KPSS and KSS tests and concludes that
RET is stationary.

Table 5. Unit root test results for RET.

Linear test Nonlinear test

Lags ADF [26,27]
t-Stat

PP [28]
Adj. t-Stat

KPSS [29]
Adj. t-Stat

KSS [30]
t-Stat

5 −27.9045 *** −68.1695 *** 0.2692 −6.8297 ***
10 −21.0031 *** −68.1866 *** 0.2765 −4.0304 ***
20 −14.8584 *** −68.2477 *** 0.2901 −2.2109 **

Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

The presence of ARCH (autoregressive conditional heteroscedasticity) effects in the residuals was
also checked. The test statistic is highly significant, as shown in Table 6, proving the existence of ARCH
effects [19,21].

Table 6. Lagrange multiplier test results for ARCH effects.

Heteroscedasticity Test F-Statistic Chi-Squared

ARCH (1) 38.1646 *** 37.8557 ***
ARCH (5) 22.1434 *** 108.1586 ***

ARCH (10) 20.2930 *** 194.4888 ***

Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

For comparison purposes, three models are proposed. Model 1 is the GARCH model without a
threshold. Model 2 is GJR-GARCH (1,1), which is similar to the model with the TAR threshold (τ1) and
the MTAR threshold (τ2) set to zero. Model 3 is the HMTAR-GARCH model, with random thresholds
τ1 and τ2.

Table 7 illustrates the results of our estimations between the gold return of current and previous
trading days and demonstrates that the HMTAR-GARCH (1,1) model has the best minimum AIC, SBC,
and maximum log-likelihood. In other words, Model 3 is better than Model 1 and Model 2. Table 7 also
confirms the notion that a hybrid random threshold model might be superior to a zero threshold model.

Table 7 also provides the residual diagnostic and the p-values of the Ljung–Box test of autocorrelation
in the standardized residuals with 5, 10, and 20 lags [32]. For all series, the null hypothesis of no
autocorrelation left cannot be rejected at the 5% level, indicating that the HMTAR-GARCH specifications
are successful in modeling the serial correlation in the conditional mean and variance. In addition, the
four hypotheses of the study were verified as follows.

First, in the HMTAR-GARCH model, the coefficient of θ1(= 0.6234) is positive and highly
significant, showing that the gold return volatility is greater during the financial tsunami period
(i.e., extreme market conditions) than the stable or tranquil regime.
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Table 7. Estimated results of GARCH, GJR-GARCH, and HMTAR-GARCH models for RET (overall
sample, n = 4432).

RET

Model 1
(GARCH)

Model 2
(GJR-GARCH)

Model 3
(HMTAR-GARCH)

(No Threshold) (τ1 = τ2 = 0) (τ1 = −0.8261; τ2 = 0.8069)

Coeff. t-Stat Coeff. t-Stat Coeff. t-Stat

Mean Eq.

Intercept 0.0304 1.9947 ** 0.0766 2.7111 *** 0.0414 0.7831
RETt−1 −0.0288 −1.8068 * 0.0035 0.1478 −0.0295 −1.2501

It – −0.0273 −0.6425 −0.0075 −0.1339
Mt – −0.0616 −1.7474 * 0.0026 0.0654
D1 0.1121 1.4738 0.1363 1.1981 0.0993 0.5350

D1·It – −0.3121 −1.5110 −0.0100 −0.0468
D1·Mt – 0.1961 0.9497 0.2068 1.1401

Variance Eq.

Intercept 0.0191 8.1659 *** 0.0432 4.7604 *** −0.0550 −3.8915 ***1

ht−1 0.9457 275.5586 *** 0.9407 362.2307 *** 0.9394 356.7580 ***
ε2

t−1 0.0358 17.8944 *** 0.0366 20.03830 *** 0.0477 17.1185 ***
It (γ1) – 0.0333 3.8468 *** 0.0829 5.8403 ***

Mt (γ2) – −0.0735 −5.3140 *** −0.0080 −0.5657
D1 (θ1) 0.0396 4.7641 *** 0.2647 2.1359 ** 0.6234 4.8043 ***2

D1·It (θ2) – −0.2490 −2.5424 ** −0.4359 −3.6431 ***3

D1·Mt (θ3) – −0.1965 −1.0068 −0.7068 −4.0731 ***3

AIC 4820.3388 4782.2706 4772.2533
SBC 4814.7350 4760.6668 4750.6460

Log-likelihood −2403.1694 −2376.1353 −2371.1266
Hypothesis 4 x2 p-value x2 p-value
H4a : θ3 < θ2 – 0.09291 0.38025 3.01974 0.04113 **3

H4b : (γ2 + θ3) < (γ1 + θ2) – 0.10078 0.37545 5.33930 0.01042 **3

Ljung–Box test Q-stat p-value Q-stat p-value Q-stat p-value
Lags 5 1.922 0.8598 2.359 0.7976 1.937 0.8578
Lags 10 14.403 0.1554 15.190 0.1253 14.340 0.1580
Lags 20 22.865 0.2955 23.323 0.2732 22.845 0.2965

1 *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. 2 Right-tailed test. 3 Left-tailed test.

Second, the coefficient θ2 (=−0.4359) is significantly negative, revealing that the effect on gold
return volatility would be greater whenever the lagged residual falls below its threshold τ1 (=−0.8261)
during the financial tsunami period. The gold return volatility model exhibits the TAR effect during a
highly volatile period.

Third, the coefficient θ3 (=−0.7068) is significantly negative, denoting that the effect on gold
return volatility would be greater whenever the first differencing of lagged residual falls below its
momentum threshold τ2 (= 0.8069) during the financial tsunami period. This might imply that
unexpected negative market shocks would tend to increase the gold return volatility. The gold return
volatility model exhibits the MTAR effect during a highly volatile period.

Forth, to test whether the MTAR effect is even stronger than TAR effect (θ3 is significantly less than θ2),
the Wald Chi-square statistics for alternative H4a: θ3 < θ2 is 3.0197 (p-value = 0.0411); and for alternative
H4b: (γ2 + θ3) < (γ1 + θ2) is 5.3393 (p-value = 0.0104), demonstrating statistically significant results. This
might suggest that the MTAR dummy variable has a substantially greater impact on the conditional
variance during the financial tsunami period and the MTAR specification could capture residual difference
effects for measuring the incremental momentum (nonlinearity) during a highly volatile period.

Finally, the total TAR volatility effect would be −0.3530 (i.e., θ2 + γ1) and the total MTAR volatility
effect would be −0.7148 (i.e., θ3 + γ2) during the financial tsunami period. By comparing the total
volatility effects of both TAR and MTAR, this might imply that unexpected negative first difference in
market shocks would tend to increase the gold return volatility even stronger.

The HMTAR-GARCH model is superior to the GJR-GARCH model and could better capture the
asymmetric and nonlinear natures of gold return volatility. The empirical findings might contribute to
gold return volatility forecasting for accurate hedging and arbitrage decisions, especially during severe
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market fluctuation periods. Traders of derivatives can be categorized three types: hedgers, speculators,
or arbitrageurs. Hedgers and speculators are either betting a gold price that will go up or betting a
gold price that will go down. Arbitrage involves locking in a riskless profit by entering simultaneously
transactions in two or more markets including spot and future gold markets. Therefore, gold dealers,
traders, and manufacturers could make better hedging and investing decisions by adopting the
HMTAR-GARCH model into the risk management module of S-ERP systems [6,7,9–13,20].

On the other hand, this study estimated the TAR threshold (τ1) and the MTAR threshold (τ2)
directly with other parameters instead of searching for each value (not reported here). The coefficients
of the τ1 and τ2 are large and outside of the reasonable boundary. The result of the estimates does not
match the practice of the gold market. A single optimal threshold either in the TAR or MTAR model is
identified using Chan’s method. Chan [33] set the reasonable boundary and used the searching method
to estimate τ1 or τ2, constraining the feasible solutions over the possible range. Based on [33], this
study modified and designed a new grid search algorithm not only to estimate two random thresholds
(τ1 and τ2) but also to improve the problem of over-estimated residuals.

Additionally, this study obtained alternative data from Reuters.com, which has daily gold spot
prices from 3 January 2000 to 30 December 2016, including a total of 4427 observations. The results for
the robustness test, given in Table 8, confirm the hypothesis above. Table 8 also provides the residual
diagnostic and the p-values of the Ljung–Box test of autocorrelation in the standardized residuals with
5, 10, and 20 lags [32]. For all series, the null hypothesis of no autocorrelation left cannot be rejected at
the 5% level, indicating that the HMTAR-GARCH specifications are successful in modeling the serial
correlation in the conditional mean and variance.

Table 8. Estimated results of GARCH, GJR-GARCH, and HMTAR-GARCH models for RET (overall
sample, n = 4427).

RET

Model 1
(GARCH)

Model 2
(GJR-GARCH)

Model 3
(HMTAR-GARCH)

(No Threshold) (τ1 = τ2 = 0) (τ1 = −0.8261; τ2 = 1.3552)

Coeff. t-Stat Coeff. t-Stat Coeff. t-Stat

Mean Eq.:

Intercept 0.0316 2.0492 ** 0.0557 2.0074 ** 0.0507 1.0071
RETt−1 −0.0247 −1.5727 −0.0055 −0.2389 −0.0202 −0.8727

It – −0.0097 −0.2276 −0.0137 −0.2503
Mt – −0.0355 −1.0000 −0.0256 −0.5099
D1 0.1172 1.5327 0.2093 1.9563 * 0.0210 0.1246

D1·It – −0.2820 −1.4464 0.1357 0.6750
D1·Mt – 0.0523 0.2675 0.0329 0.1638

Variance Eq.:

Intercept 0.0197 8.1235 *** 0.0216 2.8025 *** −0.0480 −4.2402 ***1

ht−1 0.9464 264.2475 *** 0.9494 465.4909 *** 0.9500 445.4965 ***
ε2

t−1 0.0347 16.7985 *** 0.0317 19.2710 *** 0.0403 16.0253 ***
It (γ1) – 0.0321 4.0517 *** 0.0700 5.8610 ***

Mt (γ2) – −0.0376 −3.0801 *** −0.0117 −0.8399
D1 (θ1) 0.0371 4.4376 *** 0.0406 0.37408 0.4082 5.5212 ***2

D1·It (θ2) – −0.2180 −2.4410 ** −0.3071 −4.6960 ***3
D1·Mt (θ3) – 0.2144 1.1563 −0.5044 −3.2524 ***3

AIC 4837.7191 4785.1320 4774.6190
SBC 4832.1142 4763.5270 4753.0141

Log-likelihood −2411.8596 −2377.5660 −2372.3095
Hypothesis 4 x2 p-value x2 p-value
H4a : θ3 < θ2 – 5.5219 0.0094 *** 1.5520 0.1064 3

H4b : (γ2 + θ3) < (γ1 + θ2) – 3.9235 0.0238 ** 3.0543 0.0403 **3
Ljung–Box test Q-stat p-value Q-stat p-value Q-stat p-value

Lags 5 2.196 0.8215 2.786 0.7330 2.907 0.7144
Lags 10 13.034 0.2218 13.981 0.1738 14.205 0.1638
Lags 20 22.486 0.3147 23.128 0.2826 24.311 0.2291

1 *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. 2 Right-tailed test. 3 Left-tailed test.
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4. Discussion and Conclusions

The contribution of this paper is its combination of TAR, MTAR, and GARCH for gold return
volatility forecasting. This was a novel attempt to construct a hybrid momentum TAR/MTAR-GARCH
econometric model by studying the gold return prediction and examining two issues. One issue
was to integrate TAR and MTAR dummy interaction terms in the mean and variance equations to
avoid a econometric problem of model misspecification, and the other was to expand the traditional
GJR-GARCH model by designing two random thresholds for the TAR and MTAR components in the
variance equation so that random threshold values other than zero could be traced. The algorithm for
simulating two random thresholds was proposed and tested.

By estimating asymmetric threshold parameters, the HMTAR-GARCH model has more explanatory
power than the GJR-GARCH model. Four major hypothetical tests were verified. First, the gold return
volatility was found to be greater during the financial tsunami period (i.e., extreme market conditions)
than non-financial tsunami period. Second, it was confirmed that the effect on gold return volatility
would be greater whenever the lagged residual falls below its threshold during the financial tsunami
period. Third, it was confirmed that the effect on gold return volatility would be greater whenever the
first differencing of lagged residual falls below its momentum threshold during the financial tsunami
period. Finally, it was shown that the MTAR effect is even stronger than the TAR effect during the
financial tsunami period.

Our findings suggest that whenever there is a downtrend in the market, traders could earn extra
profits by simultaneously holding a long position in the underlying gold spot and a short position in
the gold options, futures, Exchange Traded Funds (ETFs), or other derivatives. Taken together, the
above results demonstrate that our new HMTAR-GARCH model is superior to the GJR-GARCH model
and can better capture the asymmetric and nonlinear natures of gold return volatility. The empirical
findings contribute to gold return volatility forecasting for accurate hedging and arbitrage decisions,
especially during severe market fluctuation periods.

On the financial market, the HMTAR-GARCH model helps dealers and traders make better
speculation and arbitrage trading decisions, concerning options and futures, ETFs, etc. In terms of the
physical gold demand and supply, the HMTAR-GARCH model could enable customers and suppliers
to establish better hedging decisions to gain non-operating income from the financial trades, such as
through total global jewelry fabrication and consumption, retail investment, industrial fabrication,
government official sector, and mine production and scrap. Gold dealers, traders, and manufacturers
could make better hedging and investing decisions by adopting the HMTAR-GARCH model into the
risk management module of S-ERP systems.

Author Contributions: Y.H.L. prepared for the data collection, analyzing the data and writing of this study and
Y.J.G. mainly organized and highlighted the central themes of this article.

Funding: This research received no external funding.

Acknowledgments: We thank Melinda Chen for data support and Professors Gwo-Hshiung Tzeng, Me-Chen Lin,
Iee-Fung Wu and Shu-Kung Hu for encouraging technical development. Further, we thank the referees and editors
for helpful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Amendola, A.; Candila, V.; Gallo, G.M. On the asymmetric impact of macro–variables on volatility. Econ. Model.
2019, 76, 135–152. [CrossRef]

2. Baur, D. The Structure and Degree of Dependence: A Quantile Regression Approach. J. Bank. Financ. 2013,
37, 786–798. [CrossRef]

3. Baur, D.; Dimpfl, T.; Kuck, K. Bitcoin, gold and the US dollar—A replication and extension. Financ. Res. Lett.
2018, 25, 103–110. [CrossRef]

http://dx.doi.org/10.1016/j.econmod.2018.07.025
http://dx.doi.org/10.1016/j.jbankfin.2012.10.015
http://dx.doi.org/10.1016/j.frl.2017.10.012


Sustainability 2019, 11, 4829 13 of 14

4. Baur, D.; Kuck, K. The timing of the flight to gold: An intra-day analysis of gold and the S&P500. Financ. Res. Lett.
2019. [CrossRef]

5. Baur, D.; McDermott, T. Is gold a safe haven? International evidence. J. Bank. Financ. 2010, 34, 1886–1898.
[CrossRef]

6. Chowdhry, B.; Davies, S.; Waters, B. Investing for Impact. Rev. Financ. Stud. 2019, 32, 864–904. [CrossRef]
7. Dyck, A.; Lins, K.; Roth, L.; Wagner, H. Do Institutional Investors Drive Corporate Social Responsibility?

International Evidence. J. Financ. Econ. 2019, 131, 693–714. [CrossRef]
8. Ma, X.; Yang, R.; Zou, D.; Liu, R. Measuring Extreme Risk of Sustainable Financial System Using GJR-GARCH

Model Trading Data-Based. Int. J. Inf. Manag. 2019. [CrossRef]
9. Chofreh, A.G.; Goni, F.A.; Klemes, J.J. A roadmap for Sustainable Enterprise Resource Planning systems

implementation (part III). J. Clean. Prod. 2018, 174, 1325–1337. [CrossRef]
10. Chofreh, A.G.; Goni, F.A.; Klemes, J.J. Development of a roadmap for Sustainable Enterprise Resource

Planning systems implementation (part II). J. Clean. Prod. 2017, 166, 425–437. [CrossRef]
11. Chofreh, A.G.; Goni, F.A.; Klemes, J.J. Evaluation of a framework for sustainable Enterprise Resource

Planning systems implementation. J. Clean. Prod. 2018, 190, 778–786. [CrossRef]
12. Chofreh, A.G.; Goni, F.A.; Klemes, J.J. Sustainable enterprise resource planning systems implementation: A

framework development. J. Clean. Prod. 2018, 198, 1345–1354. [CrossRef]
13. Chofreh, A.G.; Goni, F.A.; Shaharoun, A.M.; Ismail, S.; Klemes, J.J. Sustainable enterprise resource planning:

Imperatives and research directions. J. Clean. Prod. 2014, 71, 139–147. [CrossRef]
14. Wang, X.; Liu, H.; Huang, S. Identification of the daily seasonality in gold returns and volatilities: Evidence

from Shanghai and London. Resour. Policy 2019, 61, 522–531. [CrossRef]
15. Bedoui, R.; Braiek, S.; Guesmi, K.; Chevallier, J. On the conditional dependence structure between oil,

gold and USD exchange rates: Nested copula based GJR-GARCH model. Energy Econ. 2019, 80, 876–889.
[CrossRef]

16. Enders, W. Applied Econometric Time Series, 4th ed.; John Wiley and Sons: New York, NY, USA, 2015.
17. Glosten, L.R.; Jagannathan, R.; Runkle, D.E. On the Relation between the Expected Value and the Volatility

of the Nominal Excess Return on Stocks. J. Financ. 1993, 48, 1779–1801. [CrossRef]
18. Enders, W.; Granger, C.W.J. Unit-Root Tests and Asymmetric Adjustment with an Example Using the Term

Structure of Interest Rates. J. Bus. Econ. Stat. 1998, 16, 304–311.
19. Hentschel, L. All in the Family Nesting Symmetric and Asymmetric GARCH Models. J. Financ. Econ. 1995,

39, 71–104. [CrossRef]
20. Todorova, N. The asymmetric volatility in the gold market revisited. Econ. Lett. 2017, 150, 138–141. [CrossRef]
21. Enders, W.; Siklos, P.L. Cointegration and Threshold Adjustment. J. Bus. Econ. Stat. 2001, 19, 166–176.

[CrossRef]
22. Lundbergh, S.; Teräsvirta, T. Evaluating GARCH Models. J. Econom. 2002, 110, 417–435. [CrossRef]
23. Symitsi, E.; Chalvatzis, K.J. The economic value of Bitcoin: A portfolio analysis of currencies, gold, oil and

stocks. Res. Int. Bus. Financ. 2019, 48, 97–110. [CrossRef]
24. Chow, G.C. Tests of equality between sets of coefficients in two linear regressions. Econometrica 1960, 28,

591–605. [CrossRef]
25. Hansen, B.E. The new econometrics of structural change: dating breaks in U. S. labor productivity.

J. Econ. Perspect. 2001, 15, 117–128. [CrossRef]
26. Dickey, D.A.; Fuller, W.A. Distribution of the Estimators for Autoregressive Time Series with a Unit Root.

J. Am. Stat. Assoc. 1979, 74, 427–431.
27. Dickey, D.A.; Fuller, W.A. Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root.

Econometrica 1981, 49, 1057–1072. [CrossRef]
28. Phillips, P.C.; Perron, P. Testing for a Unit Root in Time Series Regression. Biometrika 1988, 75, 335–346.

[CrossRef]
29. Kwiatkowski, D.; Phillips, P.C.B.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the

alternative of a unit root: How sure are we that economic time series have a unit root? J. Econom. 1992, 54,
159–178. [CrossRef]

30. Kapetanios, G.; Shin, Y.; Snell, A. Testing for a Unit Root in the Nonlinear STAR Framework. J. Econom. 2003,
112, 359–379. [CrossRef]

http://dx.doi.org/10.1016/j.frl.2019.05.005
http://dx.doi.org/10.1016/j.jbankfin.2009.12.008
http://dx.doi.org/10.1093/rfs/hhy068
http://dx.doi.org/10.1016/j.jfineco.2018.08.013
http://dx.doi.org/10.1016/j.ijinfomgt.2018.12.013
http://dx.doi.org/10.1016/j.jclepro.2017.10.285
http://dx.doi.org/10.1016/j.jclepro.2017.08.037
http://dx.doi.org/10.1016/j.jclepro.2018.04.182
http://dx.doi.org/10.1016/j.jclepro.2018.07.096
http://dx.doi.org/10.1016/j.jclepro.2014.01.010
http://dx.doi.org/10.1016/j.resourpol.2018.05.004
http://dx.doi.org/10.1016/j.eneco.2019.02.002
http://dx.doi.org/10.1111/j.1540-6261.1993.tb05128.x
http://dx.doi.org/10.1016/0304-405X(94)00821-H
http://dx.doi.org/10.1016/j.econlet.2016.11.027
http://dx.doi.org/10.1198/073500101316970395
http://dx.doi.org/10.1016/S0304-4076(02)00096-9
http://dx.doi.org/10.1016/j.ribaf.2018.12.001
http://dx.doi.org/10.2307/1910133
http://dx.doi.org/10.1257/jep.15.4.117
http://dx.doi.org/10.2307/1912517
http://dx.doi.org/10.1093/biomet/75.2.335
http://dx.doi.org/10.1016/0304-4076(92)90104-Y
http://dx.doi.org/10.1016/S0304-4076(02)00202-6


Sustainability 2019, 11, 4829 14 of 14

31. Berndt, E.; Hall, B.; Hall, R.; Hausman, J. Estimation and Inference in Nonlinear Structural Models. Ann. Econ.
Soc. Meas. 1974, 3, 653–665.

32. Ljung, G.M.; Box, G.E.P. On a measure of lock of fit in time series models. Biometrika 1978, 65, 297–303.
[CrossRef]

33. Chan, K.S. Consistency and Limiting Distribution of the Least Squares Estimator of a Threshold Autoregressive
Model. Ann. Stat. 1993, 21, 520–533. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/biomet/65.2.297
http://dx.doi.org/10.1214/aos/1176349040
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Hypotheses and Data Set 
	Linear and Nonlinear Unit Root Tests 
	Traditional TAR and MTAR Models 
	The HMTAR-GARCH Model 
	The HMTAR-GARCH Estimation Algorithm 
	Estimating the GJR-GARCH model 
	Setting Double Thresholds Searching Intervals 
	Finding Optimal Double Thresholds 


	Results 
	Discussion and Conclusions 
	References

