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Abstract: Selection of appropriate empirical reference evapotranspiration (ETo) estimation models
is very important for the management of agriculture, water resources, and environment. Statistical
metrics generally used for performance assessment of empirical ETo models, on a station level, often
give contradictory results, which make the ranking of methods a challenging task. Besides, the ranking
of ETo estimation methods for a given study area based on the rank at different stations is also a
difficult task. Compromise programming and group decision-making methods have been proposed
in this study for the ranking of 31 empirical ETo models for Peninsular Malaysia based on four
standard statistical metrics. The result revealed the Penman-Monteith as the most suitable method
of estimation of ETo, followed by radiation-based Priestley and Taylor and the mass transfer-based
Dalton and Meyer methods. Among the temperature-based methods, Ivanov was found the best.
The methodology suggested in this study can be adopted in any other region for an easy but robust
evaluation of empirical ETo models.
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1. Introduction

Evapotranspiration (ET), the process of water release to the atmosphere, plays a crucial role in
irrigation management [1], water balance estimation [2], surface runoff estimation [3], groundwater
level prediction [4], water stress assessment [5], reservoir management [6], daily flux modelling [7],
and climate change impact assessment [8]. It determines the crop irrigation requirement and thus,
irrigation management, the introduction of new crop, or crop scheduling to adapt to climate change [9–11].
It is a major component that defines surface runoff and therefore, important for designing drainage
and hydraulic structure [12,13]. In addition, it is the major component that determines the ecological
or environmental water demand and thus, assessment of environmental sustainability or ecological
balance [14]. It provides an assessment of water release from surface water bodies and reservoirs to
the atmosphere and therefore, operation and management of water resources [15,16]. Hence, ET is
considered as a vital component for any hydrological and climatic study [17]. Atmospheric water is
an important driving factor of precipitation [18]. It has a significant effect on the retention of solar
radiation and thus, controlling the air temperature of a region [19]. Therefore, the importance of the
assessment of ET becomes more crucial in the context of climate change.
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A most accepted method of ET estimation is to measure the reference evapotranspiration (ETo) [20].
In-situ measurement of ETo is expensive and time-consuming, and subject to significant uncertainties.
Because of the limitation of in-situ measurements of ETo, many empirical models have been developed to
estimate ETo in the last 70 years, since the introduction of the Thornthwaite method in 1944 [21]. The ETo

depends on atmospheric energy balance and release of water to the atmosphere from vegetation [22,23].
Therefore, the ETo estimation methods are categorized according to the meteorological parameters
they use. The ETo method has been divided into different categories in different studies. Most widely,
it is classified into four groups: (i) Water balance/mass transfer; (ii) radiation; (iii) temperature; and (iv)
combination of the aforementioned. Each method has its own perspectives, concepts, and often
developed for a particular climatic region. Few of them are developed through modification of other
established methods. However, the main challenge in the estimation of ETo is the skill of the method
used [15,24]. Most of the ET estimation methods are developed for a particular region with a specific
viewpoint, and therefore, they are often found inefficient in estimating ETo in other climatic zones.
However, some methods are developed without focusing on any climatic region and have been found
applicable over a wide range of climate. The major challenge arises in the selection of the best model
for an area with the least error compared to in-situ measurements.

ET is a crucial element in defining the water budget and physical processes in tropics.
The condensation of the vast volume of water vapor in the tropical region leads to the release
of latent heat energy to the atmosphere, which is very important for climatology in the region. Tropical
regions, particularly the Southeast Asian tropical region, are rich in biodiversity. This rich biodiversity
is promoted by high rainfall and high ET, among other factors. Changes in ET can have a severe
impact on tropical biodiversity, and therefore, monitoring of ET is very important for the region. It is
particularly crucial for Peninsular Malaysia where about 60% of its land is covered with forest with
dense biodiversity.

A large number of studies have been conducted to select the most suitable ETo model in
different parts of the globe [15,20,25–28], including Peninsular Malaysia [13,29–32]. Ali et al. [30]
and Ali et al. [31] found a strong agreement of the monthly average of class A pan evaporation with
the FAO Penman-Monteith [33] estimation for the Muda irrigation project, the largest paddy field in
Malaysia, in the north of the Peninsula. Tukimat et al. [13] compared a number of temperature- and
radiation-based methods with the FAO Penman-Monteith model to estimate ETo in the Muda irrigation
project, and found that the radiation-based models give better estimates of ETo. Lee et al. [29] compared
the pan evaporation with the estimates of eight empirical models and found a good agreement
between pan evaporation estimates of ETo with the estimates of the FAO Penman-Monteith and FAO
Blaney-Criddle [34] models in the west coast of the Peninsular. Muniandy et al. [32] compared the
pan evaporation estimates with 26 empirical model estimations at a station located in the south of the
Peninsular, and reported that the mass transfer-based Penman model can provide better estimates of
ETo compared to other methods.

Different statistics have been used in previous studies for the assessment of the performance
of ETo, which include root mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliff
efficiency (NSE), bias ratio, etc. Selection of ETo method based on a single statistic like RMSE or
NSE is questionable, as these statistics can be used for the estimation of a particular property only.
For example, RMSE provides a measure of the mean distance between two time series, while correlation
provides how two time series follow each other in their variation. The correlation coefficient (R2) can
be excellent even if the distance between the two series is high, while RMSE can be much less even if
one time series fails to follow the variation of another series. Thus, a number of statistical metrics are
generally used for the assessment of the performance of different ETo methods [13,15,25–29]. However,
the major problem with using a number of statistical metrics is that different metrics often provide
contradictory results [35–37]. For example, a model may show good agreement in terms of RMSE,
but a worse measure in terms of R2. Thus, it often becomes challenging to make a decision based on
different statistics.
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Compromise programming (CP) [38] can be used to find the most suitable solution through
judicious compromising of different objectives, among which many may be conflicting. CP attempts to
identify a solution where all the considered objectives achieve the most suitable value [39,40]. CP has
been found more efficient compared to conventional multi-criteria decision analysis (MCDA) methods
in finding the most suitable solution [38,40–44].

The ranking of the ETo estimation method at a single station based on the ability to replicate the
observed ET can be done using CP and a matrix of statistical indices. However, it is often required
to suggest the best ETo model for a region based on the performance at different stations over the
region. Ranking of ETo based on the performance at multiple stations becomes challenging, as different
ETo models often show different ranks at different stations. Group decision making (GDM) can be
employed for such cases where the ETo model is given a position based on the frequency of the rank
obtained at different stations.

The objective of the present study is to use CP for the ranking of empirical ETo models for
Peninsular Malaysia. Four statistical metrics were used for the assessment of the performance of 31
ETo models at 10 locations distributed over the Peninsula. CP was used for the ranking the empirical
models at each of the 10 stations. Finally, an information aggregation approach was used for the
ranking of the empirical models for the entire Peninsular Malaysia based on the results obtained at the
different stations. This is the first approach of the ranking of empirical ETo models based on CP and
the information aggregation approach. The method proposed in this study can be used for the ranking
of empirical models in a prudent way.

2. Study Area and Data

2.1. Geography and Climate of Peninsular Malaysia

Situated along the tropics, Peninsular Malaysia covers an area of 130,598 km2 (Figure 1). Undulating
mountains in the middle and relative flat coast on all the three sides (east, west, and south) are the major
topographic features of the peninsula. About 60% of the land is covered by forest. The year-round
rainfall, high uniform temperature, and high humidity are the major characteristics of the climate
of Peninsular Malaysia. The climate is more or less homogeneous throughout the Peninsula [45,46].
Due to its geographical location, the weather in the region is influenced by both the northeast and the
southwest monsoon, and thus experiences a significant amount of rainfall even in the driest month.
The annual average rainfall in Peninsular Malaysia varies between 1950 and 4000 mm [47]. The number
of rainfall days ranges between 150 and 200. Weather is always hot due to its location in the tropics,
and humid due to high rainfall. The mean temperature in the peninsula varies between 23 ◦C in the
central highlands and 32 ◦C in the coastal region [46,48]. Seasonal variation of mean temperature is
always less than 2.0 ◦C from the mean temperature of 27 ◦C. Being located in the equator, the study
area receives long daylight hours (about 12 h) throughout the year and, thus, sufficient solar radiation.
The wind in peninsular Malaysia is mostly light (0.9 to 2.3 m/s). Sunshine hours and temperature have
an important role in ETo in the study area. The ETo is lower in the rainy season due to lower sunshine
hours. Furthermore, it is lower in central mountainous areas (2.5 mm/day) due to relatively higher
humidity compared to the coastal region (4–5 mm/day), where the humidity is less.
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evaporating surfaces (land use), altitude, average humidity, and average wind speed of the site [49]. 
Considering the existing setup, the Department of Irrigation and Drainage of Malaysia [50] suggested 
a pan coefficient of 0.75 for the estimation of ETo from pan evaporation in Malaysia. Therefore, the 
observed ETo was calculated by multiplying the pan evaporation data by the pan coefficient of 0.75. 
  

Figure 1. The geographical location of Peninsular Malaysia and the selected meteorological station
used in this study. Description of the stations is given in Table 1.

2.2. Data and Sources of Information

The observed daily meteorological data of temperature (mean, maximum, and minimum), relative
humidity, solar radiation, wind speed, and pan evaporation from 10 meteorological stations fairly
distributed over Peninsular Malaysia were collected from the Malaysian Meteorological Department.
The locations of the meteorological stations are shown in Figure 1. The summary of the different
climatic variables used in the present study is given in Table 1.

Table 1. Descriptive statistics of the meteorological stations used in the present study.

Station Name Station
No

Elev.
(m)

Time
Period

Tmax
(◦C)

Tmin
(◦C)

Tmean
(◦C)

RH
(%)

u
(m/s)

Rs
(MJ/m2)

ETpan
(mm/day)

Alor Star 48603 3.9 1985–2014 32.4 23.4 27.1 81.2 1.5 18.5 3.4
Bayan Lepas 48601 2.5 1985–2014 31.4 23.9 27.2 80.4 1.8 17.9 2.9
Kota Bharu 48615 4.4 2000–2014 31.2 23.5 26.9 80.6 2.3 18.9 3.2

Ipoh 48625 40.1 1985–2014 33.0 23.3 27.0 81.3 1.4 17.7 3.1
Kuala Terengganu 48618 5.2 2005–2008 31.4 23.8 27.0 82.4 1.9 17.5 3.3

Subang 48647 16.6 1985–2014 32.4 23.2 26.9 79.6 1.5 16.5 3.2
Kuantan 48657 15.2 1999–2014 31.7 22.9 26.2 84.1 1.7 17.0 2.9

Muadzam Shah 48649 33.3 1985–2014 32.1 22.7 26.3 84.7 0.9 16.3 2.5
Melaka 48665 9.0 1999–2010 31.9 23.2 26.8 80.1 1.7 17.0 3.3
Senai 48679 37.8 1985–2010 31.8 22.5 26.0 85.7 1.4 15.1 2.7

RH is the relative humidity; u is the wind speed; Rs is the solar radiation; and ETpan is the pan evaporation.

Pan evaporation is an indirect and less expensive method of estimation of ET and therefore, it is
most widely used for estimation of ET. The pan evaporation data is multiplied by the pan coefficient to
get the ETo. The pan coefficient value varies between 0.35 and 0.85, depending on the nature of the
evaporating surfaces (land use), altitude, average humidity, and average wind speed of the site [49].
Considering the existing setup, the Department of Irrigation and Drainage of Malaysia [50] suggested
a pan coefficient of 0.75 for the estimation of ETo from pan evaporation in Malaysia. Therefore,
the observed ETo was calculated by multiplying the pan evaporation data by the pan coefficient of 0.75.
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3. Methodology

The performance of different empirical ETo models was assessed and ranked by comparing their
estimations with the in-situ data. The methodology adopted in this study is summarized below.

1. ETo was estimated by the empirical models using the metrological variables.
2. Four statistical metrics were used to estimate the capability of different empirical ETo models to

estimate different properties of observed ETo at each station.
3. CP was used to integrate the results of statistical metrics and rank the ETo models at each station.
4. GDM, an information accumulation method, was deployed to rank the empirical models for the

entire Peninsula.

3.1. Empirical ETo Models

In this study, 31 empirical ETo models were evaluated by comparing their estimates with
the pan evaporation data. They were selected based on their applicability worldwide and the
availability of required input data. The empirical models were classified into four groups based on
the input parameters. Out of 31 models, 10 are temperature-based, 10 are radiation-based, 10 are
mass transfer-based models, and one is a combination model. The ETo was calculated using the
meteorological input at each station location without any calibration. Table 2 lists the input parameters
and the equation of each of the 31 empirical models.

Table 2. List of the empirical reference evapotranspiration (ETo) models evaluated in this study, along
with their input parameters and equations. They are classed into four groups: Temperature-based,
radiation-based, mass transfer-based, and combination.

No Model Input Parameter Equation

Temperature-based

1 Ivanov [51] Tmean, RH ETo = 0.00006(25 + Tmean)
2(100−RH)

2 Hamon [52] Tmean

ETo = 0.1651Ld RHOSAT × KPEC
RHOSAT = 216.7ESAT

Tmean+273.3

ESAT = 6.108 exp
(

17.269×Tmean
Tmean+273.3

)
3 Papadakis [53] Tmean, RH ETo = 2.5(ema − ea)

4 Schendel [54] Tmean, RH ETo = 16
(

Tmean
RH

)
5 FAO Blaney-Criddle [34] Tmean ETo = p(0.46Tmean + 8.13)

6 Linacre [55] Tmean ETo =
700(Tmean±0.006z)

100−L +15(Tmean−Td)
80−Tmean

7 Kharrufa [56] Tmean ETo = 0.34pTmean
1.30

8 Hargreaves et al. [57] Tmean, Tmin, Tmax, Ra ETo =
(
0.0023 Ra

2.45

)
TD0.5(Tmean + 17.8)

9 Trajkovic [58] Tmean, Tmin, Tmax, Ra ETo = (0.0023Ra)TD0.424(Tmean + 17.8)

10 Ravazzani et al. [59] Tmean, Tmin, Tmax, Ra
ETo =

(0.817 + 0.00022z)(0.0023Ra)
(
TD0.5

)
(Tmean + 17.8)

Radiation-based

11 Makkink [60] Tmean, Rs ETo = 0.61
(

∆
∆+γ

)
Rs

58.5 − 0.12

12 Turc [61] Tmean, Rs, RH ETo = 0.013
(

Tmean
Tmean+15

)
(Rs + 50)

13 Jensen et al. [62] Tmean, Rs ETo =
(

Rs
λ

)
(0.025Tmean + 0.08)

14 Priestley et al. [63] Tmean, Rs, RH ETo = α
(

∆
∆+γ

)
Rn
λ

15 McGuinness et al. [64] Tmean, Rs ETo = (0.0082Tmean − 0.19) Rs
1500 (2.54)

16 Caprio [65] Tmean, Rs ETo =
(

6.1
106

)
Rs(1.8Tmean + 1.0)

17 Jones et al. [66] Tmin, Tmax, Rs ETo = α1
(
3.87× 10−3

)
(Rs(0.6Tmax + 0.4Tmin + 29))

18 Abtew [67] Tmean, Rs ETo = 0.53
(

Rs
λ

)
19 Irmak et al. [12] -Rs Tmean, Rs ETo = −0.611 + 0.149Rs + 0.079Tmean
20 Irmak et al. [12] -Rn Tmean, Rs, RH ETo = 0.489 + 0.289Rn + 0.023Tmean
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Table 2. Cont.

Mass transfer-based

21 Dalton [68] Tmean, RH, u ETo = (0.3648 + 0.07223(u))(es − ea)
22 Trabert [69] Tmean, RH, u ETo = (0.3075)

√
u(es − ea)

23 Meyer [70] Tmean, RH, u ETo = (0.375 + 0.05026(u))(es − ea)
24 Rohwer [71] Tmean, RH, u ETo = (3.3 + 0.891(u))(es − ea)
25 Penman [72] Tmean, RH, u ETo = (2.625 + 0.000479/u)(es − ea)
26 Albrecht [73] Tmean, RH, u ETo = (0.1005 + 0.297(u))(es − ea)

27 Brockamp et al. [74] Tmean, RH, u ETo = 0.543
(
u0.456

)
(es − ea)

28 WMO [75] Tmean, RH, u ETo = (0.1298 + 0.0934(u))(es − ea)

29 Mahringer [76] Tmean, RH, u ETo = (0.15072)
√

3.6u(es − ea)

30 Szasz [77] Tmean, RH, u ETo = 0.00536(Tmean + 21)2(1 + RH)2/3 f (u)
f (u) = (0.0519u) + 0.905

Combination-based

31 FAO Penman-Monteith
[33] Tmean, Rs, RH, u, es ETo =

0.408(Rn−G)+γ 900
Tmean+273 u(es−ea)

∆+γ(1+0.34u)

ETo is the evapotranspiration in mm/day in all equations except the Ritchie and McGuinness and
Bordne models, where ETo is in cm/day. Rn is the net radiation (MJ/m2/day). G is the soil heat flux
(MJ/m2/day). Ra is the extraterrestrial radiation (MJ/m2/day). Γ is the psychrometric constant (kPa/◦C).
es is the saturation vapor pressure (hPa). ea is the actual vapor pressure (hPa). es and ea are in hPa
in all equations except the Papadakis, Rohwer, Penman, and FAO Penman-Monteith models, where
es and ea are in kPa. ∆ is the slope of the saturation vapor pressure–temperature curve (kPa/◦C). λ is
the latent heat of evaporation (MJ/kg). Tmean is the average daily air temperature (◦C). Tmean is in ◦C
in all equations except the McGuinness and Bordne model, where Tmean is in ◦F. u is the mean daily
wind speed at 2 m (m/s). f(u) is a function of wind speed. Z is the elevation (m). L is local latitude
(degrees). Td is the dew point temperature (◦C). Tmin is the minimum air temperature (◦C). Tmax is the
maximum air temperature (◦C). TD is the maximum and minimum temperature difference (◦C). RH is
the average relative humidity (%). Rs is the solar radiation. Rs is in MJ/m2/day in all equations except
the Turc, Makkink, Ritchie and McGuinness, and Bordne models, where Rs is in Cal/m2 day, and the
Caprio model, where Rs is in kJ/m2 day. ema is the saturation vapor pressure at the monthly mean daily
maximum temperature (kPa). p is the mean annual percentage of daytime hours for different latitudes
that can be obtained from Doorenbos et al. [34]. p is expressed as constant (0.274) in Muniandy et
al. [32]. Ld is the daytime length in multiples of 12 h. RHOSAT is saturated vapor density (g/m3).
ESAT is the saturated vapor pressure (mbar). KPEC is the calibration coefficient (1.2). α is a constant
(1.26). α1 is a constant (1.1).

3.2. Statistical Indices

Four statistical metrics were used to measure the capability of each empirical model in estimating
the observed ETo at each gauge location. They were the normalized root mean square error (NRMSE),
percentage of bias (%BIAS), modified index of agreement (md), and Kling-Gupta efficiency (KGE).
The NRMSE is a measure of accuracy as it calculates the magnitudes of the errors in modeled data [78].
The %BIAS quantifies the tendency of ETo estimation by empirical models to under or over-estimate
the observed data [36]. The md summarizes the additive and proportional differences in the observed
and modeled ETo means and variances. The KGE integrates linear correlation (r), bias ratio (β), and
variability (γ) of observed and modeled data [35,79]. Table 3 presents each metric equation, range, and
optimum value.
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Table 3. The metric equations, range, and optimum value.

Metric Equation Range Optimum Value

NRMSE =
[ 1

n
∑n

i=1(ET0m,i−ET0obs,i)
2]

1
2

1
n
∑n

i=1(ET0m,i)
(1) 0 to +∞ 0

%BIAS = 100×
[∑n

i=1(ET0m,i−ET0obs,i)∑n
i=1 ET0m,i

]
(2) −∞ to

+∞
0

md = 1−
∑n

i=1(ET0obs−ET0m)
j∑n

i=1(
∣∣∣ET0m−ET0obs

∣∣∣+∣∣∣ET0obs−ET0obs

∣∣∣) j (3) 0 to 1 1

KGE = 1−
√
(r− 1)2 + (β− 1)2 + (γ− 1)2 (4) −∞ to 1 1

ET0m,i and ET0obs,i are the i-th modeled and observed ET0 data; n is the number of observations; j represents an
arbitrary positive power; r is the Pearson correlation; β is the bias ratio; and γ represents the variability of observed
and modeled data.

3.3. Compromise Programming

Compromise programming (CP) was used to integrate the results of the statistical metrics described
above to enable selection of the most accurate empirical ETo model. CP ranks the empirical methods
based on the distance of each method from an ideal value for the set [42,80]. The CP index (CPI) can be
calculated as follows.

CPI =

 n∑
i=1

∣∣∣xi − x∗i
∣∣∣p1/p

(5)

where i represents the result of a statistical metric; xi is the normalized value of metric i of the empirical
model; and x∗i is the normalized ideal value of the metric i. The parameter p is used to measure the
distance of a solution from an ideal point. The p can have a value between 1 and∞. However, 1, 2,
and∞ are most commonly used in CP [81,82]. Therefore, these values are used in this study to estimate
the CPI. The differences between the observed value of the metrics and x∗i are directly proportional to
their magnitude when p = 1. The higher differences have greater influence in the case of p = 2. When
p =∞, the minimum values of the maximum differences are used for the estimation of the CPI. Details
of the method can be found in [37,80].

In this study, we considered equal importance of all the ETo estimation models and therefore,
the weight parameter of the CP method proposed by Zeleny [38] is not considered. The CPI value
ranges between zero and positive infinity, where zero is the most preferable value.

3.4. Ranking the Empirical ETo Models

The ranking of empirical models in estimating observed ETo from several stations was a challenging
task. This was due to the fact that a model may show various degrees of accuracies at different locations.
To overcome this challenge, information aggregation methods, such as mean ranking, majority of
ranks, and frequency of occurrence, were useful [42,83]. They integrate information from different
sources to help in the decision-making process [84]. In this study, empirical models were ranked using
GDM. The ranking procedure is outlined below.

1. The empirical models were ranked at station level using their CPI (from 1 to 31, the lowest CPI
was ranked 1st).

2. The frequency of occurrence (F) of each model of getting a certain rank at all stations was
calculated through a 31 × 31 matrix.

3. The rank positions were given weight as the inverse of the rank
(
wr = rank−1

)
.

4. The frequency of occurrence of a model at a certain rank, obtained in Step 2, was multiplied by
the weight of the rank, obtained in Step 3.

5. The overall score of each ETo model (Wm) was estimated by adding the output of Step 4 as
presented in Equation (6).
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6. The empirical models were ranked according to the calculated overall weight, where the highest
weighted model was ranked top (1st position).

Wm = F1(wr1) + F2(wr2) + F3(wr3) + . . . .+ F31(wr31) (6)

4. Results

The ETo was estimated using all the 31 empirical models at each station, using the meteorological
variables. Figure 2 shows heat-scatter plots of observed ETo against each empirical model estimation of
ETo for all the stations. It can be seen from Figure 2a–t, all the temperature- and radiation-based models
tend to overestimate the observed ETo except for the Ivanov and Makkink model. The overestimation
was generally lower by the radiation-based models (Figure 2k–t) than the temperate-based models,
which indicates that the overestimation may be due to the exclusion of other factors influencing ETo in
the study area. The Ritchie model was found to heavily overestimate the observed ETo, as seen in
Figure 2q. Overall, the mass transfer-based models’ estimations (Figure 2u–ad) were found to be more
aligned to the 1:1 diagonal line than the temperature- and radiation-based methods. The Penman,
WMO, and Mahringer models underestimated the observations. The FAO Penman-Monteith model
estimations of ETo were aligned with the 1:1 line (Figure 2ae).
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4.1. Evaluation Using Statistical Metrics

The statistical metrics obtained at all the 10 station locations by comparing the observed ETo

with the different empirical model estimations are presented as box plots in Figure 3. The blue, green,
gold, and pink box plots represent the temperature-, radiation-, mass transfer-, and combination-based
methods, respectively. The red vertical lines represent the optimum value of each metric. Overall,
most of the temperature-based methods were found to be poor at estimating the ETo. Among the
temperature-based methods, the Ivanov model was found preferable, which had a median NRMSE of
108.8, median %BIAS of 0.70%, median md of 0.51, and median KGE of 0.44.
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The performance of radiation-based methods was found superior to temperature-based models in
estimating ETo. The Makkink model was the best performing model among them, and the Ritchie
was the worst. As shown in Figure 3, Makkink had the lowest median %BIAS (−1.80%), and highest
median md (0.55). However, the Priestley and Taylor model had a slightly better median NRMSE
(94.35) than Makkink (102.10). The McGuinness and Bordne model had a better median KGE (0.57)
than Makkink (0.55).

Among the mass transfer-based models, the Rohwer and Meyer’s methods performed best. Rohwer
had median NRMSE, %BIAS, md, and KGE of 104.25, −0.40%, 0.51, and 0.45, respectively. The Meyer
model had median NRMSE, %BIAS, md, and KGE of 103.45, 3.10%, 0.51, and 0.45, respectively. The
FAO Penman-Monteith had a median NRMSE of 85, %BIAS of −2.90%, md of 0.57, and KGE of 0.60.

The FAO Penman-Monteith model had the lowest NRMSE median, and the highest md and KGE
medians. However, the Rohwer model had a lower %BIAS median than the FAO Penman-Monteith
model. The Rowher, Meyer, and Makkink models had similar NRMSE, but Rowher had the lowest
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%BIAS, and Makkink had the highest md and KGE medians. Therefore, it is important to use CP to
integrate the results of the statistical metrics to make a concrete evaluation decision.

4.2. Compromise Programming

CP was employed to integrate the statistical metrics and rank the empirical models based on
their capability in estimating the observed ETo in Peninsular Malaysia. It was used to measure the
distance of each empirical model from an ideal point at each station separately. As an example, the ideal
results obtained at Kuantan station were the lowest NRMSE (93.10), the %BIAS nearest to zero (3.70)
and, the highest md and KGE (0.58, for both). The CPI was calculated for each model through the
summation of the subtraction of each metric from the ideal value. The following equation presents an
example of the CPI calculation of the Ivanov model at Kuantan.

CPIKU,Ivanov = |136.60− 93.10|+ |12.30− 3.70|+ |0.50− 0.58|+ |0.30− 0.58| = 52.46 (7)

The same procedure was used to calculate the CPI of the remaining models. Figure 4 shows a
level plot of the CPI for each empirical model at Kuantan station.
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The FAO Penman-Monteith model had the lowest CPI (7.60), while the FAO Blaney-Criddle model had
the highest CPI (1043.44).

4.3. Ranking the Empirical ETo Models

Ranking of the empirical models was done through a six-step procedure, as stated in Section 3.4.
First, the CPI values at each station were used to rank the empirical models, where the model that had
the lowest CPI was ranked 1st at each station and vice versa. For example, the FAO Penman-Monteith
model had the lowest CPI (7.60) in Kuantan station (refer to Figure 4), therefore ranked 1st, followed
by the Dalton model which had the 2nd second lowest CPI of 20.08. The rank of each model at each
station in Peninsular Malaysia is illustrated in Figure 5 as a level plot.

The frequency of occurrence that a model achieved a certain rank in different stations was
calculated. For an example, the FAO Penman-Monteith model was found to have the least CPI in
Kuala Terengganu, Kuantan, Melaka, and Muadzam Shah stations, so it was ranked 1st in these
stations (refer to Figure 5). Therefore, the frequency of occurrence that the FAO Penman-Monteith
model received as number one was four times. The levels of Figure 6 show the complete frequency of
occurrence of the empirical models received a certain rank. For example, it can be seen that the FAO
Penman-Monteith model was ranked at the 1st rank four times, 2nd rank once, 3rd rank four times,
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and 4th rank once. On the contrary, the FAO Blaney-Criddle and Kharuffa models were found to have
the highest frequency (10 times) for getting the 31st and 30th rank, respectively.
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The frequencies of occurrence of rank positions were multiplied by the rank weights and the
overall score of each empirical model (Wm) was calculated by summing the output of the multiplication.
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For example, the frequencies of the FAO Penman-Monteith model having the 1st, 2nd, 3rd, and 4th
rank were 4, 1, 4, and 1. So, the Wm was calculated as shown in Equation (8).

WFAO P.−M. = 4× 1−1 + 1× 2−1 + 4× 3−1 + 1× 4−1 = 6.08 (8)

Based on the Wm, the models were finally ranked as shown in Table 4. The FAO Penman-Monteith
model was the top-ranked model in this study, followed by the Priestley-Taylor and Dalton models.
The Hamon, Kharuffa, and FAO Blaney-Criddle models were ranked as the last three models.

Table 4. The overall weight achieved by the empirical ETo models and their rank for entire
Peninsular Malaysia.

Model Wm Final Rank Model Wm Final Rank

FAO Penman-Monteith 6.08 1 Papadakis 0.58 17
Priestley-Taylor 3.54 2 WMO 0.57 18

Dalton 2.86 3 Caprio 0.55 19
Meyer 2.72 4 Irmak-Rs 0.55 20

Makkink 2.50 5 Jensen and Haise 0.51 21
Rohwer 2.40 6 Hargreaves and Samani 0.45 22

McGuinness and Bordne 1.98 7 Penman 0.44 23
Trabert 1.85 8 Linacre 0.41 24

Mahringer 1.79 9 Ritchie 0.41 25
Ivanov 1.62 10 Schendel 0.38 26

Albrecht 1.59 11 Ravazzani 0.38 26
Brockamp and Wenner 1.26 12 Trajkovic 0.36 28

Irmak-Rn 1.05 13 Hamon 0.35 29
Abtew 0.98 14 Kharuffa 0.33 30

Turc 0.74 15 FAO Blaney-Criddle 0.32 31
Szasz 0.71 16 - - -

The ranking of the ET models for different values of p is presented in Table 5. The results revealed
a slight variation in the ranks of a few models. From example, Makkink was ranked 5th for p = 1 and
p = ∞, and it was ranked 3rd in case of p = 2. However, FAO Penman-Monteith was found as the
most suitable method for all values of p. Priestley-Taylor was found best among the radiation-based
models and Ivanov among the temperature-based models for all the cases. However, the best mass
transfer-based model was not consistent for all values of p. Dalton was found best for p = 1, while Meyer
was best for p = 2 and p =∞. Therefore, both can be considered the most suitable mass transfer-based
ETo models for Peninsular Malaysia.

Table 5. Ranking of the empirical ETo models for different values of p in compromise programming.

Model p = 1 p = 2 p =∞ Model p = 1 p = 2 p =∞

FAO Penman-Monteith 1 1 1 Papadakis 17 17 17
Priestley-Taylor 2 2 2 WMO 18 18 18

Dalton 3 5 4 Caprio 19 19 19
Meyer 4 4 3 Irmak-Rs 20 20 20

Makkink 5 3 5 Jensen and Haise 21 21 21
Rohwer 6 6 8 Hargreaves and Samani 22 23 22

McGuinness and Bordne 7 9 7 Penman 23 22 23
Trabert 8 7 6 Linacre 24 25 24

Mahringer 9 8 9 Ritchie 25 24 25
Ivanov 10 11 12 Schendel 26 27 27

Albrecht 11 10 10 Ravazzani 26 24 26
Brockamp and Wenner 12 12 11 Trajkovic 28 28 28

Irmak-Rn 13 20 15 Hamon 29 29 29
Abtew 14 14 13 Kharuffa 30 30 30

Turc 15 15 14 FAO Blaney-Criddle 31 31 31
Szasz 16 16 15 - - - -
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To show the efficacy of the top-ranked empirical model identified in this study, the FAO
Penman-Monteith estimated and observed ETo were compared. The heat scatter plots of observed
FAO Penman-Monteith ETo at different stations are presented in Figure 7. The figure shows that most
of the points are aligned along the diagonal line, which indicates a perfect estimation of ETo by FAO
Penman-Monteith. The method overestimated ETo in a few stations, such as Alor Star, Bayan Lepas,
Kota Bahru, and Muadzam Shah.
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5. Discussion

The FAO–Penman-Monteith method has been found as the most efficient for the estimation of ETo

in different climatic regions. The FAO Penman-Monteith model was developed based on physiological
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and aerodynamic theories of surface water release to the atmosphere. Therefore, it can be used as a
standard model for estimation of ETo in any region without any adjustment of parameters [24] based
on the FAO recommendation [13,15]. The present study also found that FAO Penman-Monteith is the
best model for Peninsular Malaysia. However, the Penman-Monteith model needs a large number of
meteorological variables, including air temperature, wind speed, relative humidity, and solar radiation,
for the estimation of ETo. It is often very difficult to obtain data of all the meteorological variables.
Many meteorological stations in the developing country do not measure all these variables. Therefore,
a large number of alternative models have been developed based on the availability of data. The success
of those models in a particular area often depends on the climate of the region. Therefore, the selection
of an appropriate model based on the availability of data and the performance of ETo estimation model
is a difficult task. The performance of 31 empirical ETo models has been assessed in this study. Input
requirements of the models are different.

The performance of empirical ETo models was often found to vary from station to station within
the same climate zone, which may be due to the period and quality of data used, and uncertainty in
the coefficient values used for the estimation of ETo. Besides, suggesting different models for different
stations often makes the practical application of the ETo estimation model complex. Therefore, a single
model is often suggested for the regional level for the estimation of ETo. Thus, the ranking of ETo

estimation models in different stations was used in this study for the ranking of ETo models for the
entire Peninsular Malaysia using information aggregation approach.

In the present study, radiation-based Priestley and Taylor was found to perform best after the
FAO Penman-Monteith model. It is followed by the mass transfer-based Dalton and Meyer models.
The Priestley and Taylor model needs three meteorological variables (mean air temperature, solar
radiation, and relative humidity) compared to the five variables required by the Penman-Monteith
model (temperature, solar radiation, relative humidity, wind speed, and saturated vapor pressure),
while Dalton and Meyer need three meteorological variables (mean temperature, relative humidity, and
wind speed). Based on the availability of meteorological data, an appropriate model can be selected
for the estimation of ETo in Peninsular Malaysia with more or less similar accuracy.

Among the temperature-based models, only the Ivanov model was found to perform satisfactorily,
which was ranked 10th among the 31 models compared in the present study. Other temperature-based
models performed the worst and were ranked at the bottom of all the models. Many of the models were
developed for a particular climate. For example, the Priestley and Taylor and the Makkink models were
developed for the estimation of ETo in a humid climate. On the other hand, the Turc model was found
suitable for ETo estimation in a cold, humid and arid climate [26]. Therefore, the Priestley and Taylor
and Makkink models were found to perform very well among the radiation-based models, while Turc
was found to perform worse than the simple temperature-based Ivonov model in tropical Malaysia.

The findings of the present study contradicts earlier studies. Ali and Lee [31] found Blaney–Criddle
as the most suitable model after Penman-Monteith for the estimation of ETo at Alor Setar station
in Peninsular Malaysia. They only used relative error for the assessment of the performance of
empirical ETo models. Tukimat et al. [13] assessed the performance of seven empirical ET models for
the same station using three statistical metrics, namely absolute error, relative error, and correlation
coefficient. They found the least absolute and relative errors for the Hargreaves-Samani but highest
correlation for Makkink, followed by Priestley-Taylor and Turc. They come to an overall conclusion that
radiation-based models are most suitable for the estimation of ETo in the region, which also support the
findings of the present study. But they failed to decide the best model due to a contradiction in statistical
metrics. Lee et al. [29] compared the performance of eight empirical models using mean absolute
error, and reported FAO Blaney-Criddle as the most suitable model after FAO Penman-Monteith for
estimation of ETo in the west coast of the peninsula. Muniandy et al. [32] compared the performance
of 26 empirical models at Senai station using eight statistical metrics. They also obtained contradictory
results in term of different statistics. They took the arithmetic mean of the statistics to rank the models
and found Penman as the best among the mass transfer-based models, McGuinness and Bordne among
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the radiation-based, and Szasz among the temperature-based models. Different models have been
reported as the best in different stations in Peninsular Malaysia in the above studies, which do not
match with the findings of the present study. This is due to the use of a single statistic for making a
decision, as in the studies of Lee et al. [29] and Ali et al. [31]. Tukimat et al. [13] and Muniandy et al. [32]
used multiple statistics, but did not attempt to find the best ET model based on the statistics. Muniandy
et al. [32] attempted to rank the models based on the average of multiple statistics, but the average of
statistics does not provide an optimum solution as the ranges of statistics metrics vary widely.

CP was used in this study for finding the most suitable empirical models based on four statistical
metrics which can be used to measure the similarity between two time series in a robust way. CP proves
a robust model compared to many MCDA models for finding a reliable solution based on multiple
contradictory objectives. Therefore, the best empirical models identified in this study based on CP
can be considered more reliable. Besides, the empirical models were ranked for the entire Peninsular
Malaysia considering the fact of the same tropical humid climate for the whole region. The information
aggregation model was used in this study for this purpose, which ranks the models based on the
frequency of rank obtained by different models in different stations. Therefore, the top-ranked models
in different stations were also found to achieve the top rank for the entire peninsula. This indicates the
ranking of the models obtained in this study for the entire peninsula can be used for finding the most
suitable model based on the availability of data for reliable estimation of ETo.

6. Conclusions

The CP and GDM methods were used in this study for the ranking 31 ETo empirical models for
the estimation of ETo in Peninsular Malaysia, based on four statistical metrics applied at 10 locations
distributed over the study area. The result revealed Priestley and Taylor as the most suitable among
the radiation-based models, Dalton among the mass transfer-based models, and Ivonov among the
temperature-based models for the region. Though the mass transfer-based models were found more
reliable compared to radiation-based models, Priestley and Taylor was found as the most suitable after
Penman-Monteith, which is globally considered as the standard model for ETo estimation. The Priestley
and Taylor model needs only mean air temperature, solar radiation, and relative humidity compared to
a large number of meteorological variables required for the estimation of ETo using Penman-Monteith.
Therefore, Priestley and Taylor can be used as a replacement of Penman-Monteith in the estimation of
ETo when available data is limited. The present study suggests that the Ivonov model, which requires
only mean temperature and relative humidity, can be used for the worst case in terms of availability
of data.

Estimation of ETo in this study was based on pan coefficient of 0.75, as suggested by the Department
of Irrigation and Drainage of Malaysia. The sensitivity of the ranking of ETo estimation methods can
be tested in the future for different pan coefficients. CP and GDM were used in this study for making a
decision on ETo models. Beside CP and GDM, other decision-making and information aggregation
methods can be used, and their performance can be compared with the findings of the present study in
the future. The parameters of the empirical models can be calibrated for Peninsular Malaysia before
the comparison and ranking of the models.
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