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Abstract: Container ports play an important role in international maritime trade. However, the
rapid growth of the port and terminal industry has caused many environmental pollution problems.
This paper intends to develop an inverse data envelopment analysis (IDEA) model for measuring
container ports’ efficiency and analyzing their resource consumption by considering undesirable
outputs. Statistical data from 16 main ports are empirically examined using the proposed method in
accordance with the 13th Five-Year Plan in China. The results indicate that the proposed IDEA is a
feasible approach for performance evaluation, and provides policymakers with insights into resource
optimization of container ports. A comparative study with another DEA model is also discussed.
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1. Introduction

Nowadays, container ports serve a key role in achieving global logistics and supply chains.
With the great opportunity of the Belt and Road Initiative (BRI), a Chinese grand economic plan
launched in 2013, many countries invest a great number of resources into developing port terminals [1].
Accordingly, the construction of port facilities, the acceleration of port upgrading, the integration
of green energy concepts, and so forth, are crucial for prompting port industry [2] and have been
written into the Chinese 13th Five-Year Plan (FYP). China now has 15 ports listed in the top 50 world’s
ports and harbors in 2016 [3]. However, each port should have features of geographical location,
deep-water berth, dispatching system, and pollution controlling, and such differences lead to different
port efficiencies (advantages). An overall understanding of each port’s competitiveness is not only
beneficial for policymakers designing marine transports [1], but also useful in resource prediction or
planning. On the other hand, however, the prosperity of the port industry is usually accompanied by
much harmful pollution, such as greenhouse gas (CO2) and toxic emissions (NOx, SOx). In response,
many governments have initiated sustainable waterways planning and launched regulations to prevent
environmental deterioration. Accordingly, the primary pollutants should be taken into consideration
in the process of port efficiency evaluation and consumption analysis [4].

There have been many quantitative analysis techniques for performance measurement in
management theory. Data envelopment analysis (DEA), as a nonparametric programming method, is
one of the most popular tools in measuring efficiency for a set of decision-making units (DMUs) [5].
Classical DEA models (e.g., the CCR, BCC, cone ratio, SBM, allocative models) have been extensively
applied in a wide range of areas including evaluations of R&D projects [6], universities [7,8], production
systems [9], banks [10], environmental regulation [11,12], and so on. For further applications of DEA
in decision analysis, Wei et al. [13] introduced a new DEA approach called inverse DEA (IDEA) to deal
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with a kind of investment optimization problem. Unfortunately, existing literature has rarely discussed
the efficiency evaluation or investment analysis of container ports based on IDEA. Additionally, in
efficiency analysis, traditional IDEA or DEA models often neglect the undesirable outputs, such as
pollution and waste that usually are produced along with the desirable ones during a production
process [14]. Therefore, the objective of this study is to suggest a novel IDEA model considering
undesirable outputs to manage the performance evaluation and prediction of container ports.

The remainder of this paper is structured as follows. Section 2 presents a literature review and
Section 3 introduces preliminaries. The proposed IDEA model with undesirable outputs is introduced
in Section 4. Section 5 conducts an empirical study with some comparative analyses. Section 6
concludes this paper.

2. Literature Review

In this section, we firstly survey the DEA technique as well as its application in port evaluation.
Then, we review some related studies on the inverse DEA.

DEA, originally proposed by Charnes et al. [5], utilizes multiple inputs to produce multiple
outputs without parametric assumptions. The past 40 years have witnessed the appearance of a great
number of studies on DEA theory and its application [15]. Tavares [16] listed more than 3000 references
about DEA from 1978 to 2001, where 40% of them were published in qualified journals. Using DEA
to estimate the performances of container ports has aroused much attention in recent years. The
pioneering work in port assessment using DEA was developed by Roll and Hayuth [17], based on
the work of Tongzon [18], who proposed an additive CCR model for estimating several Australian
ports and international ports. Wu and Liang [2] applied the DEA model under variable returns to rate
(VRS) to evaluate the performance of 77 global ports (DMUs), and a benchmark was also established to
improve the performance of inefficient DMUs. As for Asia ports, Itoh [19] employed the window BCC
model to examine the efficiency variations of eight Japanese ports. The results showed a difference
among port terminals with timely development. Hung et al. [20] combined traditional DEA models
with the bootstrap method to estimate the operating performance of 31 main ports in Asia, which
provided insight for resource allocation as well as procedure optimization. Dong et al. [21] evaluated
the environmental performance and compared the operational efficiency of 10 Asian ports along the
BRI using slack-based measures. Inspired by supply chain pattern, Bichou [22] applied the DEA
technique to model the container-terminal system as a two-stage operational process and assessed the
performances of combined port terminals.

With a boom in international maritime trade, however, exhaust gas emissions (i.e., CO2, NOx,
PM2.5) from shipping severely deteriorate the coastal air quality. Accordingly, many studies [11,23–27]
have been conducted investigating the port efficiency with undesirable (bad) outputs from an
environmental perspective. Seiford and Zhu [23] argued that undesirable outputs (or inputs) could
be integrated into traditional DEA models by data transformation. Song et al. [11] reviewed the
environmental efficiency evaluation based on DEA technique with undesirable output under small
samples. In the context of ecological pollution, most researchers take air emissions into account as
undesirable outputs in DEA models. Liu et al. [27] suggested a unified framework of several traditional
DEA models considering both undesirable inputs and outputs under disposability assumptions.
Sun et al. [28] developed a nonradial DEA preference mode for analyzing the operational efficiency of
Chinese ports, where the NOx emission is represented as an undesirable output. Haralambides and
Gujar [29] presented a novel eco-DEA model that evaluates both desirable and undesirable outputs
(CO2) of port service production in India. In order to improve the level of pure technical environmental
efficiency, Na et al. [30] proposed an inseparable slacks-based measure (SBM) model to estimate the
environmental efficiencies of eight harbors in China, which reveals that most ports exhibit too much
exhaust emissions. By incorporating undesirable variables, Lee et al. [31] measured the environmental
efficiency of several port cities using the SBM model, and concluded that Singapore and Busan are the
most environmentally efficient. Based on the assumption of undesirable output weak disposability,
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Bian et al. [32] developed an interval SBM model to estimate regional energy efficiency, as well as
CO2 emissions efficiencies. As random errors may exist in collected data, Wu et al. [33] defined the
efficiency of DMUs within risk factors and offered a stochastic DEA method with undesirable outputs
to handle random errors.

It has been known that DEA results depend heavily on the selection of input and output variables.
However, little attention has been given to the issue of how changes of output (or input) would affect
the data on the other side. Specifically, if a DMU alters its output (input), to what extent should its input
(output) be changed to maintain the current efficiency level [34]? This question implicates the concept
of inverse DEA (IDEA), a kind of optimization technique in the form of DEA. Wei et al. [13] presented
a multiple objective linear programming (MOLP) to calculate the output levels for inefficient DMUs.
Jahanshahloo et al. [35] indicated that the IDEA can effectively estimate the optimal level of inputs, or
find out the input excesses of a DMU when preserving its efficiency. Similar to returns to scale in DEA,
Lertworasirikul et al. [36] applied the IDEA model for resource allocation under variable returns to
scale. Then, a Pareto-efficient solution was introduced to solve this problem. Later, Ghiyasi [34] had a
comment on the use of MOLP in [36] and rectified the input estimation of the IDEA model. On the
other hand, combining DEA with undesirable outputs is rare in the existing literature. Chen et al. [14]
put forward an IDEA model with undesirable outputs to analyze the sustainable investment problem
in China; some suggestions on investment schemes were then provided corresponding to the results.
Based on the philosophy of IDEA, Wegener and Amin [37] developed an optimization model to reduce
greenhouse gas emissions; Emrouznejad et al. [38] initialized a three-stage method to allocate CO2

emission quota.
Based on the literature review above, much research has been done to measure port efficiency

by various DEA models. Some scholars have also paid attention to the IDEA approach, the inverse
optimization of the DEA technique. Despite its explanatory power, no research has yet utilized IDEA
to study the performance of container ports with undesirable outputs. This paper aims to establish an
IDEA approach for measuring the ports’ efficiency and predicting resource investment in the presence
of undesirable outputs.

3. Preliminaries

3.1. CCR Model

Suppose there are n DMUs, and each DMU j (j = 1, 2, ..., n) utilizes m inputs xi j (i = 1, 2, ..., m)
to produce s outputs yr j (r = 1, 2, ..., s). For the DMU0 under evaluation, its efficiency score can be
measured by the CCR model in envelopment form as follows [5]:

min θ0

s.t.
n∑

j=1
λ j xi j ≤ θ0xi0, i = 1, 2, . . . , m

n∑
j=1

λ jyrj ≥ yr0, r = 1, 2, . . . , s

λ j ≥ 0, j = 1, 2, . . . , n

(1)

where θ0 is a real variable related to DMU0 and λ= {λ j
∣∣∣ j = 1, 2, . . . , n

}
is a non-negative vector. The

above model is an estimation approach of constant returns to scale (CRS). We call DMU0 CCR-efficient
if and only if θ0 = 1.

3.2. Inverse DEA Model

Let θ∗0 be the optimal value of DMU0 evaluated by the above CCR model. If we want to increase a
certain output amount of DMU0, say ∆y0, from y0 to β0 where β0 = y0 + ∆y0, then inputs would have
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a corresponding change ∆x0 from x0 to α0, and the following model can be established to estimate the
minimum increment ∆x0 [34]:

min ∆x0 = wT(∆x10, ∆x20, . . . , ∆xm0)

s.t.
n∑

j=1
λ jxi j + λ0′(xi0 + ∆xi0) ≤ θ

∗

0(xi0 + ∆xi0), i = 1, 2, . . . , m

n∑
i=1

λ jyi j + λ0′(yr0 + ∆yr0) ≥ yr0 + ∆yr0, r = 1, 2, . . . , s

xi0 + ∆xi0 ≥ 0, i = 1, 2, . . . , m
λ j,λ0′ ≥ 0, j = 1, 2, . . . , n

(2)

where θ∗0 is the efficiency score solved by model (1) and wT = (w1, w2, . . . , wm) is the weight vector of
∆x0. For any given ∆y0 , 0, the above model can be equivalently solved by converting into model (3)
as below,

min ∆ x0 = wT(∆ x10, ∆ x20, . . . , ∆ xm0)

s.t.
n∑

i=1
λ j xi j ≤ θ∗0(xi0 + ∆ xi0), i = 1, 2, . . . , m

n∑
i=1

λ j yi j ≥ yr0 + ∆ yr0, r = 1, 2, . . . , s

λ j ≥ 0 , j = 1, 2, . . . , n

(3)

4. Proposed IDEA Model

4.1. CCR Efficiency with Undesirable Outputs

As aforementioned, efficiency assessment and investment analysis of container ports are quite
important in promoting BRI. Every ship powered by fuel oil brings merchandise into a harbor
characterized by high environmental pollution. An overall evaluation of a container port must take
inputs and desirable and undesirable outputs into account. Assume each DMU j (j = 1, 2,..., n) to be
evaluated against m inputs xi j (i = 1, 2,..., m), s desirable outputs yrj (r = 1, 2,..., s) and g undesirable
outputs zl j (l = 1, 2,..., g). Firstly, we measure the efficiency scores of n DMUs. When a DMU is allowed
to alter its output level, it often assumes the original efficiency remains unchanged [13] especially
when it is efficient. Note that model (1) cannot be directly applied to a production process involving
undesirable output variables. Inspired by the work in [23], we extend the traditional CCR model
involving both desirable and undesirable outputs, which is constructed as follows,

min θ0

s.t.
n∑

j=1
λ j xi j ≤ θ0xi 0, i = 1, 2, . . . , m

n∑
j=1

λ jyrj ≥ yr 0, r = 1, 2, . . . , s

n∑
j=1

λ jzl j ≥ zl 0, l = 1, 2, . . . , g

λ j ≥ 0 , j = 1, 2, . . . , n

(4)

In model (4), we turn the negative variable − zl j into a positive one zl j,

zl j = − zl j + δl, j = 1, 2, . . . , n (5)

where δl is a positive number such that δl = max
{

zl j
}
+ 1, j = 1, 2, ..., n [23]. Obviously, zl j > 0 and a

larger value of zl j signifies a better output level.
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4.2. Consumption Analysis by IDEA

Let θ∗0 be the efficiency of DMU0 obtained by model (4). The essence of consumption analysis by
inverse DEA, just as its name indicates, is assuming DMU0 has a perturbation in outputs at first, and
finding out the required minimum changes in inputs. Notice that we still use zl j instead of zl j in the
IDEA model to make sure they are consistent with each other. Otherwise, the undesirable variables
would be optimized in decreasing values which are contrary to the desirable ones. According to this
idea, the IDEA model with the undesirable outputs (IDEAU) can be formulated as:

min
m∑

i=1
∆xi 0

s.t.
n∑

j=1
λ jxi j ≤ θ

∗

0(xi0 + ∆xi0), i = 1, 2, . . . , m

n∑
j=1

λ jyrj ≥ yr0 + ∆yr0, r = 1, 2, . . . , s

n∑
j=1

λ jzl j ≥ zl0 + ∆zl0, l = 1, 2, . . . , g

λ j ≥ 0, j = 1, 2, . . . , n
∆xi0unrestrictedinsign

(6)

where xi0 and yr0 (i = 1, 2, . . . m, r = 1, 2, . . . , s) are respectively the input and desirable output variables.
zl 0 is the undesirable output variable converted by zl0 (l = 1, 2, . . . , g), while ∆yr0 and ∆zl0 are the given
changed amount. All ∆xi (i = 1, 2, . . . , m) are treated as equally important in the objective function, as
they have the same weights. Note that ∆xi (i = 1, 2, . . . , m) are allowed to be negative as long as their
combination satisfies the constraints in model (6).

Theorem 1. For given changes ∆yr0 , 0 and ∆zl0 , 0 in desirable and undesirable outputs of DMU0,
respectively. The minimum input alternation ∆xi0 can be derived by model (6) while the efficiency θ∗0
remains unchanged.

The proof of Theorem 1 is similar to the proof of the theorem in [34] by using the definition of
weak efficient solution.

4.3. Performance Improvement by IDEA

According to model (6), the minimum input changes of efficient DMUs can be estimated under the
new given outputs. On the other hand, we can also identify the relative input excesses for inefficient
DMUs by resetting the efficiency score as θ0 = 1, under the current output capacity. This leads to
another version of the IDEAU model:

max
m∑

i=1
∆ xi 0

s.t.
n∑

j=1
λ j xi j ≤ xi0 − ∆xi0, i = 1, 2, . . . , m

n∑
j=1

λ j yrj ≥ yr0, r = 1, 2, . . . , s

n∑
j=1

λ j zl j ≥ zl 0, l = 1, 2, . . . , g

λ j ≥ 0 , j = 1, 2, . . . , n
∆xi0 unrestricted in sign

(7)

It should be pointed out that model (7) may be infeasible to some DMUs in optimizing resource
consumption since there seems to be a dilemma that regulates desirable and undesirable outputs at the
same time. Intuitively, decreasing gas emissions may be accompanied by an effort of reducing resource
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inputs, which usually results in lower (desirable) production quantity. However, it is not allowed to
reduce the current level of outputs.

According to the aforementioned analyses, the evaluation process of the proposed IDEAU method
is graphically depicted in Figure 1.
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5. Empirical Research

In this section, an empirical case about 16 Chinese container ports (Ningbo, Shanghai, Tianjin,
Tangshan, Dalian, Rizhao, Yingkou, Nanjing, Xiamen, Lianyungang, Chongqing, Yantian, Shenzhen,
Zhuhai, Jinzhou, and Fuzhou) in 2017 is studied. These container ports are ranked in the top 20 in
China according to the annual throughputs, which have a significant impact on the strategy of Chinese
BRI. Figure 2 shows geographical information about these ports. The Chinese government enacted the
13th FYP (2016–2020) in 2016. The blueprint for economic and social development grabs the general
public’s attention. As to the Transport sector of the 13th FYP in China, port construction is a hot issue
under the big opportunity of BRI; issues like consumption prediction or optimization analysis have
aroused people’s concern.
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5.1. Data Description

In this study, berth length (x1), equipment asset (x2), number of employees (x3), and cost (x4) are
used as four input variables, and throughput (y1), profit (y2) are two desirable output variables while
emission amount of CO2 (z1) and NOx (z2) are two undesirable output variables. The data of these
criteria were taken from Chinese ports yearbook [39] and the published work in Lai et al. [40], which
are documented in Table 1. Nevertheless, the statistics about CO2 and NOx are unavailable to collect
directly from the existing reference. Thus, we estimate these emissions using two specific formulas
shown in Appendix A.

Table 1. Statistics of the 16 ports in 2017.

Port
Berth Equipment Employee Cost Throughput Profit CO2 NOx

Units Million * Units Million * Million Tons Million * Tons Tons

NB 615 5390 1170 14,026 91,800 2299 59.05 1.18
SH 608 5560 1830 24,420 70,000 6939 45.03 1.13
TJ 162 2530 760 11,783 55,000 1264 35.38 0.88
TS 77 3340 270 4306 51,600 1320 37.00 1.23
DL 240 1090 680 12283 42,900 531 28.65 0.57
RZ 52 1660 160 5101 53,100 176 24.30 0.61
YK 87 160 490 2208 34,700 353 22.32 0.45
NJ 69 30 70 138 21,700 85 13.96 0.31
XM 173 360 390 8785 20,900 207 8.22 0.10
LYG 62 810 460 869 20,200 7.0 13.99 0.28
CQ 191 670 220 2121 17,200 78 9.37 0.19
YT 20 60 50 141 10,900 352 7.01 0.14
SZ 25 650 170 137.3 10,600 532 6.82 0.14
ZH 153 133 200 169.7 9000 104 4.78 0.08
JZ 23 149 15 249.7 8900 56 5.07 0.10
FZ 120 320 260 705.1 15,800 293 8.39 0.12

Note: * The monetary unit is RMB.

5.2. Performance Evaluation of Container Ports

We firstly use model (4) to measure the efficiencies of the 16 container ports (DMUs), and depict
the results in Figure 3. Clearly, there are four container ports (TS, RZ, NJ, YT) evaluated as CCR-efficient
with a score of 1.0, while seven ports with the lowest scores are NB (0.234), DL (0.324), XM (0.239),
LYG (0.241), CQ (0.266), ZH (0.099), and FZ (0.195), all having a score below 0.4. Besides, other
inefficient DMUs are JZ (0.904), YK (0.708), TJ (0.571), SZ (0.448), and SH (0.473), which are ranked in
descending order.

We classify and discuss these ports (DMUs) in two categories according to their efficiency scores.
As to the four efficient DMUs, we utilize model (5) to optimize the input consumption with a given
output level. To do so, we estimate the variation in output level at the target year first. According
to the Transport sector of the 13th FYP in China and the Eco-Environmental Protection of the 13th
FYP [41], the expected throughput and the expected growth rate of profit for the four ports in 2020 can
be approximately derived. Moreover, the estimation of the expected profit growth rate refers to their
financial reports for the years between 2015 and 2017. The plan also sets a general target for decreasing
pollutant emissions such as CO2 and NOx. The relevant data are listed in Table 2.

Combined with model (5) and the data stored in Table 2, we can establish the IDEAU model
for consumption predictions. The excepted investment optimization corresponding to the given
development targets for the four efficient DMUs are listed in Table 3.

On the other hand, as to the twelve inefficient DMUs, we apply model (7) to estimate the potential
input excesses of them to improve their productivity. We find the six container ports of NB, DL, LYG,
SZ, JZ, and FZ can be improved by disinvesting, as shown in Table 4. As to the other six ports, namely,
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SH, TJ, YK, XM, CQ, and ZH, there are no feasible solutions for them since the constraints in model (7)
are quite strict for the variables yr0 and zl 0 that are optimized in opposite directions.
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Figure 3. CCR efficiencies of the 16 ports.

Table 2. Expected changes of the four ports in 2020.

Port
Output Variation

∆y1 ∆y2 ∆z1 ∆z2

TS 11.2% 6.84% −7.0% −8.7%
RZ 15.0% 2.57% −7.0% −8.1%
NJ 6.1% 1.58% −3.6% −6.0%
YT 5.8% 5.28% −3.3% −2.5%

Table 3. Input predictions of the four ports.

Port
Inputs

Berth (∆x1) Equipment * (∆x2) Employee (∆x3) Cost * (∆x4)

TS 12 −42.2 1 −4.7
RZ 4 −14.6 33 −1.8
NJ 0 4.71 1 7.5
YT 0 12.1 0 3.1

Note: * The monetary unit is million RMB.

Table 4. Potential input excesses of six ports.

Port
Inputs

Berth (∆x1) Equipment (∆x2) Employee (∆x3) Cost (∆x4)

NB 112.6 390.8 58 0.0
DL 77.2 178.9 92 837.8

LYG 0.0 76.3 37 50.4
SZ 0.0 52.6 18 11.5
JZ 0.0 53.8 2 8.1
FZ 24.5 76.6 35 259.2
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5.3. Results Analysis

It is found in Table 3 that some values are negative, which indicates a reduction in the amount of
input. This is because we do not put a restraint on ∆xi (i = 1, 2, 3, 4), as shown in model (6), to avoid
being unsolved for each DMU under evaluation. The results suggest increasing 12 berths and 4 berths
for TS and RZ, respectively, whereas the equipment investment and cost can be cut down. This means
the carrying capacity of the two ports, especially TS, have not been fully utilized. For the NJ and TY
ports, it suggests to invest more capital on equipment (∆x2) and cost (∆x4) without increasing the
number of berths. For the input element of ∆x3, only the RZ port has a striking number of hiring an
additional 33 qualified persons. This advice sounds reasonable because the employees in the RZ port
are too few to ensure efficient operation as related to the number of 52 berths.

Table 4 demonstrates the input excesses of six inefficient DMUs. In DEA literature, another
popular technique for measuring input excesses of DMUs is the slacks-based model (SBM) [31,42]. To
verify the obtained results, we empirically conducted a comparison between the SBM model with
undesirable outputs (SBMU) [31] and the proposed IDEAU model. The results are depicted in Table 5,
which only lists the same six ports for comparison with Table 4.

Table 5. The input excesses by SBMU model.

Port
Inputs Score

∆x1 ∆x2 ∆x3 ∆x4

NB 246.6 488.4 74 283.8 0.189
DL 161.3 453.8 283 1172.8 0.154

LYG 24.9 298.8 167 60.7 0.028
SZ 0.0 0.0 0.0 0.0 1.00
JZ 0.0 0.0 0.0 0.0 1.00
FZ 20.52 85.98 32 241.8 0.754

Obviously, the values in Table 5 are generally greater than those in Table 4, except for the FZ
port. Moreover, Both SZ and JZ ports are evaluated as efficient DMUs by the SBMU method, but
inefficient by the IDEAU model. Nevertheless, we observe the relative changing amounts of the three
ports (NB, DL, LYG) are consistent with the two models. Although the two models are all categorized
to nonradial measure, they are much different in modeling mechanism and objective target. Firstly,
the objective of model (7) is to calculate how the maximum amounts of input excesses can be altered
at the current level of outputs, while the latter aims to minimize the ratio of input and output mix
inefficiencies [43]. Secondly, the model (7) is input-oriented and pursues the minimum investments in
inputs while maintaining the output, yet the SBMU method is nonoriented and applies the input and
output slacks in deriving an efficiency measure directly. Thirdly, we allow the variables in model (7) to
be negative owing to the fact that the investment of an input factor may be rising or falling according
to the future productivity scheme.

As to this case, we employ four input variables and four output variables, which seem too high
compared to the number of 16 DMUs. Just as suggested by Boussofiane et al. [44], the number of
input and output variables in DEA analysis should have better less than one-third the number of
DMUs. Then, we remove the undesirable output variables (z1 and z2) to verify the robustness of the
results. Solving by model (4), the efficiency scores of nine ports (NB, SH, TS, RZ, YK, NJ, CQ, YT, SZ)
are equal to 1, which is different from the previous result that only four ports (TS, RZ, NJ, YT) are
efficient as shown in Figure 3. We now focus on the investment analysis of the four ports (TS, RZ, NJ,
YT), which are evaluated as CCR-efficient before and after removing the two undesirable variables.
Perturbing their output level of desirable variables according to Table 2, the input predictions can be
calculated based on the IDEAU model. The comparison is shown in Figure 4, where the left histogram
is generated with the constraint of undesirable output variables.
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Figure 4. Comparison of input predictions of the four ports.

Generally, the alterations of input levels are quite similar from Figure 4. In other words, despite
removing undesirable output variables, the changing amounts of inputs solved by the IDEAU model
are consistent with the previous data in Table 3.

As per the empirical results, some policy suggestions are presented for promoting the container
ports’ sustainable development as follows:

(1) According to Figure 3, the average operational efficiency of the 16 Chinese ports is 0.544, which is
generally low and uncompetitive in global trade. Additionally, unbalanced development of main
ports is a barrier to the maritime industry, where the ports around Bohai Sea including TS, JZ, YK,
and DL ports have a relatively high performance. This region is highly exhaust polluted, and
extra efforts should be made to control air emissions.

(2) Resource investments on the ports of NB, DL, LYG, and FZ should be further optimized to
enhance their competitiveness. For instance, it is suggested to add 112 berths in the NB port or
to invest more than 800 million in the DL port according to Table 4. As China’s economy has
entered a “new normal” that shows a marked slowdown, local government should upgrade the
port industry by switching from resource-dependent mode to resource-friendly mode.

(3) The Yangtze River port system, which includes the NJ, NB, and SH ports, in this case, is an essential
container system in China. The total throughput of the SH and NB ports exceeded 1.6 billion
tons in 2017. Yet the CCR efficiencies of the two ports are not high when considering undesirable
output factors. Taking the NB port as an example, the investments on berth and equipment need
to reduce by 112 (units) and 390.8 (million), respectively. Besides, local policymakers should find
a balance between ports’ development and environmental protection since these ports contribute
to a vast amount of exhaust emissions.

(4) As a key area in the BRI, Fujian province has great potential in the international logistics market.
However, the XM and FZ ports in Fujian have low efficiency scores (0.239 and 0.195, respectively)
compared to the other domestic ports. From Table 4, it is imperative for the FZ port to cut down
costs in the future. Other effective policies, such as establishing a green port supply chain or
regional linkage system, should be made.

6. Conclusions

Understanding of various main ports is quite crucial for Chinese authorities. The accelerating
development of the port industry has caused widespread environmental pollution. Thus, the
evaluation of ports efficiency should consider both desirable and undesirable outputs, which contribute
to formulating achievable industrial policies. This paper develops a novel IDEA model to assess
16 Chinese ports’ efficiency in 2017 by taking undesirable output into consideration. Then, analyses of
ports’ resource consumption are conducted according to the Chinese 13th FYP. We also discuss the
improvement of inefficient ports (DMUs) by measuring their input excesses based on the proposed
model. Overall, the IDEA approach for performance assessment and resource investment of ports has
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the following characteristics: (1) Both desirable and undesirable outputs can be incorporated in the
proposed inverse DEA model; (2) the proposed method can be used to predict resource investments of
a container port when given an output target; (3) by resetting the current efficiency score, the proposed
method can measure the excess amounts of inputs of container ports.

However, this study has some limitations. First, we utilize the CCR model with undesirable
outputs in calculating the efficiencies of DMUs. However, this classical model has low discriminating
power in ranking efficient DMUs. Also, the data on emissions was not accessible but obtained indirectly.
For future studies, other efficiency measures such as super-efficiency or cross-efficiency may be applied
and integrated with the IDEA method. Another interesting research is to extend the proposed approach
to deal with a more general port system with a multistage structure.
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Appendix A

1. CO2 emission:

The calculation of CO2 emissions is based on the relationship between port throughput and energy
consumption [30]. The formula of CO2 emissions is as follows:

ECO2 = Nc × T × ξ

where ECO2 is the amount of CO2 emissions, Nc is unit consumption of standard coal, T is port
throughput, and ξ is the parameter of carbon emissions that equals to 2.458.

2. NOx emission:

The calculation of NOx emissions is simplified in our study and mainly refers to the amount of
CO2 emissions and other parameters. The NOx emissions are calculated as follows:

ENOX = ECO2 ×ψ× κ

where ENOX is the amount of NOx emissions, ψ is the ratio related to CO2 emissions, and κ is fuel
burning rate.
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