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Abstract: Land-use change, particularly urban expansion, can greatly affect the carbon balance, both
from the aspects of terrestrial ecosystems and anthropogenic carbon emissions. Coastal China is a
typical region of rapid urban expansion, and obvious spatial heterogeneity exists from the north
to south. However, the different urban change characteristics and the effect on carbon balance
remain undetermined. By unifying the spatial-temporal resolution of carbon source and sink data,
we effectively compared the carbon budgets of three coastal urban agglomerations in China. The
results show that all of the three urban agglomerations have undergone an obvious urban expansion
process, with the built-up area increasing from 1.03 × 104 km2 in 2000 to 3.06 × 104 km2 in 2013. For
Beijing–Tianjin–Hebei (BTH), the built-up area gradually expanded. The built-up area in the Yangtze
River Delta (YRD) gradually changed before 2007 but rapidly grew thereafter. The built-up expansion
of the Pearl River Delta (PRD) passed through three growing stages and showed the largest mean
patch size. Carbon emission spatial patterns in the three urban agglomerations are consistent with
their economic development, from which the net ecosystem production (NEP) spatial patterns are
very different. Compared to carbon emissions, NEP has a carbon sink effect and can absorb some
carbon emissions, but the amounts were all much lower than the carbon emissions in the three urban
agglomerations. The carbon sink effect in the Yangtze River Delta is the most obvious, with the Pearl
River Delta following, and the lowest effect is in Beijing–Tianjin–Hebei. Finally, a scientific basis for
policy-making is provided for viable CO2 emission mitigation policies.
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1. Introduction

The carbon cycle is a main driver of global change [1]. The expanding mass-energy exchange on the
land surface has accelerated the asymmetry of the carbon cycle. More carbon emissions and less carbon
absorption has resulted in increasingly negative impacts on the global climate and environment [2–4].
In addition to natural factors, global warming is closely related to CO2 (carbon dioxide) emissions
produced by human socio-economic activities [5,6]. According to the IPCC (Intergovernmental Panel
on Climate Change) 5th Assessment Report, approximately 816 ± 124 Gt CO2 of anthropogenic CO2

emissions have not been absorbed and remain in the atmosphere, probably resulting in the observed
warming since the mid-20th century. Improving the carbon sequestration of terrestrial ecosystems
and reducing greenhouse gas emissions are internationally recognized as two of the crucial ways to
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mitigate climate change [7,8]. As centres of economic activities, population migration, and energy
consumption, urban areas play a significant role in addressing CO2 emissions and global climate
change [9], particularly in rapidly developing countries [10,11]. It has been reported that 2% of the
global land in urban areas includes more than 50% of the world’s population and approximately 75%
of the global carbon emissions [12,13]. Thus, examination of the carbon budget in rapidly expanding
urban regions is necessary.

Under the government’s reform and opening-up policies since 1978, China is undergoing
rapid urbanization, industrial processes and land-use/-cover change. Built-up land, where highly
populated, has dramatically expanded and occupied large areas of ecological land, especially in coastal
regions [14–16]. The process has threatened China’s sustainable development and the long-term
stability of the global climate, which has raised global concerns [17]. As the expansion rate is still
rapidly accelerating and has increasingly high carbon emissions intensity, China is encountering
intense pressure to reduce its CO2 emissions [18]. Yangtze River Delta (YRD), Pearl River Delta
(PRD) and Beijing–Tianjin–Hebei (BTH) are three of the coastal urban agglomerations in China. As
population growth and economic development are concentrated, these regions contribute most to CO2

release with significant land-use and land-cover change [19–21]. Zha et al. found that CO2 release
is higher in urban land than in rural land [22]. CO2 concentration would increase when forestry
lands convert to agriculture [23]. Meanwhile, the three urban agglomerations are distinguished by
different natural conditions and socio-economic development. For natural conditions, YRD locates by
China’s greatest river with mild climate; climate is dry in BTH with worse vegetation growth; while
vegetation carbon fixation is the best in PRD with synchronous rain and heat. For socio-economic
development, the urbanization process is rapid, and urban development is quite even in YRD; BTH
shows lower urban industrial land-use efficiency; and city clusters are most obvious in PRD [24–26]. It
is significant and feasible to discuss how the natural and man-made factors affect the carbon sources
and sinks for possible low carbon development strategies in the three urban agglomerations. There
is an impressive and growing literature regarding carbon sources and sinks in these three urban
agglomerations [19–21,27–29]. However, currently, there seem to be no comparable studies that present
the same methodology and same data source.

Different data sources have been collected to examine carbon sources and sinks, including field
measurements, government statistics and optical remote sensing data. Morton and Andreas attempted
to improve the field measurement of the net ecosystem exchange CO2 flux to identify peatlands
acting as either a net CO2 uptake or release [30]. Using field measurements, many studies have
focused on carbon flux calculation to explore carbon sources and sinks in different single ecosystems
of a specific type, but these studies are limited in data size and field scale and fail to be directly
compared [31,32]. Rahman and Kashem provided the possibility to examine the relationships between
carbon emissions, energy consumption and industrial growth in Bangladesh using economic data from
the Word Development Indicator and the Central Bank of Bangladesh [33]. Socio-economic statistics
published by governments has enabled the use of a top-down method to estimate carbon emissions,
but the lack of spatial distribution and the inconsistency of the statistics quality lead to lower data
mining accessibility and comparability [34].

Distinctly advantageous for detecting spatial-temporal variation and capturing data at a large
scale, data from remote sensing aids research on carbon source and sink more objectively and effectively.
It is remote-sensing capabilities that a large number of researchers have previously focused on in
studying carbon sources and sinks. Chuai et al. examined the net ecosystem production (NEP) trend,
an indicator of whether an ecosystem can fix or release carbon from or into the atmosphere using
Moderate Resolution Imaging Spectroradiometer data, meteorological data, and soil organic carbon
data [35]. Abdalla and Fadul assessed the relationship between green cover and carbon emissions from
cars using remote-sensing data from Landsat and Quick Bird satellites [36]. Meng et al. used nighttime
light imagery and statistical energy data to estimate CO2 emissions [37]. All of these studies either
targeted the entirety of China or separately investigated only one of the regions for NEP or carbon
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emissions. It is still missing that a comprehensive analysis of carbon budgets examination for both
socially and physically derived carbon in spatial dimension.

Our overall objective was the presentation of an analytical framework to study the spatial and
temporal pattern of regional carbon budgets in the three urban agglomerations. By unifying the
spatial-temporal resolution of carbon source and sink data, attempts are made to compare carbon
budgets in different urban agglomerations to enhance the understanding of the natural-human dual
structure of carbon effects. Then, a scientific basis for policy-making is provided for viable CO2

emission mitigation policies. The next section addresses the study areas and data sources. The third
section introduces the study methods, including urban information extraction, NEP calculation, carbon
emission calculation, carbon budgets calculation and spatial statistics. Then we come to the results on
the urban expansion characteristics, carbon budgets statistics and spatial patterns of the three urban
agglomerations. Finally, we discuss and draw conclusions.

2. Study Areas and Data Sources

YRD, PRD and BTH are three of the coastal urban agglomerations in China (Figure 1), which
contribute most to CO2 emissions with significant land-use and land-cover change. Occupying a
very important strategic position in China’s modernization and opening up, the YRD is composed
of 26 cities, including the Shanghai city and another 25 cities of the Jiangsu, Zhejiang, and Anhui
provinces. The PRD is formed mainly by 14 cities of the Guangdong Province in Southern China,
characterized by economic vitality and technological innovation. BTH, in Northern China, is the
political and cultural centre of the nation, including the cities of Beijing and Tianjin and the whole of
Hebei Province.
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The annual Moderate Resolution Imaging Spectroradiometer(MODIS) net primary productivity
(NPP) data from 2000 to 2013 used in this study were downloaded from the Numerical Terradynamic
Simulation Group (NTSG) at the University of Montana (http://www.ntsg.umt.edu/). The dataset is in
a TIF format and has a resolution of 30-arcsec (approximately 1-km). A detailed description of the NPP
model calculation process can be obtained from Zhang et al. [38]. The accuracy of the product has
been validated as being consistent with field-observed NPP data [39]. We extracted the global map
with the overlay of the study areas. Meteorological data (precipitation and temperature) observed
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at 745 national basic meteorological stations in China were provided by the China Meteorological
Data website (http://data.cma.cn/). The 2000–2013 annual nighttime light images originated from the
Operational Linescan System (OLS) aboard the American Defense Meteorological Satellite (DMSP).
These images were downloaded from the National Geophysical Data Center (NGDC) affiliated with the
American National Oceanic and Atmospheric Administration (NOAA) (https://www.ngdc.noaa.gov/).
The product contains cloud-free average radiance values that have undergone an outlier removal
process to remove fires and other ephemeral lights; grey values range from 1–63, and the resolution
is 30 arcsec (approximately 1 km). As nighttime light data slightly vary from different sensors, we
adopted the pre-processing approach from Cao to conduct data fusion, image segmentation, irradiance
calibration and coordinate translation [40]. The annual energy consumption data of 30 provinces in
China from 2000 to 2013 were collected from the China Energy Statistical Yearbook. Maps in the article
were all made by using ArcGIS [9.3], (http://www.esri.com/software/arcgis).

3. Methods

3.1. Urban Information Extraction

The nighttime light data originated from OLS is sound source data to monitor human activities
and has been used to study carbon emissions in a considerable amount of research, as human activity
is the main source of carbon emissions. Many studies indicate that DMSP/OLS nighttime light data
correlate with carbon emissions. Moreover, nighttime light data can be applied to urban area extraction.
We used the thresholding technique along with ancillary data to extract the urban information of the
three urban agglomerations [41]. Liu et al. divided China into eight economic regions, extracting a
single threshold for each [41]. The YRD is in Eastern Coastal China, the PRD is in Southern Coastal
China and BTH is in Northern Coastal China.

3.2. Net Ecosystem Production (NEP) Calculation

The net ecosystem production (NEP) indicates the carbon fixation capacity of the terrestrial
ecosystem over the short term. The NEP depends strongly on climate and vegetation, reflecting the
impacts of nature more than man-made impacts [42]. The NEP can be calculated by subtracting the
soil heterotrophic respiration (Rh) from the net primary production (NPP) as follows:

NEP = NPP − Rh (1)

where NEP is the annual net ecosystem productivity (gC·m−2.year−1), NPP is the annual net primary
productivity (gC·m−2

·year−1) directly provided by the MODIS products, and Rh is the annual soil
heterotrophic respiration (gC·m−2

·year−1) [35].
In this study, Rh was calculated from the relationship between Rs and Rh [35]. We collected Rs

and Rh data from up to 101 groups, with the observed years from 1994 to 2013. The data included most
ecosystems, with a wide distribution across China. According to the collected data, a linear equation
presented the best fitting according to the following formula:

Rh = 0.4679×Rs + 114.42 R2 = 0.667 (2)

where Rh is the annual soil heterotrophic respiration (gC·m−2
·year−1) and Rs is the annual soil

respiration (gC·m−2
·year−1).

By synthesizing the Rs data set of ChinaFLUX and those published in approximately 200 papers
in the literature, Yu et al. established an Rs database of China and developed a new region-scale
geostatistical model of soil respiration (GSMSR) by modifying a global-scale statistical model [43].
Based on 333 collected Rs data points, the established model has been validated by 57 Rs data that

http://data.cma.cn/)
https://www.ngdc.noaa.gov/
http://www.esri.com/software/arcgis
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were not used in the model parametrization. The GMSR presented a better simulation in China; thus,
we used this mode on an annual scale as follows:

Rs = (0.588 + 0.118× SOC) × eln(1.83×e−0.006×T)×T÷10
× (P + 2.972) ÷ (P + 5.657) × 365 (3)

where T is the annual mean air temperature (◦C), P is the mean monthly precipitation (cm), and SOC is
the topsoil (0–20 cm) organic carbon storage density (kg C·m−2). An interpolation method was used
to generate precipitation and temperature maps, and the inverse distance method was used to finish
the interpolation process and set them as 1 km grid layers. The topsoil (0–20 cm) property data sets
were obtained from the 2nd national Soil Survey. The grid SOC density data at a depth of 20 cm were
obtained based on interpolation from the 1:4,000,000 SOC density vector data.

3.3. Carbon Emission Calculation

For carbon emission, energy consumption is a main man-made factor [44,45]. Again, the nighttime
light data originated from OLS is used to study energy consumption. We investigated the relationships
between nighttime light data and energy consumption at the provincial level by regression analysis.
The research data covered 30 provinces in China from 2000 to 2013, which offered adequate data
size to verify the effectiveness of regression analysis. Consistent with previous studies [46–48], we
found that the correlation coefficient is highest with a linear fit (R2 = 0.625). And we assumed that the
correlation can be transformed from the provincial level to the 1 km2 level. Thus, we produced the
annual energy consumption grid maps by allocating the provincial energy consumption in proportion
to the nighttime light value of the 1-km2 grid. The formula is as follows:

EC = 115 × NL (4)

where EC is the annual energy consumption of a province (tC·km−2
·year−1), and NL is the nighttime

light values ranging from 1~63.

3.4. Carbon Budgets Calculation

By calculating the carbon absorption and emission at the same spatial resolution, we tried to
subtract them from one another for comparison. The formula is as follows:

CB = NEP − EC (5)

where CB is the carbon budget comparing the carbon absorption and emission (gC·m−2
·year−1).

3.5. Spatial Statistics

To investigate the distribution pattern of the grid data, spatial statistical tools in the ArcGIS
software were adopted, such as mean patch size, shape index, spatial autocorrelation (Moran’s I),
directional distribution (standard deviational ellipse) and cluster and outlier analysis (Anselin Local
Moran’s I) [49]. Mean patch size (km2) is defined as the total area of urban patches divided by patch
numbers, representing the integrity of the built-up area. The shape index, which is the perimeter to
area ratio, can be used to measure the complexity of the patch. Spatial autocorrelation measures spatial
autocorrelation based on feature locations and attribute values using the Global Moran’s I statistic.
Directional distribution creates standard deviational ellipses to summarize the spatial characteristics of
geographic features, such as central tendency, dispersion, and directional trends. Cluster and outlier
analysis, given a set of weighted features, statistically identifies significant hot spots and cold spots,
which depict high and low value collection areas, respectively, using the Anselin Local Moran’s I
statistic. Some papers can be consulted for more information regarding the tools [50–52].
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4. Results

4.1. Urban Expansion Characteristics of the Three Urban Agglomerations

We presented the built-up area to describe urban expansion. All of the three urban agglomerations
underwent an urban expansion process between 2000 and 2013, with the built-up area increasing from
1.03 × 104 km2 to 3.06 × 104 km2 on the whole. As shown in Figure 2, the built-up area line chart
indicated different urban extension patterns for the three urban agglomerations. For BTH, the built-up
area gradually expanded, on average 6.34% per year. The built-up area in YRD gradually changed
before 2007 (4.95% per year) but rapidly grew thereafter (20.64% per year). The built-up expansion
in the PRD passed through three stages: steadily increasing from 2000 to 2004 (19.57% per year),
decreasing 22.59% in 2005, slightly changing from 2005 to 2010 (2.64% per year), sharply increasing
84.94% in 2011, and slightly changing from 2011 to 2013 (1.68% per year). The built-up area proportion
to the whole region in the three urban agglomerations continuously increased. The YRD has the largest
built-up area proportion on average 3.82%, followed by the PRD at 3.18% and BTH at 2.33%.
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The mean patch size represents the integrity of the built-up area. The line chart (Figure 3) shows
that built-up area in the PRD (on average 164.23 km2) bears a much higher integrity than that in BTH
(on average 53.99 km2) and the YRD (average 72.29 km2). The mean patch size in PRD experienced
great change in 2003 (109.25%), 2005 (−40.18%) and 2011 (64.39%). In BTH and the YRD, the mean
patch size only slightly changed, at 0.86% in BTH and 8.47% in YRD.
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The shape index can be used to measure the complexity of the patch. From the line chart shown
in Figure 4, we found that the shape index decreased in all three urban agglomerations. The shape
index is highest in BTH (403.09), followed by the YRD (359.96) and PRD (302.55).Sustainability 2019, 11, x FOR PEER REVIEW  7 of 20 
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Let us come to the information presented in the urban expansion map (Figure 5). This shows the
different urban expansion processes of the three urban agglomerations between 2000 and 2013. We
assigned the contiguous built-up areas larger than 500 km2 as the urban core zones. In BTH, the urban
core zone is mainly in the Beijing and Tianjin downtown areas, which increasingly developed and
combined with the surrounding clusters, such as the Tanggu and Fangshan districts, during the 14-year
period. In the YRD, the urban core zone only includes downtown Shanghai. During the 14 years,
downtown Shanghai combined with Suzhou, Wuxi and Changzhou; In addition, Nanjing, Hefei and
Hangzhou developed as new urban core zones. In the PRD, the urban core zone is mainly in the
Shenzhen and Guangzhou downtown areas, which combined with Dongguan, Foshan and Zhongshan
to form a much larger urban core zone.
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4.2. NEP and Carbon Emission Statistics for the Three Urban Agglomerations

The NEP was evaluated from the aspects of mean value, standard deviation, and Moran’s I
(Table 1). During 2000–2013, the mean annual NEP shows that the NEP in the YRD and PRD seem to be
approximately the same, while in BTH it is much lower and negative for most of the years. Standard
deviation analysis during 2000–2013 shows that the NEP in the YRD and BTH gradually changed, and
a weak fluctuation trend was found for the PRD. By calculating Moran’s I, we found that the spatial
aggregation of the NEP in the YRD and BTH is more intense than that in the PRD.

Extracting the NEP mean values in the built-up area (Table 1), we found large changes in all
the three urban agglomerations, and the mean values are much lower than those of the whole urban
agglomerations. The mean value is the highest in the YRD (31.59 gC·m−2

·year−1), while it is negative
in BTH (−48.22 gC·m−2

·year−1) and the PRD (−13.92 gC·m−2
·year−1). By calculating Moran’s I, we

found that the NEP spatial aggregation in the built-up area is less intense than that in the whole
urban agglomeration.

Statistics from the 2000–2013 annual carbon emission grid data (Table 2) suggest notable increasing
trends in all three urban agglomerations. The PRD has the lowest carbon emission. Carbon emissions
in the YRD and BTH are similar. Meanwhile, variation coefficients of carbon emission decreased during
the 14 years, which shows that the carbon emission values increasingly concentrated. Calculation of
Moran’s I suggests that the spatial aggregation of carbon emission is highest in the YRD, followed by
the PRD and BTH.
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Table 1. Geostatistics of net ecosystem production (NEP) in the three urban agglomerations (gC·m−2
·year−1). Mean indicates annual mean value, Std dev. is the

standard deviation and Moran’s I measures the spatial autocorrelation.

Year
Beijing–Tianjin–Hebei (BTH) Yangtze River Delta (YRD) Pearl River Delta (PRD)

Mean Std dev. Moran’s I Mean Std dev. Moran’s I Mean Std dev. Moran’s I

NEP in the
whole urban
agglomeration
(gC·m−2

·year−1)

2000 −55.60 69.58 0.4934 93.89 149.57 0.5146 144.37 260.96 0.2511
2001 −67.54 72.08 0.4797 183.11 157.13 0.5221 190.66 279.22 0.2840
2002 −28.18 74.55 0.4543 190.65 156.09 0.4995 158.89 261.69 0.2627
2003 17.81 80.95 0.4629 133.76 169.50 0.5961 211.01 280.73 0.2563
2004 60.22 79.57 0.4706 168.96 172.05 0.5799 261.87 302.11 0.2713
2005 −6.94 80.89 0.4387 94.85 166.80 0.5977 143.11 263.49 0.2408
2006 6.31 76.55 0.4528 165.93 163.25 0.5418 169.50 272.06 0.2583
2007 −49.61 85.65 0.4824 160.23 175.59 0.5778 177.33 289.28 0.2716
2008 17.09 83.23 0.4451 177.74 160.10 0.5168 161.17 287.09 0.2695
2009 −26.57 82.45 0.4373 128.76 167.13 0.5687 166.49 299.78 0.3142
2010 −40.76 78.51 0.5014 163.94 157.56 0.4697 164.00 275.04 0.2991
2011 −12.68 82.86 0.4579 118.85 158.94 0.5474 165.32 281.92 0.3023
2012 14.60 81.75 0.4218 195.46 160.26 0.4826 184.98 272.35 0.2736
2013 −17.25 84.81 0.4291 163.53 164.50 0.5094 196.18 268.11 0.2551

NEP in
built-up area
(gC·m−2

·year−1)

2000 −75.31 50.40 0.3441 5.20 136.84 0.3996 0.70 238.53 0.1643
2001 −72.04 48.05 0.2465 60.56 154.25 0.4197 −8.72 247.47 0.1816
2002 −42.79 50.75 0.2785 85.87 132.06 0.3791 1.90 238.23 0.2004
2003 −4.58 55.62 0.2480 34.46 143.34 0.4159 35.19 231.18 0.2271
2004 18.52 64.48 0.2511 54.31 143.52 0.4190 13.49 235.24 0.3363
2005 −47.56 58.30 0.2682 3.19 129.37 0.3946 −35.93 225.64 0.2018
2006 −47.68 58.95 0.2641 10.98 122.49 0.2706 −24.27 225.92 0.1935
2007 −81.96 55.47 0.3276 17.19 130.62 0.3148 36.57 242.90 0.2439
2008 −25.25 60.68 0.3242 46.54 132.14 0.2474 −15.68 235.54 0.3130
2009 −65.05 58.06 0.4171 −0.94 130.04 0.2502 −3.90 226.96 0.3085
2010 −78.75 52.92 0.3255 24.98 131.37 0.2479 −17.86 227.23 0.3717
2011 −62.62 60.60 0.2913 5.32 125.06 0.3208 −51.40 219.06 0.3129
2012 −37.00 62.96 0.2976 61.54 131.31 0.2793 −76.95 205.48 0.2837
2013 −53.02 59.04 0.2317 33.05 124.41 0.2619 −48.01 217.39 0.3123
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Table 2. Geostatistics of carbon emissions in the three urban agglomerations (gC·m−2
·year−1).

Mean indicates annual mean value, Std dev. is the standard deviation and Moran’s I measures
the spatial autocorrelation.

Year
BTH YRD PRD

Mean Std dev. Moran’s I Mean Std dev. Moran’s I Mean Std dev. Moran’s I

2000 463.04 1442.78 0.9469 490.94 1367.93 0.6669 259.40 666.37 0.8523
2001 544.52 1505.50 0.9477 475.54 1173.07 0.6799 277.57 669.77 0.8546
2002 566.06 1482.58 0.9433 506.95 1089.18 0.6858 297.70 681.58 0.8706
2003 636.43 1550.60 0.9434 552.18 1056.89 0.7010 366.93 769.93 0.8606
2004 701.95 1637.05 0.9453 656.46 1228.02 0.7085 400.48 826.35 0.8601
2005 826.18 1895.50 0.9461 589.90 1082.93 0.7178 483.27 991.79 0.8609
2006 891.89 1945.32 0.9487 838.93 1447.07 0.7439 553.74 1106.91 0.8671
2007 982.72 2092.43 0.9482 929.47 1565.34 0.7424 611.72 1206.12 0.8692
2008 977.99 2023.76 0.9490 992.53 1622.94 0.7499 650.88 1265.79 0.8693
2009 1038.98 2105.40 0.9499 1044.97 1695.25 0.7501 693.79 1341.06 0.8693
2010 1085.69 2133.88 0.9513 1082.26 1669.76 0.7604 725.16 1372.46 0.8732
2011 1176.12 2261.82 0.9496 1128.70 1677.15 0.7531 762.40 1395.20 0.8681
2012 1215.77 2283.05 0.9497 1161.78 681.98 0.7523 778.47 1413.51 0.8687
2013 1307.46 2290.70 0.9488 1255.88 1718.91 0.7491 755.93 1306.51 0.8676

The 2000–2013 carbon budget calculation (Table 3) demonstrates an evident increasing trend as
a carbon source, except for the years between 2000 and 2004 in the PRD. Carbon liabilities are the
most evident in BTH, followed by the YRD and PRD. Calculation of Moran’s I shows high spatial
aggregation of the carbon budget in the YRD.

Table 3. Geostatistics of carbon budgets in the three urban agglomerations (gC·m−2
·year−1). Mean

indicates annual mean value, Std dev. is the standard deviation and Moran’s I measures the
spatial autocorrelation.

Year
BTH YRD PRD

Mean Std dev. Moran’s I Mean Std dev. Moran’s I Mean Std dev. Moran’s I

2000 −292.93 697.23 0.7417 −121.39 631.51 0.3968 47.56 458.91 0.6916
2001 −378.56 843.50 0.7226 −52.72 640.53 0.4450 76.91 504.67 0.7106
2002 −369.61 909.61 0.7712 −100.28 716.32 0.4933 27.94 512.83 0.7357
2003 −388.11 1030.01 0.7358 −216.66 769.76 0.5269 29.09 612.82 0.7522
2004 −401.20 1116.09 0.7489 −253.63 901.76 0.5395 59.78 671.61 0.7629
2005 −554.17 1301.45 0.8038 −287.32 797.43 0.5468 −102.03 746.42 0.7961
2006 −600.73 1374.11 0.8175 −395.27 1112.47 0.5986 −119.06 837.92 0.8151
2007 −724.38 1490.15 0.8185 −470.81 1204.86 0.5941 −146.48 902.69 0.8184
2008 −663.78 1454.82 0.8221 −509.84 1288.66 0.6137 −189.19 954.62 0.8267
2009 −758.61 1533.96 0.8264 −597.94 1343.25 0.6133 −208.97 1004.11 0.8302
2010 −822.63 1611.03 0.8370 −617.01 1396.82 0.6380 −235.18 1032.73 0.8441
2011 −871.29 1739.10 0.8348 −713.79 1416.76 0.6244 −270.96 1079.81 0.8448
2012 −885.31 1780.58 0.7931 −670.43 1437.13 0.6230 −252.59 1030.91 0.8505
2013 −1008.62 1792.54 0.7226 −795.52 1483.99 0.6260 −262.84 1105.34 0.8436

4.3. Spatial Pattern of Carbon Source and Sink

The carbon emission spatial patterns in the three urban agglomerations are consistent with their
economic development to a certain extent, with increasing trends and gradual development [53]. In
BTH (Figure 6), hot spots concentrate in the downtown of each major city, particularly Beijing and
Tianjin. In southern BTH, hotspots are not obvious in 2000, while in 2013, Shijiazhuang, Handan and
Anyang appear to be hot regions. In the YRD (Figure 7), hot spots mainly occur in Shanghai and the
surrounding areas, southern Jiangsu Province (Suzhou, Wuxi, Changzhou and Nanjing City) and
northern Zhejiang Province (Hangzhou City). Downtown Hefei city is also a hotspot. The YRD hot
regions are much larger and more contiguous in 2013 than in 2000. In the PRD (Figure 8), hot spots are
concentrated in the core of the Pearl River Estuary in the south, downtown Guangzhou, Shenzhen and
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Zhuhai and the area among them. Cold spots are spread over the periphery of the north, east and west
in 2000, but with some hotspots occurring in 2013.
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However, the NEP spatial patterns in the three urban agglomerations are very different from the
carbon emission patterns. In BTH (Figure 9), the hot spots are mainly in Qinhuangdao counties in the
east and the junction of Shijiazhuang, Baoding and Hengshui in the south. Cold spots mainly occur
on the outskirts of Beijing and southern Chengde. In the YRD (Figure 10), hot spots occur along the
northern coastal areas, such as Yancheng and Nantong in Jiangsu Province, and the southern areas,
such as the junction of Taizhou, Ningbo and Shaoxing in Zhejiang Province. Cold spots occur around
downtown areas in the western and northern Anhui Province and are dispersed in southern Jiangsu
Province and northern Zhejiang Province. In the PRD (Figure 11), hot spots occur at the junction of
Huizhou, Heyuan and Shanwei in the east. Cold spots mainly occur in the west, from Qingyuan in the
north to Jiangmen in the south. The high NEP value is typically well determined by good vegetation
growth status and moderate climatic conditions [54,55]. The aforementioned findings show that the
junctions of the cities in the three agglomerations are well vegetated. We are aware that cold spots of
carbon sink do not appear in the core urban areas of the three urban agglomerations probably because
of the government-managed greening measures.Sustainability 2019, 11, x FOR PEER REVIEW 13 of 20 
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By carbon budget calculation, we explored the spatial pattern of carbon source and sink in the
three urban agglomerations with sources larger than sinks. In BTH (Figure 12), carbon sinks mainly
occurred in Qinhuangdao; Zhangjiakou in the north and Baoding, Hengshui, Shijiazhuang in the
southwest. From 2000 to 2013, carbon sinks in BTH seem to move from the south to north. In the YRD
(Figure 13), the carbon sinks mainly occur in Chuzhou, Chaohu, Anqing, Chizhou, and Xuancheng in
the west; the outskirts of Hangzhou, Jinhua, Shaoxing, Taizhou, Ningbo in the south and Yancheng in
the north. From 2000 to 2013, the carbon sink in the central and the northern YRD greatly decreased.
In the PRD (Figure 14), carbon sinks occur on the periphery, mainly Yunfu, Zhaoqing, Qingyuan,
Shaoguan, Hequan, Huizhou and Shanwei. From 2000 to 2013, carbon sinks in the PRD decreased but
not significantly.
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5. Discussion

Studies on the NEP and energy consumption as important indicators to understand the
natural-human dual structure of carbon effects are not new [56–58]. The NEP and energy consumption
calculations in this study have been effectively verified by previous studies [35,46–48]. Compared with
previous studies, however, carbon budget estimations in this study have advantages. By unifying
the spatial resolution (approximately 1 km), we provided the possibility to generate a carbon budget
comparison in a locally regional scale, which is our main contribution different from other research.

BTH has the lowest NEP level and a high Moran’s I level because of its relatively dry environment
that prevents vegetation growth [35,59]. In view of its vulnerable ecology, a favourable policy on
ecological protection should be adopted here, particularly in the location where the NEP is low. Carbon
emission here is the highest of the three urban agglomerations and highly concentrated in the core
zone. Industry should be optimized and upgraded to reduce carbon emission. For example, the iron
and steel industry is a main carbon source, and its energy efficiency should be improved [60,61]. In
the spatial allocation of urban planning, there is no doubt that Beijing and Tianjin are the core cities,
which should be given greater roles in stimulating the development of surrounding areas. By the
urban expansion pattern analysis, development could well be southward and seaward. In the north
and the west where the carbon sink occurs, ecological conservation should be a priority to expand the
regional eco-capacity.

The YRD has a high NEP and Moran’s I levels, indicating good vegetation growth status and
moderate climatic conditions in the whole region [35]. The YRD has a high urbanization rate and
a low level of carbon emission concentration. The YRD plays a leading role in Chinese economic
growth, and considerable energy is needed for economic growth and social development [62]. The
main industries of the YRD include electronic equipment manufacturing, transportation equipment
manufacturing, electricity supply, ferrous metal smelting and processing, chemical materials and
products manufacturing, and light industry such as the textile industry [63]. With flourishing tertiary
industries and high-tech secondary industries, the ecological and environmental condition is better
than that in BTH. However, the urban areas are expanding too rapidly, resulting in the destruction
of rural arable land and natural resources [64]; thus, limiting construction land and using land more
intensively should be a focus in this region. Shanghai is the core city, whose radiative effects are well
exerted throughout the whole region. Nanjing and Hangzhou, sub-centres of the urban agglomeration,
can more comprehensively develop to be a powerful force for regional development [65]. For the
part in Anhui with a low NEP and unbalanced carbon emission, balanced development, industrial
upgrading and ecological protection is required, on the prospect of integrating into the Yangtze River
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Area [66]. In northern coastal areas, such as Yancheng and Nantong, with high NEPs but also high
carbon sources, industry improvement should be particularly considered.

The PRD has a high NEP level and low Moran’s I level because of the unbalanced vegetation
growth status [35]. Urbanization occurred greatly according to policy guidance. For example, the
coordinate development program released in 2004 deferred the local urban expansion [67], while the
Asian Games in Guangzhou in 2011 greatly promoted urban land use in the surrounding regions [68].
The highest urban patch size suggests construction land clusters, such as new districts and development
zones, which occupy too much land and exhibit low-efficiency utilization [69]. At the forefront of
China’s reform and opening up, the PRD has become the largest global manufacturing base. The
PRD has undergone manufacturing relocation because of severe land and labour shortages, as well
as rising rent costs in urban core zones, such as Shenzhen and Guangzhou downtown areas [70].
Balanced economic development should be a focus here because the development gap between the
south-central areas and other locations is great, with significant characteristics of a regional layer
structure [71,72]. Guangzhou, Shenzhen and Zhuhai are the absolute poles in this region, and their
radiative effects should be given full priority. Other locations, such as Huizhou, Heyuan and Shanwei,
can properly develop tourism with green hills and waters to bridge the economic gap [73,74]. Although
the ecological and environmental conditions are fine, a protective policy should be assured, particularly
in the west.

As the three urban agglomerations underwent rapid urban expansion between 2000 and 2013,
it became urgent to optimize the urban size and structure and bring about positive economic and
social impacts. Consistent with the urban planning policy, a balance should be sought between
construction land for economic development and other land for ecological protection in the three urban
agglomerations. For BTH, a regional synergetic strategy should be implemented, particularly in the
promotion of joint industries and cooperative ecological protection. The YRD, which has world-class
development prospects, should focus on limiting construction land and optimizing resource allocation.
The PRD, the whole region in the same province, should realize integration development with a
unified advantage.

6. Conclusions

BTH, YRD and PRD are three of the coastal urban agglomerations in China. As population growth
and economic development have been concentrated in these regions during the past 20 years, these
regions are typical developed regions in China. We presented an analytical framework to study the
spatial and temporal pattern of regional carbon budgets in the three regions and made a comparison.
By unifying the spatial-temporal resolution of carbon source and sink data, we made it possible to
compare carbon budgets in different urban agglomerations. The adoption of the carbon effect study in
these three regions is representative of other developing countries, which is supposed to be generalized
to the other carbon budgets’ calculation in a locally regional scale. But some problems remain to be
solved. For example, parameters used in NEP calculations should be proved to be reliable or adjustable
and can be extended to other regions. So, additional research ought to be conducted to test the practical
application of the analytical framework.

In conclusion, as discussed above, urban expansion and carbon source and sink patterns are
different among these three regions. The built-up area in BTH gradually expanded and combined
with the surrounding clusters. Carbon liabilities are the most evident in BTH, with its ecological
vulnerability and carbon-intensive industries. The built-up area in the YRD rapidly grew and generated
many new urban core zones. Despite good ecological status, carbon emissions and liabilities in the
YRD show high spatial aggregation. There is great polarization in the carbon budget pattern of the PRD
between the urban core zone and its periphery. Nevertheless, industrial growth, regional equilibrium
and ecological protection are common goals. Therefore, a land-use policy in the whole of the three
urban agglomerations should be sought to balance the construction land for economic development
and other land for ecological protection.
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