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Abstract: Data envelopment analysis (DEA) has many advantages for analyzing the efficiency of
decision-making units, as well as drawbacks, such as a lack of discrimination power. This study
applied bi-objective multiple-criteria data envelopment analysis (BiO-MCDEA), a programming
approach used to overcome the limitations of traditional DEA models, to analyze the efficiency of 20
Brazilian ports with a consideration of six input and one output variables from 2010 to 2016. Two
time-related variables were included to reflect current problems faced by Brazilian ports experiencing
long wait times. The results reveal a significant disparity in port efficiency among Brazilian ports.
The top five most efficient ports are those with the highest cargo throughput. A clustering analysis
also confirmed a strong correlation between cargo throughput and port efficiency scores. Total
time of stay, pier length, and courtyard also had strong correlations with the efficiency scores.
The clustering method divided Brazilian ports into three groups: efficient ports, medium efficient
ports, and inefficient ports.

Keywords: data envelopment analysis (DEA), bi-objective multiple-criteria data envelopment analysis
(BiO-MCDEA), cluster analysis; Brazil; port efficiency

1. Introduction

Ports play an essential role in the economic development of countries with access to sea or
waterways by connecting them to international markets. Brazil’s ports are no exception: 95% of the
flow of Brazilian imports and exports occur through ports, demonstrating the importance of the port
sector to the national economy [1]. Increasing port efficiency is crucial for lowering logistics costs for
Brazilian companies, which account for 11.73% of total revenue, higher than in the United States and
China [2]. Brazil ranked 162 among 264 countries for port infrastructure quality [3]. In 2012, the waiting
time for container vessel berthing in Santos port was 16 h on average, and was increasing [4]. Such
delays increase logistics costs in the overall supply chain and service unreliability [5]. According to the
United Nations Conference on Trade and Development (UNCTAD) [6], the biggest concern for most
shippers was on-time delivery. Thus, service time and services costs are important factors for shippers
and logistics providers.

Bureaucracy along with underdeveloped infrastructure is a main cause of the inefficiency of
Brazilian ports. The Brazilian government has attempted to eliminate these problems through private
investments [7]. In 1993, Brazil established law 8630/93, the so-called “Port Modernization Law,”
enabling port investment by private companies through a lease contract, which resulted in significant
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improvements in the Brazilian port sector [8]. Consequently, Brazilian ports reduced handling costs of
containers by 53% from 1997 to 2003 [1].

Brazil has 34 public ports and more than 140 private port terminals, including maritime and river
ports. The public ports are administrated by the Secretary of Ports (SEP) of the Ministry of Transport.
The SEP is responsible for all policies, programs, and projects to support the development of the
Brazilian port system. Of the 34 public ports, 16 are administered by state or municipal governments,
and the other 28 are managed by terminal companies—joint venture companies, of which the main
shareholder is the federal government [9]. Because of the data limitation, port ownership was not
considered in this research. Therefore, the scope of the research only covers the public domain.
Estimating performance of the private port and comparing with public sector will be the next topic of
our forthcoming project. Although private-sector port investment is increasing, public ports are still
playing gateway roles for international maritime trade in Brazil. Given the importance of public ports
and the limited data available from private terminals, this study analyzes the efficiency of selected
public ports only.

The two research questions of our interest are to improve the discrimination power of the
previous MCDEA results of Brazilian ports by applying BiO-MCDEA model and develop the service
measurement by incorporating time variables of port operation to reflect the case of Brazilian
ports. Having established the status quo of Brazilian ports as a whole, this study analyzes the
efficiency of 20 Brazilian public ports from 2010 to 2016. BiO-MCDEA is used to discriminate
among the ports’ efficiency performance levels. The study carefully selects their input and output
variables to reflect port infrastructure and operations, taking into account time-related variables as
service-measuring instruments.

In addition, cluster analysis is used to classify Brazilian ports into three groups based on efficiency
and several explanatory variables: efficient ports, medium efficient ports, and inefficient ports. Based
on the cluster analysis, the relationships between efficiency and important input variables are examined
and discussed. Hierarchical clustering is used as the cluster analysis method.

2. Literature Review

2.1. DEA Application on Port Study

Data envelopment analysis, developed by Charnes et al. [10], uses a linear programming approach
to measure the efficiency of decision-making units (DMUs) based on input and output variables.
There are numerous studies on port performance measurement, most of which have used the typical
DEA or stochastic frontier analysis (SFA). Roll and Hayuth [11] are considered to be the first to apply
DEA to port research. However, no empirical data were collected and analyzed in that study. Later,
Tongzon [12] pointed out that previous econometric measures of port efficiency could estimate only one
output variable. Therefore, he suggested an overall measure for efficiency comparisons across ports by
using the DEA method on a sample of Australian and other international ports and demonstrated
the suitability of the DEA method for port efficiency estimation. Martinez-Budria et al. [13] applied a
DEA-BCC (Banker, Charnes, and Cooper) model to estimate the efficiency of 26 Spanish ports using
empirical panel data from 1993 to 1997. The result indicated that ports’ performance levels could be
differentiated according to their level of “complexity,” defined as high, medium, or low. They showed
that while the efficiency of high-complexity ports increased over time, that of medium- and low-level
ports did not. Cullinane et al. [14] applied DEA-BCC and DEA-CCR (Charnes, Cooper, and Rhodes)
models to panel data to explain how port performance evolved.

Recently, regression techniques have been applied to observe how certain factors affect port
efficiency. Yuen et al. [15] applied DEA-BCC and DEA-CCR models to estimate efficiency scores for
Chinese ports and used Tobit regression to investigate the impact of ownership structure and port
competition on port performance. They found that intra- and inter-port competition, and government
ownership, enhanced the efficiency of Chinese ports. Wan et al. [16] also applied a two-stage DEA
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and Tobit regression method to analyze the impact of hinterland accessibility, represented by rail
facility and road congestion, on US container port productivity. Chang et al. [17] analyzed whether
the Emission Control Area (ECA) regulation reduced the productivity of 58 European container ports.
They used a slack-based measure (SBM) DEA model and applied a bootstrapped truncated regression,
rather than a Tobit model, to correct the bias arising from the data-generating process.

2.2. Discrimination Power Issues in DEA

Although the DEA method has been a popular way to evaluate port performance, its lack of
discrimination power among efficient DMUs is considered a drawback [18]. Therefore, Barros [19]
applied cross-efficiency and super-efficiency methods in his port study to address the lack of
discrimination power of DEA-CCR and DEA-BCC models. Barros [19] evaluated the efficiency
of 24 Italian ports via his DEA-BCC model and found 17 efficient DMUs (i.e., with a score of 1).
This result was considered to have less discrimination power. Thus, applying a cross-efficiency and
super-efficiency approach modified the scores, which had different values beyond the boundaries
of the basic DEA model (i.e., 0 to 1). Oliveira and Cariou [20] also applied a super-efficiency DEA
model to evaluate the performance of 122 iron ore and coal ports. They compared results between a
basic DEA and super-efficiency model and presented the discrimination power differences between
them. The results showed that efficient DMUs (which scored 1 in the CCR model) differed from the
super-efficiency model by 50.8%.

Despite many research attempts, the supper efficiency and cross-efficiency models were both found
to be insufficient for improving the discrimination power of the DEA [21–25]. The super-efficiency
DEA model fails when some of the input variables are zero [26]. The cross-efficiency model is
computationally expensive because it can provide many optimal solutions due to the DEA weight
non-uniqueness [27]. Therefore, the multiple-criteria DEA (MCDEA) using a “non-dominated” solution
approach was suggested by Li and Reeves [28]. They proposed MCDEA model with three objectives,
i.e., minimizing the inefficiency, the maximum deviation, and the sum of deviation, to overcome
weight dispersion and discrimination power problems. Bal et al. [29] proposed goal programming
and DEA (GPDEA) to solve the three objectives of the MCDEA simultaneously. This GPDEA model
improved discrimination power and the dispersion of weights in an MCDEA framework. However,
Ghasemi et al. [30] found that GPDEA models were invalid, claiming that the original formulation and
the results in Bal et al. [29] had glitches. Ghasemi et al. [30] corrected the results of Bal et al. [29] and
proposed a bi-objective multiple-criteria DEA (BiO-MCDEA) model.

Few studies have focused on measuring Brazilian ports’ efficiency while addressing the
discrimination power of the DEA approach [31,32]. To fill this research gap, this study applies
the BiO-MCDEA to Brazilian ports to improve the discrimination power of the MCDEA and to
outperform the GPDEA model in terms of weight dispersion and discrimination power. In addition,
the BiO-MCDEA is preferable to the GPDEA model because it requires fewer computational codes.

2.3. Brazilian Port Performance

In 2006, Rios and Maçada [33] pointed out that no studies had examined Brazilian ports’
performance. Wanke et al. [34] conducted what was probably a pioneering study of Brazilian seaport
performance by applying DEA and SFA models. They found that most of the Brazilian ports showed
increasing returns to scale and that the type of cargo handled played an important role in determining
port performance. Barros et al. [35] analyzed the productivity of Brazilian ports using a Malmquist index
with technological bias from 2004 to 2010. They indicated that the traditional development accounting
method was not suitable for estimating productivity changes in Brazilian ports. Wanke [36] used a
two-stage network-DEA model to investigate the physical infrastructure and shipment consolidation
performance of Brazilian ports. He found that private administration had positive impacts on physical
infrastructure performance and that cargo diversity and hinterland size also had positive impacts
on consolidation efficiency. Wanke and Barros [37] applied a bootstrapping technique to the DEA
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and analyzed 27 major Brazilian ports with data covering 2007 to 2011. They asserted that Brazilian
ports suffered from capacity shortfalls and that connectivity infrastructure had a positive impact on
scale efficiency.

Rubem et al. [38] applied the GPDEA in a port study to analyzeBrazilian container ports in
2013 and showed that their performance levels were homogeneous. However, this result was based
on an insufficient number of DMUs, and Ghasemi et al. [30] pointed out that the GPDEA lacked
discrimination power. Table 1 shows a summary of applications of DEA to port studies.

Table 1. Applications of DEA to Ports.

Author(s) (year) Data Input Variables Output Variables Model

Roll and Hayuth
(1993) [11]

Hypothetical
example of 20 ports

Manpower, Cargo
uniformity, Capital

Service level, Cargo
throughput, Ship calls,
Consumer satisfaction

DEA-CCR model

Martinez-Budria et al.
(1999) [13]

26 Spanish ports,
1993–1997

Labor expenditure,
Other expenditure,

Depreciation charges

Port facility rent
revenue, Total cargo

moved through docks
DEA-BCC model

Tongzon J. (2001) [12]

4 Australian ports
and 12

international ports,
1996

Number of container
berths, Number of
cranes, Number of

tugs, Labor, Terminal
area, Delay time

Ship working rate,
Cargo throughput

DEA-CCR additive
model

Cullinane et al.
(2006) [14]

27 ports in the
world in 2001

Terminal length,
Terminal area,

Quayside gantry, Yard
gantry, Straddle carrier

Container throughput DEA-CCR, BCC
model, and SFA

Yuen, Zhang, and
Cheung (2013) [15]

21 ports in China
and its neighboring
countries 2003 and

2007

Berth, Total length,
Port land area, Quay
crane, Yard gantries

Throughput DEA-CCR and
tobit regression

Wan, Yuen, and Zhang
(2014) [15]

13 US container
ports from 2000 to

2009

Container terminal
size, Total length of

berths, Total number of
cranes and gantries

Throughput
DEA-CCR, BCC
model, and tobit

regression

Chang et al. (2018) [17] 58 European
container ports

Berth length, Total
number of container

crane, Total area
Throughput

SBM DEA model
and bootstrapped

truncated
regression model

Wanke (2013) [36] 27 major Brazilian
ports in 2011

Number of berths,
Warehousing area,

Yard area

Solid bulk throughput,
Container throughput

Network-DEA
model

Wanke and Barros
(2016) [37]

27 major Brazilian
ports from 2007 to

2011

Quay length, Maximal
quay depth, Number

of berths, Warehousing
area, Yard area,
Channel depth

Dry bulk loading
hours, Container

loading hours, Dry
bulk throughput,

Container throughput,
Container frequency

CRS and VRS
model with

bootstrapping
technique

Rubem et al.
(2015) [38]

4 Brazilian ports in
2013

Berth length,
Maximum draft,

Storage area

Container cargo
handled GPDEA

This study expands the literature in two ways. First, it applies a robust bi-objective MCDEA,
which improves the discrimination power of the DEA model, to a port study. Second, by using this
method to analyze 20 Brazilian public ports, this study provides a more accurate estimation of efficiency
across Brazilian ports than previous studies have offered.

Cluster analysis is widely used in data science to create meaningful groups based on similarity
from a multivariate dataset. It is the process of grouping a set of objects in such a way that objects in
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the same group (called a “cluster”) are more similar to each other than they are to those in the other
groups [39].

Cluster analysis was recently applied to evaluate the competitiveness of Brazilian ports. Maria
Rios and de Sousa [40] used cluster analysis to classify 17 Brazilian container terminals into three
distinct groups based on competitiveness criteria using a hierarchical cluster analysis. Tovar and
Rodríguez-Déniz [41] reviewed the literature on classification methods for port efficiency and applied
a frontier-based clustering approach to classify Brazilian ports for efficiency benchmarking.

3. Methodology: BiO-MCDEA

Data envelopment analysis has two drawbacks, weak discriminating power and an unrealistic
weight distribution, which are interrelated and sometimes occur together [28]. Banker et al. [42]
suggested that avoiding the weak discriminating power requires following the “golden rule” to
determine the number of DMUs according to the number of input and output variables selected for the
model. However, the golden rule cannot be followed for models in which the number of DMUs is
not greater than three times the product of the number of input and output variables. Consequently,
the model has weak discrimination power, leading it to identify an excessive number of DMUs as
efficient. The other problem is the unrealistic weight distribution. Some DMUs are classified as efficient
in the classical DEA model because they have excessively large weights in a single output and/or
excessively small weights in a single input while not being unrealistic [28].

Many researchers have connected the DEA to the MCDEA model to improve the discriminating
power of the classical DEA. Li and Reeves [28] suggested an interaction approach for solving the
three objectives analyzed separately, one at a time, with no preference order set for the objectives
listed by Ghasemi et al. [30]. The aim of their proposed MCDEA model solution process is not
to extract an optimal solution but instead to find a series of non-dominated solutions, from which
the analyst may select the preferred solution [30]. Ghasemi et al. [30] developed the BiO-MCDEA
to introduce a weighted model to improve the discrimination power and weight dispersion of the
MCDEA. Ghasemi et al. [30] used the BiO-MCDEA to find not only the optimal solution for each
objective function but also the optimal solution that optimized all the objectives at the same time.
For this purpose, the author used goal programming to solve the new DEA model. The BiO-MCDEA
CCR oriented to input is expressed as follows:

Minimize h = (w2M + w3

∑n

j=1
d j) (1)

Subject to :
∑m

i=1
vixio = 1 (2)∑s

r=1
uryrj −

∑m

i=1
vixi j + d j = 0 (3)

M− d j ≥ 0 (4)

ur ≥ ε (5)

vi ≥ ε (6)

d j ≥ 0 (7)

Let input matrix X = [xi j, i = 1, 2, . . . , m, j = 1, 2, . . . , n] and output matrix Y = [yrj, r = 1, 2, . . . ,
s, j = 1, 2, . . . , n]. j is the number of DMUs being compared in the DEA analysis. i is the number of
inputs used by the DMUs. r is the number of outputs. ur is a coefficient or weight assigned by the DEA
to output r. vi is a coefficient or weight assigned by the DEA to input i. Then, xi j is an input variable,
yrj is an output variable, dj is a deviation variable, and M is the maximum quantity of all deviation
variables. We set w2 and w3 as equal to 1 and set ε as 0.
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This study uses BiO-MCDEA oriented to input, which reduces the input and retains the same
output value. Since the two input variables are related to time, a decrease in total time is expected. Time
values are even more significant for Brazil, where long queues are common. Using an input-oriented
model makes it possible to determine the variables that are most important for the efficiency score,
which is the objective of this study. As mentioned in the introduction, Brazilian ports need to
improve their efficiency of operation and infrastructure before seeking to increase their total cargo.
Such improvement will ultimately increase cargo throughput. Thus, an input-oriented approach
was selected.

4. Data and Variable Selection

4.1. Database

The dataset contains 20 public ports: Santos, Itaguaí, Paranaguá, Rio Grande, Suape, São Franc.
Sul, Vitória, Aratu, Fortaleza, Salvador, Belém, Imbituba, Santarém, Maceió, Cabedelo, Recife, Antonina,
São Sebastião, Ilhéus, and Natal. Only public ports are considered in this analysis, and all 20 of the
selected ports are classified as seaports by The National Agency for Water Transportation (ANTAQ).
Two of the ports in northern Brazil are located along the Amazon River but are nevertheless classified
as seaports by ANTAQ due to the high depth of the river, which allows oceanic vessels to navigate
through its channel.

The data on the time components and total cargo are collected from ANTAQ’s website (web.antaq.
gov.br). ANTAQ has developed the Port Performance System to collect data on port operations and
their respective pricing. Cargo data are collected from the Yearbook of the National Confederation
of Transport. Data on port infrastructure are collected from the ports’ official websites. Data on port
infrastructure are collected from WebPortos (webportos.labtrans.ufsc). For a better understanding of
the data, the table with input and output data for all of 20 analyzed ports are attached to Tables A1–A3.

4.2. Variable Selection

The variables are selected based on prior research on Brazilian ports’ efficiency using DEA.
Variables for berth length of all the terminals in the port and depth(draft) of the whole port are selected
to reflect the handling capacity of the ports, considering the current trend of increasing average vessel
sizes. Previous literature of Tongzon J. (2001) and Chang et al. (2018) used the number of cranes to
analyze the container terminal efficiency and this approach is common in port performance research
because it can be the proxy of the labor input. In this research, DMU is determined by port level,
which consider not only container terminal but other various cargo terminals. Therefore, the number
of container cranes were not taken as input variable [12,17]. Variables for total space of the warehouse
area and yard area are selected to consider the cargo handling capacity of the port terminals, which is
directly related to how much cargo the ports can handle.

Time-related variables are considered to reflect Brazilian ports’ unique long waiting queues.
Tongzon and Oum [43] emphasized that port efficiency is often reflected in the speed and reliability of
port services such as on-time berthing, guaranteed vessel turnaround times, and guaranteed container
connection. However, only a few studies have considered time-related variables in analyses of port
efficiency [12,44].

Ship turnaround time is an important criterion for evaluating the efficiency of port operations
and service quality. This comprises the time elapsed between a ship’s entry into port and its
departure, including unloading and loading time. Ship turnaround time thus reflects port performance
in aggregate [5]. It consists of the wait time for berthing, the wait time before operations begin,
the operation time, and the wait time for undocking [45]. This study incorporates two time variables:
waiting time before berthing(T1) and total time at berth(T5) as service-measuring variables (see Figure 1).

The ANTAQ database collects and maintains the data on the turnaround time components for
two cargo types, which are specified by container cargo and commodity cargo. The database explains

web.antaq.gov.br
web.antaq.gov.br
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that the commodity cargo is composed of loose bulk, liquid bulk, and loose cargo. Although the word
commodity cargo is not an official term, we decided to follow the term of the original data source
because of the structure of the collected data, which cannot be subdivided. Since this study considers
all types of cargo to measure the ports’ total efficiency, it considers the average of the time values for
the two cargo types. For ports that do not operate container ships, only the data related to the handling
of commodity cargo are considered.
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• Wait time for berthing (T1)
• Wait time before operations begin (T2)
• Operation time (T3)
• Wait time for undocking (T4)
• Total time at berth (T5) = T2 + T3 + T4
• Total turnaround time = T1 + T2 + T3 + T4

4.3. Pearson Correlation

Charnes et al. [46] claimed that the input and output data in the DEA are meaningful only when
they satisfy isotonicity. In other words, the output should increase when the input increases. Correlation
analysis is used to analyze the correlation between the input and output variables. The result is
presented in Table 2.

Table 2. Pearson correlation results.

Berth Length
(m)

Draft
(m)

Warehouse
(m2)

Yard
(m2)

Total Time at
Berth

Waiting
Time

Total Cargo
(ton)

Berth length 1.00 0.00 0.72 0.47 −0.37 0.12 0.84
Draft 0.00 1.00 0.06 0.56 −0.15 0.11 0.33

Warehouse 0.72 0.06 1.00 0.38 −0.28 0.13 0.61
Courtyard 0.47 0.56 0.38 1.00 −0.41 0.15 0.82

Total time at berth −0.37 −0.15 −0.28 −0.41 1.00 0.05 -
Wait time 0.12 0.11 0.13 0.15 0.05 1.00 0.22

Total cargo 0.84 0.33 0.61 0.82 −0.43 0.22 1.00

The Pearson correlation shows two input variables (port draft and wait time) with low correlations.
However, they are not excluded because the literature review suggests the following. First, the draft of
Brazilian ports is not as deep as that of Asian and European ports. This prevents large vessels from
docking in them. Increasing drafts is one of the major works Brazilian ports are currently pursuing.
Second, wait time is not excluded because UNCTAD and other important researchers have argued the
importance of including time variables. There is one negative correlation between dwell time and total
cargo handled at the port. According to Wang et al. [47], “a Pearson correlation are used to make sure
the relationship between input and output factors is isotonicity, which means that if the input quantity
increases the output quantity could not decrease under the same condition.” This study considers
dwell time as an input and total cargo as an output. If the dwell time increases, cargo quantity will
decrease. As this scenario is inconsistent with the Pearson correlation, the correlation between these
two variables showed negative results, despite the positive correlation. Table 3 lists the selected input
and output variables.
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Table 3. Compilation of input and output variables.

Input Output

Berth length (m) Total cargo throughput (tons)
Draft (m)

Warehouse (m2)
Yard (m2)

Total time at berth (h)
Waiting time (h)

5. Results and Discussion

5.1. Results of DEA Analysis

The BiO-MCDEA CCR shows a significant disparity among the Brazilian ports. Only the Santos
port is efficient in 2016, and four other ports—Itaguaí, Paranaguá, Suape, and Rio Grande—had
efficiency scores that can be considered intermediate. The difference between these ports and the
remaining ports can be considered significant, as is evident in Table 4: 75% of the ports have very low
efficiency scores, ranging from 0 to 0.33.

The BiO-MCDEA’s discrimination power makes it more difficult for a DMU to be considered
efficient than in the classical DEA. Consequently, the efficiency scores of all DMUs except for Santos
are all lower than in the results of classical DEA models, as shown in Table 4. The classical DEA
model considered eight ports efficient, accounting for 40% of the ports. When 40% of the DMUs
have a 100% score, it is more difficult to perform an in-depth analysis of port efficiency. The four
least-efficient ports (i.e., Ilhéus, Maceió, Recife, and Antonina) and the five most efficient ports are
the same for the BiO-MCDEA CCR and classical DEA-CCR. The difference lies in the ports’ scores.
With the BiO-MCDEA, it is possible to distinguish between them due to the greater differentiation
among the efficiency scores. This enables a more precise ranking, especially for the eight ports with the
same efficient scores in the classical DEA model.

Table 4. Comparison of efficiency scores between BiO-MCDEA CCR and DEA (2016).

Port
Efficiency Score

DEA-CCR (2016) BiO-MCDEA CCR (2016)

Santos 1 1
Itaguaí 1 0.46

Paranaguá 1 0.92
Rio Grande 1 0.56

Suape 1 0.76
São Franc. do Sul 1 0.27

Vitória 0.38 0.21
Aratu 0.68 0.09

Fortaleza 0.37 0.33
Salvador 0.72 0.22

Belém 1 0.21
Imbituba 0.27 0.06
Santarém 1 0.02
Maceió 0.16 0.01

Cabedelo 0.31 0.03
Recife 0.2 0

Antonina 0.21 0.01
São Sebastião 1 0.02

Ilhéus 0.05 0
Natal 0.23 0.02
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Table 5 shows the efficiency scores for 20 ports in 2016 using the BiO-MCDEA CCR and the
BiO-MCDEA BBC. Santos and Belém were considered efficient by the BiO-MCDEA BCC. Belém is
considered “inefficient” by the BiO-MCDEA CCR model, with an efficiency score of 0.21, while the
BiO-MCDEA BCC model considers it “efficient,” with a score of 1.

The CCR model assumes constant returns to scale (CRS), while the BCC model assumes variable
returns to scale (VRS). The two concepts are distinguished based on the relationship between the size
of the investment and the return. The perspective of the CCR assumption is that the return increases at
the same rate at which the investment grows, while the perspective of the BCC assumption is that the
return will continue to change at a rate different from the rate at which the investment grows. Thus,
the shape of the frontier, which determines the efficiency scores of the DMUs in the DEA model, could
change, and the efficiency score could also change. Therefore, under the CRS assumption, Belém is
inefficient; under the VRS assumption, however, Belém is deemed an efficient DMU. According to the
input variables, Belém has one of the shortest total berth times and a wait time of zero hours.

Table 5. Port efficiency scores in BiO-MCDEA CCR and BiO-MCDEA BCC in 2016.

Port
BiO-MCDEA CCR BiO-MCDEA BCC

Efficiency Score Condition Efficiency Score Condition

Santos 1 Efficient 1 Efficient
Itaguaí 0.46 Intermediate 0.53 Intermediate

Paranaguá 0.92 Intermediate 0.81 Intermediate
Rio Grande 0.56 Intermediate 0.62 Intermediate

Suape 0.76 Intermediate 0.75 Intermediate
São Franc. do Sul 0.27 Inefficient 0.69 Intermediate

Vitória 0.21 Inefficient 0.37 Inefficient
Aratu 0.09 Inefficient 0.56 Intermediate

Fortaleza 0.33 Inefficient 0.61 Intermediate
Salvador 0.22 Inefficient 0.58 Intermediate

Belém 0.21 Inefficient 1 Efficient
Imbituba 0.06 Inefficient 0.25 Inefficient
Santarém 0.02 Inefficient 0.59 Intermediate
Maceió 0.01 Inefficient 0.07 Inefficient

Cabedelo 0.03 Inefficient 0.64 Intermediate
Recife 0 Inefficient 0.12 Inefficient

Antonina 0.01 Inefficient 0.32 Inefficient
São Sebastião 0.02 Inefficient 0.38 Inefficient

Ilhéus 0 Inefficient 0.12 Inefficient
Natal 0.02 Inefficient 0.66 Intermediate

The efficiency scores for all ports from 2010 to 2016 in the BiO-MCDEA CCR and BiO-MCDEA
BCC models are shown in Tables 6 and 7, respectively.

Table 6. Port efficiency scores in BiO-MCDEA CCR for 2010–2016.

DMU (%)/year 2010 2011 2012 2013 2014 2015 2016

Santos 1 1 1 1 1 1 1
Itaguaí 0.46 0.45 0.5 0.39 0.5 0.39 0.46

Paranaguá 0.91 0.89 0.92 0.69 0.9 0.81 0.92
Rio Grande 0.55 0.51 0.47 0.4 0.6 0.52 0.56

Suape 0.31 0.38 0.39 0.39 0.52 0.64 0.76
São Franc. do Sul 0.05 0.26 0.31 0.37 0.3 0.17 0.27

Vitória 0.25 0.29 0.24 0.16 0.24 0.21 0.21
Aratu 0.18 0.09 0.13 0.08 0.05 0.08 0.09

Fortaleza 0.31 0.32 0.33 0.3 0.33 0.27 0.33
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Table 6. Cont.

DMU (%)/year 2010 2011 2012 2013 2014 2015 2016

Salvador 0.14 0.06 0.13 0.16 0.21 0.19 0.22
Belém 0.3 0.31 0.29 0.25 0.25 0.22 0.21

Imbituba 0.02 0.04 0.02 0.02 0.05 0.05 0.06
Santarém 0.03 0.06 0.08 0.11 0.06 0.04 0.02
Maceió 0.28 0.28 0.25 0.17 0.2 0.16 0.01

Cabedelo 0.01 0.04 0.06 0.02 0.03 0.02 0.03
Recife 0.01 0.01 0.01 0.01 0.01 0.01 0

Antonina 0 0.01 0.01 0.01 0.02 0 0.01
São Sebastião 0 0.02 0 0.02 0.03 0.03 0.02

Ilhéus 0 0 0 0 0 0.01 0
Natal 0 0.01 0 0 0 0 0.02

Table 7. Port efficiency scores in BiO-MCDEA BCC for 2010–2016.

DMU (%)/year 2010 2011 2012 2013 2014 2015 2016

Santos 1 1 1 1 1 1 1
Itaguaí 0.58 0.49 0.47 0.45 0.54 0.44 0.53

Paranaguá 0.82 0.77 0.86 0.64 0.79 0.82 0.81
Rio Grande 0.63 0.5 0.39 0.53 0.62 0.53 0.62

Suape 0.52 0.46 0.55 0.59 0.56 0.64 0.75
São Franc. do Sul 0.21 0.69 0.69 0.71 0.71 0.72 0.69

Vitória 0.26 0.4 0.36 0.36 0.43 0.39 0.37
Aratu 0.57 0.54 0.54 0.4 0.11 0.55 0.56

Fortaleza 0.62 0.6 0.6 0.61 0.61 0.61 0.61
Salvador 0.58 0.56 0.56 0.57 0.57 0.58 0.58

Belém 1 1 1 1 1 1 1
Imbituba 0.17 0.18 0.17 0.22 0.19 0.22 0.25
Santarém 0.52 0.56 0.56 0.58 0.56 0.54 0.59
Maceió 0.73 0.72 0.71 0.71 0.71 0.72 0.07

Cabedelo 0.65 0.63 0.63 0.5 0.63 0.64 0.64
Recife 0.13 0.23 0.27 0.26 0.32 0.17 0.12

Antonina 0.14 0.05 0.05 0.08 0.34 0.23 0.32
São Sebastião 0.63 0.36 0.15 0.38 0.38 0.4 0.38

Ilhéus 0 0.26 0.22 0.31 0.21 0.3 0.12
Natal 0 0.65 0.65 0.25 0.44 0.61 0.66

Santos port, the highest-ranked in terms of cargo throughput, handled 33% of all cargo that passed
through Brazilian public ports in 2016, followed by Itaguaí (20%), Paranaguá (14%), and Rio Grande
and Suape (8%). These five ports together moved 83% of the cargo that passed through public ports in
2016. It can be seen that there is no balanced distribution between Brazilian ports.

The five most efficient ports in the BIO-MCDEA CCR model are also the ports with the highest
cargo throughput, as shown in Figures 2 and 3. As ports with larger physical infrastructure can handle
more cargo than small ports, production capacity and output value are correlated.

5.2. Cluster Analysis of Ports

When a pattern is identified, as in the case between efficiency and total cargo throughput, a more
in-depth analysis using other methodologies can complement or affirm the result of the initial analysis.
In this case, a clustering method is used since it makes it possible to visualize how ports can be grouped
according to similar characteristics, and how far clusters are located from each other. It is also possible
to analyze what makes these clusters different from each other. Hierarchy clustering is carried out
using Python. Efficiency scores and total cargo throughput are used for the clustering.
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A dendrogram is generated to determine the optimal number of clusters. It shows the distance
between the port in the graph and how these ports are connected to form the cluster according to
proximity. For the data included in the model, the optimal number of clusters is three (see Figure 4).
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Clustering groups “elements” based on several characteristics. There are several clustering
methods, and each one uses a different approach to group elements. Hierarchical clustering makes
each data point a single point cluster. Then, one cluster is created from the two closest data points.
This process continues until all the data points are grouped according to the number of clusters
determined by the dendrogram (see Figure 5).
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The result of the clustering for the efficiency and total cargo variables can be seen in Figure 6.
Cluster 1 (blue) represents ports with the highest efficiency and cargo throughput. Cluster 2 (green)
can be characterized as “ports of medium dimension” with a high possibility of becoming part of
Cluster 1. Finally, Cluster 3 (red), which comprises most of the dots/ports, is composed of ports with
low efficiency and lower cargo throughput. Cluster 1 contains Santos port, the port with an efficient
score and the highest total cargo throughput. Cluster 2 contains the four ports with the next highest
efficiency scores and cargo throughput: Itaguaí, Paranaguá, Suape, and Rio Grande. The 15 ports with
lower efficiency and cargo throughput values are in Cluster 3. There is a clear difference between
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the ports in clusters 1, 2, and 3. In the figure, we can detect the trend that the bigger port shows the
more efficient result. However, in case of Cluster 2, three small ports show more efficient score than
bigger port.
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In the hierarchy clustering, it was observed that the five most efficient ports are grouped in the
cluster with the shortest total time of stay, but the same scenario does not occur for waiting time. Most
of the high-efficiency ports are spread across the three clusters and present no defined pattern for
waiting time or efficiency clustering analysis (see Figure 7). These results indicate that the total time of
stay is more important than the wait time. Reducing queue times will require that port processes be
optimized and/or that the ports’ capacity to receive vessels be increased. Due to the high cost of the
second option, the first is more feasible and beneficial to ports; it will reduce costs in the short term.
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According to the weight scores from the DEA model, two infrastructure variables (length of pier
and courtyard) are most important. To analyze whether the most efficient ports have the highest pier
length and courtyard values, a clustering method with efficiency scores is conducted (see Figure 8).
All inefficient ports are grouped in the cluster based on data reflecting the lowest infrastructure values
for both the pier and courtyard. Pier length could be a critical input variable: If the port infrastructure
is changed to allow more vessels to be received, waiting time could decrease, and cargo throughput
could increase.
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Brazilian port authorities need to increase ports’ infrastructure to improve their capacity to handle
more and larger vessels and to allow them to handle cargo at terminal areas more efficiently. These
changes will reduce ship turnaround time and thus improve the productivity and efficiency of the ports.
Furthermore, maintaining strict quality management of total time of stay should be a policy priority.

6. Conclusions

This study analyzed the efficiency of 20 Brazilian ports using the BiO-MCDEA method along with
six input variables (i.e., length of pier, draught, warehouse, yard, wait time, total time of stay) and
one output variable (i.e., total cargo throughput). BiO-MCDEA is an excellent method of measuring
efficiency, as it allows significant distinctions to be made between ports. The results show that
Santos port is the only efficient port out of the 20 that were examined. The remaining 19, with their
differentiated efficiency scores, facilitated the analysis of port efficiency.

Four ports—Paranaguá, Suape, Rio Grande, and Itaguaí—have high efficiency scores; they can be
considered intermediate-level ports, and thus have a good potential to become efficient. However,
these four ports, along with Santos—the only port with an “efficient” score, represent 25% of the ports
studied; the other 75% (15 ports) have very low efficiency scores according to the BiO-MCDEA model.

Through the hierarchical clustering method, 20 ports were classified into three clusters: efficient
(one port), intermediate (four ports), and very low efficiency. The five most efficient ports feature the
highest cargo throughput in cubic meters. The results show that Brazilian ports need to increase their
size to receive additional cargo.

Moreover, despite the long docking wait queues, the dwell time is more important for port
efficiency than the wait time. In other words, the total time ships spend in port is the factor that must
be reduced for queues to decrease. This can be accomplished by creating more mooring berths, but
also by developing more efficient processes. The port of Santos obtained positive efficiency scores over
the six years from 2010 to 2016. This result was expected, as Santos is the largest port not only in Brazil
but in Latin America

By employing the BiO-MCDEA model, this study enabled a more significant distinction between
ports in terms of efficiency. The study also made the first use of the cluster analysis method in
conjunction with the BiO-MCDEA to analyze Brazilian ports by clustering groups according to
their efficiency levels and input and output variables. Dividing ports into clusters can help Brazil’s
government and port authorities make decisions on how to improve the infrastructure and processes
of Brazilian ports.

Another contribution of this study is its inclusion of two time-related variables (wait time and
dwell time). Despite the importance of including time data when measuring port efficiency, no study
on Brazilian ports has considered the time factor, even though process efficiency is extremely important
for all public Brazilian ports.

Future studies should analyze the relationship among physical port capacity, time-related measures,
and performance efficiency using alternative approaches such as tobit regression. Efficiency analysis
for both public and private port terminals is required to compare efficiency between the two sectors and
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to examine how private-sector investment impacts port infrastructure and operations. An efficiency
analysis of port terminals for different cargo types, specifically container and commodity cargo, is also
required. This study considered all the input and output variables in a single-stage model. This model
can measure overall port efficiency as a simple score. Future researchers could provide a more detailed
analysis by dividing the model into multiple stages via a network-DEA model, which reflects service
and operation processes in sequence and presents three different efficiency scores: overall, service,
and operation.

Although we used the bi-objective weighted method of Ghasemi et al. [30] to calculate the MCDEA
model, the analyses can be performed in other ways that require fewer computational codes and that
have improved discrimination power. We used our method simply because it was better than the
GPDEA in terms of mathematical programming and simplicity of formulation. Future researchers
should seek metaheuristic solutions for the MCDEA model to improve the procedure used in this study.
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Appendix A

Table A1. Port Infrastructure Data.

Port Berth Length (m) Draft (m) Warehouse (m2) Yard (m2)

Santos 13,013 13.5 499,701 981,603
Itaguaí 2210 19.8 15,242 1,535,109

Paranaguá 3783 12.7 58,260 549,325
Rio Grande 6482 12.8 196,750 155,000

Suape 3200 14.5 20,000 406,000
São Franc. do Sul 975 13.1 8070 79,500

Vitória 3449 11.2 40,000 390,400
Aratu 1,170.8 14.8 30,184 68,400

Fortaleza 1580 13 33,000 131,000
Salvador 2023 13.9 23,300 45,800

Belém 1446 7.3 39,561 92,505
Imbituba 905 14.5 380,004 400,000
Santarém 1700 14 6894 8850
Maceió 1487 10.5 35,200 103,524

Cabedelo 602 12 14,000 18,000
Recife 1826 11.1 29,570 49,410

Antonina 420 16.5 41,415 110,117
São Sebastião 1440 16.9 3000 325,800

Ilhéus 2262 8.5 18,050 20,500
Natal 567 11.5 6600 29,000
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Table A2. Time-related Input Data.

Port Total Time at Berth (h) Waiting Time before Berthing (h)

Min Average Max St Dev Min Average Max St Dev

Santos 19.0 20.0 23.7 1.7 27.7 51.9 77.7 15.6
Itaguaí 33.1 34.9 38.7 2.1 60.8 108.9 141.1 32.0

Paranaguá 30.9 33.2 36.8 2.1 100.3 197.1 297.4 58.6
Rio Grande 16.9 19.1 21.4 1.7 19.8 51.5 117.8 34.4

Suape 22.5 25.4 31.0 3.4 21.0 25.0 28.4 2.5
São Franc. do Sul 27.7 37.2 61.6 11.5 62.3 91.9 164.0 33.9

Vitória 23.1 26.4 32.7 3.3 12.9 20.6 28.6 5.9
Aratu 50.9 56.6 62.7 4.8 65.1 121.4 234.2 59.8

Fortaleza 33.3 37.3 44.9 3.6 13.9 36.5 66.7 17.9
Salvador 35.7 49.1 57.7 7.1 10.7 32.4 112.2 36.4

Belém 18.0 23.7 29.8 4.5 0.0 0.1 0.4 0.1
Imbituba 44.1 50.9 57.0 4.0 22.2 38.3 57.7 12.3
Santarém 26.9 55.7 127.9 37.2 0.0 0.0 0.0 0.0
Maceió 31.0 51.4 120.9 31.4 24.0 56.9 204.3 65.5

Cabedelo 50.9 58.0 71.7 7.2 11.7 20.3 25.7 5.3
Recife 90.8 127.2 189.5 37.0 4.6 8.3 11.9 2.7

Antonina 101.1 135.4 175.3 29.9 115.8 231.1 409.7 113.0
São Sebastião 57.5 86.8 163.1 38.5 1.1 62.4 152.6 48.4

Ilhéus 84.1 116.5 169.9 33.7 0.1 12.8 43.9 18.0
Natal 48.6 70.2 109.4 19.9 1.1 4.8 11.7 3.7

Table A3. Total Cargo Throughput (tons).

Port Min Average Max St Dev

Santos 87,838,920.0 94,807,073.7 101,578,071.0 4,763,617.3
Itaguaí 52,765,505.0 58,031,726.9 63,849,720.0 3,257,003.0

Paranaguá 31,107,297.0 39,068,114.0 41,771,840.0 3,802,215.3
Rio Grande 17,072,809.0 20,743,313.6 24,114,921.0 2,607,841.0

Suape 8,885,998.0 14,490,230.1 22,747,980.0 5,091,880.9
São Franc. do Sul 9,532,536.0 11,435,982.6 13,268,335.0 1,644,884.0

Vitória 5,065,851.0 6,649,397.6 8,112,748.0 900,043.3
Aratu 5,188,342.0 5,892,400.6 6,491,715.0 429,229.9

Fortaleza 4,309,971.0 4,725,914.4 5,351,406.0 393,235.2
Salvador 3,424,088.0 3,919,502.1 4,562,312.0 473,892.4

Belém 2,337,665.0 3,002,409.3 3,225,448.0 322,547.3
Imbituba 1,875,760.0 2,899,119.7 4,803,186.0 1,029,040.0
Santarém 1,079,583.0 3,408,698.4 4,975,927.0 1,419,914.8
Maceió 1,963,511.0 2,714,456.7 3,305,545.0 440,004.7

Cabedelo 962,977.0 1,553,090.7 1,907,438.0 368,824.7
Recife 1,410,260.0 1,672,626.6 1,998,676.0 204,150.9

Antonina 235,225.0 1,117,949.1 1,560,210.0 461,416.8
São Sebastião 606,776.0 704,440.6 884,951.0 90,736.8

Ilhéus 195,031.0 349,077.0 506,357.0 124,311.5
Natal 295,891.0 456,680.3 674,788.0 125,835.5
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