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Abstract: Enhanced indexation is an active portfolio management strategy aimed to find a portfolio
outperforming a market index. To ensure stable returns and to avoid extreme losses, a sensible
enhanced indexation model should be sustainable, where the parameters of the model should be
adjusted adaptively according to the market environment. Hence, in this paper, we propose a novel
sustainable regime-based cardinality constrained enhanced indexation (RCEI) model, where different
benchmarks and cardinalities can be imposed under different market regimes. By using historical
observations, the RCEI model is transformed into a deterministic optimization problem with an `0

norm constraint. We design a partial penalty method coupled with the proximal alternating direction
method of multipliers (ADMM) to solve the deterministic optimization problem. Numerical results
in UK and US financial markets confirm the superb performance of the sustainability-oriented RCEI
model and the efficiency of the algorithm.

Keywords: enhanced indexation; regime switching; cardinality constraint; proximal ADMM

1. Introduction

As the global financial market is riddled with more and more uncertainty, there is a growing awareness
of incorporating sustainability-relates insights into investment analysis and management; therefore,
investors boost their chances for long-term and sustainable success. Incorporating sustainability
insights can provide a more holistic view of the risks and opportunities associated with a given
investment. In response to the increasing interest, there is a strong need to develop sustainable
investing approaches and products.

The research on financial sustainability is in its infancy as only a handful of articles briefly touched
on it [1–6]. Nurmakhanova et al. [3] claimed that a sustainable microfinance institution is the one that
operates profitably and does not require subsidies to succeed. By integrating a composite sustainability
index of a project into Markowitz mean-variance model, Dobrovolskienė and Tamošiūnienė [4]
presented a sustainability-oriented model of financial resource allocation in a project portfolio.
Li et al. [5] studied the Maslow portfolio selection model to meet the need of individuals with low
financial sustainability who prefer to satisfy their lower-level needs first, and then look for higher-level
needs. Nevertheless, the study of financial sustainability in portfolio management, especially in the
enhanced indexation area, is far from adequate.

Financial portfolio management has long been of keen interest to fund managers, individual
investors, and scholars. Relentless efforts have been made to quantify market dynamics and turn
them into more strategic and sustainable investment tools. Enhanced indexation is an active portfolio
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management strategy, which is proposed to find a portfolio outperforming a market index [7–21].
Due to the existence of market frictions such as transaction costs and management expenses,
the number of invested assets in the tracking portfolio should be limited. Nevertheless, finding
a global optimal portfolio of a cardinality constrained optimization problem is generally NP-hard [22].
Therefore, some scholars investigated the enhanced indexation problems in the aspects of modeling
and solution methods. Riepe and Werner [7] first studied the enhanced indexation problem and it
became a fertile area of research. Dose and Cincotti [9] sought a relatively high excess return within
a reduced tracking error by adopting the historical look-back approach. They solved the problem in
a two-step heuristic method, while this method could not ensure the global optimality of the obtained
portfolios. Canakgoz and Beasley [11] presented mixed-integer linear programs (MILP) for the
enhanced indexation problem from the regression viewpoint. They adopted a two-stage approach to
find the optimal solution, in which each stage can be solved by Cplex solver. Lejeune [13] formulated
a stochastic enhanced indexation model whose goal is to maximize the excess return that can be
attained, while ensuring that the semi-deviation risk does not exceed a specified limit. He provided
the game theoretical framework when the distribution of the random return is known to belong to
the ellipsoidal distribution family. Guastaroba and Speranza [15] illustrated mixed-integer linear
programming models for index tracking and enhanced indexation, in which the enhanced indexation
model was to maximize the over-performance with respect to the market index, while ensuring that
the tracking error would not exceed a given threshold. In addition, the MILP is solved by a heuristic
framework called kernel search. Roman et al. [16] studied the enhanced indexation problem based
on a second-order stochastic dominance model. They adopted the cutting plane method to arrive at
the optimal solution for the problem, whereas the number of selected stocks could not be restricted
strictly due to the absence of a cardinality constraint. Xu et al. [19] showed a sparse enhanced
indexation model with cardinality and chance constraints in the distributionally robust framework.
The Fama–French three-factor model is used to reformulate the robust chance constraint of random
variables. They applied a hybrid genetic algorithm to solve the NP-hard problem.

Nevertheless, all of these conventional enhanced indexation models referred to above—missing
sustainability in scope—failed in capturing intrinsically dynamic market environments and thus only
provided partial pictures. In particular, sustainability in enhanced indexation problem is a fundamental
issue to ensure stable returns and to avoid extreme losses in a long-term investment process. In the
scope of solution methods, the existing algorithms still have many defects. Even though some
mixed integer programming [11,17] can be solved by standard software programs, which are not
applicable in large-scale problems due to the curse of dimensionality. In addition, hybrid heuristic
methods [8,15,19,20] based on genetic algorithms, kernel search or simulated annealing are not able
to guarantee the optimality conditions of the obtained solutions. Therefore, more work are in great
demand to establish scientific sustainability models to reflect the market environment and to design
efficient algorithms that can solve the large-scale cardinality constrained enhanced indexation problem.

Inspired by the enhanced indexation models of Lejeune’s [13], Guastaroba and Speranza [15],
in this paper, we emphasize the standpoint of financial sustainability to avoid extreme losses when
pursuing higher excess profits in a long-term investment process. Unlike the ellipsoidal distribution
assumption by Lejeune or the heuristic framework by Guastaroba and Speranza, our proposed
stochastic enhanced indexation model is determined by the historical observations’ approximation,
which is a universal framework to formulate the stochastic optimization problem into the deterministic
form [11,17,20]. However, there is almost no literature on how to select the historical observations
from the dataset, which will directly influence the performance of the enhanced indexation model.
In fact, historical sample series sometimes have obvious random-effects in the historical dependence
relationship [23]. Hence, for guaranteeing the sustainability of the enhanced indexation problem,
in this paper, it is necessary to consider the nonlinear relationship between the forthcoming and
historical return rates. In addition, the parameters of the enhanced indexation model should be
adjusted adaptively according to the market environment. This idea is consistent with the regime
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switching technique [24], which has the strength of not only reflecting the change of the market
environment but also demonstrating the nonlinear dynamic relationship among market environments
in different time periods [25,26]. Therefore, in this paper, we properly select different risk thresholds
and cardinality bonds in the enhanced indexation model according to different market regimes.

To help investors capitalize on opportunities in sustainable investing in this growing turbulent
global market, this paper offers insights on how to integrate variable financial market environments
with the investment process—from defining the objectives and approach for an investment strategy
through developing the algorithms. More specifically, we propose a sustainable regime-based
cardinality constrained enhanced indexation (RCEI) model. Incorporating the switching of market
regimes into our analysis, we divide the historical observations with respect to different market regimes
and introduce the regime-dependent threshold and cardinality upper bound to improve the model.
In addition, we adopt a splitting algorithm based on the proximal alternating direction method of
multipliers (ADMM). The new enhanced indexation model and proposed algorithm are examined
by numerical tests for its sustainability and efficiency in different real financial markets. The main
contributions of this paper can be summarized as follows:

• On account of the growing uncertainty in financial markets, we introduce a novel
sustainability-oriented enhanced indexation model with the regime switching technique to avoid
the extreme losses in the long-term assets management process, with the purpose of reflecting the
fluctuations of the financial market timely and obtaining the sustainable investment profits.

• Considering the significant cardinality constraint in the deterministic formulation, we adopt
a partial penalty method coupled with the proximal ADMM, which can solve the resulting
nonsmooth and nonconvex problem effectively and efficiently.

• We conduct numerical tests in different financial markets for long-term processes. The evidence
demonstrates the scientific soundness and the sustainability of the RCEI model as well as the
efficiency of the proposed hybrid algorithm.

The paper is organized as follows: in Section 2, we establish the sustainable stochastic enhanced
indexation model with regime switching and cardinality constraint, and then transform the formulation
by using historical observations. In Section 3, we present a partial penalty method embedded with
the proximal ADMM for solving the transformed deterministic optimization problem. In Section 4,
we illustrate the numerical results about the applications of the RCEI model in the FTSE 100 and S&P
500 markets. We conclude this paper in Section 5.

2. Sustainability-Oriented Enhanced Indexation Model

In classic enhanced indexation problems, the main focus is to maximize the excess return and
minimize the tracking error. However, a larger excess return is in contradiction with a lower tracking
error if we consider the total deviation in the optimal portfolio. Therefore, we consider a stochastic
optimization model where the expected excess return is maximized at the same time controlling the
lower semi-absolute tracking error and the maximum number of assets being invested. The concrete
cardinality constraint enhanced indexation problem is as follows:

max
x

E[R>x− RI ]

s.t. E[(R>x− RI)−] ≤ α,
e>N x = 1,
‖x‖0 ≤ K,

(1)

where x ∈ RN is a decision vector that denotes the portfolio. R is an N-dimensional random vector
that denotes the random return rates of N assets. RI is a random variable denoting the random return
rate of the market index. α ∈ R+ is a given threshold to constrain the lower semi-absolute tracking
error. eN ∈ RN is an all-one vector with length N. ‖x‖0 is the cardinality of x, which denotes the
number of nonzero components in x. The constraint ‖x‖0 ≤ K means that the number of non-zero
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entries in the optimal portfolio is not larger than K. To deal with the general case in different financial
markets, we do not restrict the short-selling in this paper. We should point out that our algorithm
proposed later can also be applied to the no short-selling case.

In existing enhanced indexation models referred above, the benchmark is always a fixed scale or
a given market index, while, as we pointed out in the Introduction, the market environment varies
significantly according to different market regimes. Hence, for guaranteeing the financial sustainability,
the benchmarks in an enhanced indexation model should be properly selected according to specific
market regimes. Typically, in a bull market, the investor could choose higher benchmarks; in a bear
market, the investor might set lower benchmarks in the hope of avoiding the absolute loss at the
same time.

Before introducing the sustainable enhanced indexation model with regime switching, we present
the basic setting for the regime switching. We assume that the current regime is s0, and the regime
during the next investment period is s. We assume that the regime switching is Markovian, and there
are J possible regimes: s1, s2, . . . , sJ . Qsisj := Q{s f = sj : s0 = si} represents the transition probability
from regime si in the current period to regime sj in the next period. In this paper, we assume that
the Markovian regime switching process is stationary. This means that, for any period, the transition
probability matrix is

Q =


Qs1s1 Qs1s2 · · · Qs1sJ

Qs2s1 Qs2s2 · · · Qs2sJ

· · · · · · · · · · · ·
QsJ s1 QsJ s2 · · · QsJ sJ

 .

Under this setting, as an extension of the model (1), we can introduce the following sustainable
regime-based cardinality constrained enhanced indexation model:

(RCEI)

max
x

E[R>x− RI(s f )]

s.t. E[(R>x− RI(s f ))− : s f = sj] ≤ α(sj), j = 1, 2, . . . , J,
e>N x = 1,
‖x‖0 ≤ K(s0),

(2)

where RI(s f ) is the return rate of the market index whose distribution relies on the forthcoming market
regime s f . Meanwhile, we set the cardinality upper bound K(s0) according to the current market
regime s0. For example, in a bull market environment, investors can set a larger threshold of the lower
semi-absolute tracking error and focus on fewer blue chip stocks in order to reap higher excess returns.
On the contrary, in a bear market environment, investors opt for a more diverse investment strategy to
secure financial sustainability. They can set a smaller threshold of the tracking error under the index to
reduce the risk and avoid the absolute investment losses.

We use the historical observations for transforming the stochastic optimization problem (2).
Concretely, the expectations in the problem are approximated by historical observations: we assume
that there are T historical observations of R, {r1, r2, . . . , rT}, the historical observations of RI are
{rI(s(1)), rI(s(2)), . . . , rI(s(T))}, where s(t), for t = 1, 2, . . . T, denotes the market regime to which the
t-th observation belongs.

We define the historical observations’ index set as S = {1, 2, . . . , T}, then we can divide S into J
parts corresponding to the J market regimes. We denote the set of observations under the j-th market
regime as Sj, then S =

⋃
1,2,...,J Sj and Si

⋂
Sj = ∅ for i, j = 1, 2, . . . , T and i 6= j. In Sj, we have Tj

historical observations, and ∑J
j=1 Tj = T. We derive the sample reformulation of the RCEI model as:
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max
x

J
∑

j=1

(
Q(s0, sj) 1

Tj
∑

t∈Sj

(r>t x− rI(s(t)))

)
s.t. 1

Tj
∑

t∈Sj

[
(r>t x− rI(s(t)))−

]
≤ α(sj), j = 1, 2, . . . , J,

e>N x = 1,
‖x‖0 ≤ K(s0).

(3)

We notice that the term rI(s(t)) in the objective function does not affect the optimal solution of the
deterministic optimization problem, therefore we can get rid of this term in the following formulations.
However, the negative part function in problem (3) leads the programming to a nonlinear optimization
problem. By introducing an auxiliary vector y = (y1; y2; . . . ; yT) ∈ RT , problem (3) can be transformed
into the following cardinality constrained linear programming problem:

max
x,y

J
∑

j=1

(
Q(s0, sj) 1

Tj
∑

t∈Sj

r>t x

)
s.t. 1

Tj
∑

t∈Sj

yt ≤ α(sj), j = 1, 2, . . . , J,

yt ≥ rI(s(t))− r>t x, t = 1, 2, . . . , T,
yt ≥ 0, t = 1, 2, . . . , T,
e>N x = 1,
‖x‖0 ≤ K(s0).

(4)

Problem (4) is very often a large-scale optimization problem with linear and cardinality constraints
since the number of stocks N and observations T are large enough. Fortunately, we notice that, in this
formulation, the decision variables x and y can be divided into groups. This feature reminds us that the
splitting methods, such as the proximal ADMM algorithm, can be adopted for solving this large-scale
optimization problem.

3. Proximal ADMM Algorithm for Solving the Enhanced Indexation Model

In this section, we adopt the proximal ADMM algorithm for solving the sustainability-oriented
enhanced indexation model. ADMM was first introduced in the early 1970s [27]. The Bregman
modification of ADMM was recently proposed by Zhang et al. [28]; they showed the convergence for
convex objective functions under the general Bregman distance. Chen et al. [29] demonstrated that
the direct extension of the classic ADMM to the multi-block minimization problem is not necessarily
convergent even if the objective function is the sum of separable convex functions. Following Chen
and Zhuang [30], we adopt the partial penalty method embedded with the proximal ADMM algorithm
for solving the deterministic RCEI model.

To adopt the proximal ADMM method better and express the formulation simply, we combine
the decision variables x and y together, and represent it as w = (x; y) ∈ RN+T . Therefore, x = Aw,
y = Bw, where A = (IN , 0) ∈ RN×(N+T), B = (0, IT) ∈ RT×(N+T), and I denotes the identity matrix.
Then, yt = Btw, for t = 1, 2, . . . , T, where Bt is the t-th row of B, and ∑t∈Sj

yt = ∑t∈Sj
Btw. Then,

problem (4) can be reformulated as:

max
x,w

J
∑

j=1

(
Q(s0, sj) 1

Tj
∑

t∈Sj

r>t Aw

)
s.t. 1

Tj
∑t∈Sj

Btw ≤ α(sj), j = 1, 2, . . . , J,

Btw ≥ rI(s(t))− r>t Aw, t = 1, 2, . . . , T,
Bw ≥ 0,
e>N Aw = 1,
Aw− x = 0,
‖x‖0 ≤ K(s0).

(5)
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In order to simplify the deterministic RCEI model further, we treat the cardinality constraint
individually and combine the other constraints of the same type together. Specifically, define the
cardinality set Cs0 := {x ∈ RN : ‖x‖0 ≤ K(s0)}, and let δCs0

(x) denote the indicator function of
x with respect to Cs0 , i.e., δCs0

(x) = 0 if ‖x‖0 ≤ K(s0), and δCs0
(x) = ∞, otherwise. We should

point out that δCs0
(x) can be abbreviated as δC(x) as long as it will not cause any ambiguity.

Let A1 = (A1
1; A2

1; . . . ; AJ
1) ∈ RJ×(N+T), where Aj

1 = 1
Tj

∑t∈Sj
Bt ∈ R1×(N+T) for j = 1, . . . , J.

ᾱ = (α(s1); α(s2); . . . ; α(sJ)) ∈ RJ . A2 = (A1
2; A2

2; . . . ; AT
2 ) ∈ RT×(N+T), where At

2 = −r>t A− Bt ∈
R1×(N+T) for t = 1, . . . , T. rI = (rI(s(1)); rI(s(2)); . . . ; rI(s(T))) ∈ RT . c = −( 1

T ∑T
t=1 r>t A)> ∈ RN+T .

Moreover, we joint some equality and inequality constraints together, respectively: Ā = (A1; A2;−B),
b̄ = (ᾱ;−rI ; 0), C̄ = e>N A, d̄ = 1. Then, the reformulated problem (5) can be further simplified as

min
x,w

c>w + δC(x)

s.t. Āw ≤ b̄,
C̄w = d̄,
Aw− x = 0.

(6)

Since the direct application of ADMM in problem (6) fails to preserve its convergence property [29],
we consider the partial penalty method inspired by Chen and Zhuang [30]. By introducing auxiliary
vectors u ∈ RJ+2T and v ∈ R, the partial penalty enhanced indexation subproblem can be
formulated as:

min
x,w,u,v

c>w + µ(‖u+‖2 + ‖v‖2) + δC(x)

s.t. Āw− u = b̄,
C̄w− v = d̄,
Aw− x = 0,

(7)

where µ > 0 denotes the penalty parameter of problem (6). For more concise expression of the
constraints, we denote

A =

Ā
C̄
A

 , B =

−I 0
0 −I
0 0

 , D =

 0
0
−I

 , b =

b̄
d̄
0

 , (8)

then the constraints in problem (7) can be merged as:

Aw + B
[

u
v

]
+Dx = b. (9)

Then, the augmented Lagrangian function of the enhanced indexation subproblem (7) is:

Lµ(x, w, u, v, λ; β) = c>w + µ(‖u+‖2 + ‖v‖2) + δC(x)

+λT(Aw + B
[

u
v

]
+Dx− b) + β

2 ‖Aw + B
[

u
v

]
+Dx− b‖2,

(10)

where λ denotes the Lagrangian multiplier of constraint (9), and β > 0 denotes the penalty parameter
of the partial penalty subproblem. Then, we can adopt the partial penalty method embedded with the
proximal ADMM to solve the enhanced indexation problem. The concrete algorithm can be presented
in Algorithm 1.
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Algorithm 1: Partial penalty proximal ADMM for enhanced indexation problem

• Step 1. Given an initial point (x0, w0) ∈ RN ×RN+T , the outer tolerance εO > 0, γ > 1. Let
k = 1, µk > 0;

• Step 2. Solve the enhanced indexation subproblem (7) by the proximal ADMM algorithm:

– Step 2.1. Given µ = µk, the inner tolerance εI > 0, σ > 0. Let β > 0, (x0, w0) =
(xk−1, wk−1), u0 = Āw0 − b̄, v0 = C̄w0 − d̄, λ0 ∈ RJ+2T+N+1, i = 0;

– Step 2.2. Perform the (i + 1)-th iteration as follows:

xi+1 = arg min
x
Lµ(x, wi, ui, vi, λi; β),

wi+1 = arg min
w
{Lµ(xi+1, w, ui, vi, λi; β) + σ

2 ‖w− wi‖2},[
ui+1

vi+1

]
= arg min

u,v
Lµ(xi+1, wi+1, u, v, λi; β),

λi+1 = λi + β(Awi+1 + B
[

ui+1

vi+1

]
+Dzi+1 − b),

– Step 2.3. If the inner stopping criterion

max{µ, β, 1}(‖wi+1 − wi‖+ ‖(λi+1 − λi)/β‖) ≤ εI

is satisfied, stop the proximal ADMM algorithm and go to Step 3; otherwise, let
β = γβ, i = i + 1 and go to Step 2.2;

• Step 3. If the outer stopping criterion

‖Awk + B
[

uk

vk

]
+Dxk − b‖ ≤ εO

is satisfied, stop the algorithm and return the approximate optimal solution (xk, wk);
otherwise, let µk+1 = γµk and go to Step 2 with k = k + 1.

Remark 1. The proximal coefficient σ > 0 in Algorithm 1 controls the proximity of the new iteration point to
the last one. It is obvious that the proximal regularized subproblem reduces to the classic ADMM algorithm if
we set σ = 0.

Remark 2. Step 2.2 in Algorithm 1 can be further represented as:

xi+1 = ProjC(Awi + λi
x/β),

wi+1 = H−1 (σwi − c− Ā>λi
u − C̄>λi

v − A>λi
x + βĀ>(ui + b̄) + βC̄>(vi + d̄) + βA>xi+1) ,

ui+1 = Proxβ

µ‖(·)+‖2(Āwi+1 − b̄ + λi
u/β),

vi+1 = Proxβ

µ‖·‖2(C̄wi+1 − d̄ + λi
v/β),

λi+1 = λi + β(Awi+1 + B
[

ui+1

vi+1

]
+Dxi+1 − b),

where λ = (λu; λv; λx) ∈ R(J+2T)×1×N , H = βA>A+ σI. Given z ∈ RN and ρ > 0, the proximal mapping
of f with respect to z is defined as:

Proxρ
f (z) := arg min

s
{ f (s) + (ρ/2)‖s− z‖2 : v ∈ RN}.

It is known that the proximal operator ProxδC (·) can be reduced to the projection operator ProjC(·), as shown in
the update step for xi+1. Both proximal and projection operators have their closed form expressions in our proposed
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problem, which means that each step in Algorithm 1 has their closed form, and, therefore, the computation time
can be guaranteed to some extent.

Remark 3. The convergence of Algorithm 1 is ensured by the theoretical analysis in the work of Chen and
Zhuang [30].

4. Empirical Results

In this section, we carry out empirical tests to examine performances of the sustainability-oriented
RCEI model in different financial markets. All formulations derived from enhanced indexation
problems are solved by Algorithm 1 proposed in Section 3.

4.1. Data Sets and Model Settings

We consider two typical indices and different data sets correspondingly with different scales:
the FTSE 100 index and the S&P 500 index, for testing the proposed RCEI model. These two indices
represent the different financial markets in UK and US. The investment stocks are the corresponding
components in the two indices: 100 stocks constituting the FTSE 100 index and 500 stocks constituting
the S&P 500 index. All data are selected as the adjusted closing prices of stocks in every week: the FTSE
100 index data set is from 1 January 2004 to 27 December 2018; the S&P 500 index data set is from
1 January 2007 to 31 December 2018, which are used for computing each index’s and stock’s logarithmic
weekly return rates. The original data are downloaded from Yahoo finance (http://finance.yahoo.com).
We partition each data set into two subsets: a training data set and a testing data set. The training
data set, also called the in-sample set, is used to determine the optimal enhanced indexation portfolio.
The testing data set, also called the out-of-sample set, consists of the rest of the data and is used
to test the performance of the resulting optimal portfolio. We adopt a rolling forward framework.
For each week in the out-of-sample period, we find the optimal portfolio from the RCEI model with
the historical data in the last 50 weeks before the week. This provides us 732 out-of-sample optimal
portfolios, one per week, to track the FTSE 100 index, and 576 out-of-sample optimal portfolios to
track the S&P 500 index. With the market price data in out-of-sample periods, we compute the return
rates of these out-of-sample portfolios. All numerical tests are carried out with Matlab 9.2.0 (2017a)
(MathWorks, Natick, MA, United States). Table 1 summarizes the settings of the tests.

Table 1. Test settings.

Constituent Stocks Benchmark K In-Sample Weeks Out-of-Sample Period (Weeks)

Test 1 100 FTSE 100 5, 10, 20 50 2004.12.23–2018.12.27 (732)
Test 2 500 S&P 500 5, 10, 20 50 2007.12.24–2018.12.31 (576)

As common practice, we assume that there exist three market regimes: the bull regime, denoted as
s1, means that the market is going up; the consolidation regime, denoted as s2, indicates that the
market is in the transitional period between recovery and recession; and the bear regime, denoted
as s3, means that the market is going down. We use the method adopted in Liu and Chen [31] to
determine market regimes based on the average values of the market index over a time window.
By using the in-sample data, we estimate the transition probability matrices for the FTSE 100 and S&P
500 indices, respectively:

QFTSE =

 0.9023 0.0951 0.0026
0.2482 0.5674 0.1844
0.0237 0.1361 0.8402

 , QS&P =

 0.9342 0.0608 0.0051
0.2933 0.5467 0.1600
0.0310 0.0775 0.8915

 .

http://finance.yahoo.com
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From the diagonal elements in QFTSE and QS&P, we see that both markets are stable to stay in the
bull or bear regime, but there is a relatively high possibility to switch from the consolidation regime
into the bull or bear regime. This scenario is consistent with the real market situation.

Table 2 gives the mean and standard deviation of each index’s out-of-sample return rates under
different market regimes. It reflects the difference of weekly return rates in three market regimes.

Table 2. Mean and standard deviation of out-of-sample return rates under different market regimes.

Index Mean (s1) Mean (s2) Mean (s3) Mean Std (s1) Std (s2) Std (s3) Std

FTSE 100 0.0036 0.0010 −0.0063 0.0005 0.0187 0.0195 0.0318 0.0224
S&P 500 0.0033 0.0014 −0.0071 0.0009 0.0190 0.0240 0.0396 0.0254

We can see from Table 2 that both the expected return rates and the standard deviations are
noticeably different among three different market regimes. Under the bull regime, the expected return
rates are the highest and always positive; under the bear regime, they are the lowest and always
negative; and, under the consolidation regime, they are in the middle. Correspondingly, the standard
deviations of two indices under the bear regime are always higher than those under the bull or
consolidation regime. These phenomena capture the real market well: the investment under the
bear regime is usually active, which leads to a rather low return rate with large volatility; while the
investment under the bull regime is less frequent, which leads to a high return rate with a relative
small volatility.

4.2. Out-of-Sample Results

In practice, the primary concern is the out-of-sample performance of the determined portfolio.
Therefore, we only demonstrate the out-of-sample results here. In the RCEI model, the lower
semi-absolute tracking error thresholds α(s1), α(s2), α(s3) are chosen as 0.007, 0.005, 0.003, respectively.
The cardinality upper bounds are set to K(s1) = 5, K(s2) = 10, K(s3) = 20. That is to say, in a bull
market, we prefer a more concentrated investment policy while we allow a larger tolerance of the
losses under the index. In a bear market, we prefer a more diversified investment policy and set
a smaller tolerance of the losses under the index, to reduce the risk. To elaborate whether the regime
switching technique can improve the stability in enhanced indexation problems, we also test the
cardinality constrained enhanced indexation model without regime switching, denoted by the CEI
model for reference. We can obtain the optimal investment policy under the CEI model by solving the
RCEI model with J = 1, α(s1) = α and K(s1) = K. For the CEI model, we set the threshold α = 0.005
and the cardinality upper bound K = 10. All parameters in the partial penalty proximal ADMM
are set as: the initial penalty parameter µ1 = 2, the initial penalty in ADMM β1 = 2, the growth
coefficient γ = 1.4, the proximal coefficient σ = 1.3, the external and internal tolerances are 10−5 and
10−3, respectively.

Figure 1 shows the out-of-sample cumulative return rates of the optimal tracking portfolios
derived by the RCEI and CEI models in FTSE 100, compared with the cumulative return rates of the
FTSE 100 index.

Figure 2 shows the out-of-sample cumulative return rates of the optimal tracking portfolios
derived by the RCEI and CEI models in S&P 500, compared with the cumulative return rates of the
S&P 500 index.

We can see from Figures 1 and 2 that both optimal portfolios obtained from the RCEI and CEI
models can efficiently track the trend of the market index and even outperform the market index.
Meanwhile, the out-of-sample performances of the RCEI models are better than those of the CEI
models or the indices in FTSE 100 and S&P 500 markets, respectively. The cumulative return rates of
the optimal portfolios from the RCEI models are substantially higher than those from the CEI models
and the market indices in UK and US financial markets. In addition, the optimal portfolios obtained
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from the RCEI model secure more stable returns and thus avoid substantial losses in a long-term
investment process.
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Figure 1. Out-of-sample performances of RCEI and CEI models in FTSE 100.
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Figure 2. Out-of-sample performances of RCEI and CEI models in S&P 500.

For more details, we show typical statistics of weekly return rates of out-of-sample portfolios as
well as the average CPU time in Table 3.

Table 3 shows that the means of the return rates of the RCEI and CEI models are much larger than
that of the index, especially the RCEI model. In addition, the standard deviation of the RCEI and CEI
models are smaller than that of the FTSE 100 index and close to that of the S&P 500 index, respectively.
Sharpe ratio (SR) is a widely adopted indicator for calculating the risk-adjusted return, which can be
used to evaluate a portfolio’s performance. We can see from Table 3 that, in both financial markets,
the Sharpe ratio value of the optimal portfolios from the RCEI models are larger than those of the CEI
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models or the market indices, respectively. It means that, in terms of the risk-adjusted return, the RCEI
model also outperforms the CEI model and the market index.

Table 3. Statistics of out-of-sample portfolio return rates of RCEI and CEI models.

Index Model Mean Std SR MDD TE+ TE− Time(s)

FTSE 100

RCEI 0.0015 0.0158 0.0931 0.2522 0.0067 0.0057 1.07
CEI 0.0010 0.0143 0.0709 0.5918 0.0063 0.0057 1.10

Index 0.0005 0.0224 0.0209 0.7717 - - -

S&P 500

RCEI 0.0031 0.0220 0.1425 0.1986 0.0060 0.0038 18.79
CEI 0.0014 0.0258 0.0553 0.2104 0.0041 0.0036 18.94

Index 0.0009 0.0254 0.0364 0.6117 - - -

Considering the financial sustainability in the long run, we calculate the maximum drawdown
(MDD) [32] for each optimal portfolio of each model and the index in FTSE 100 and S&P 500. MDD is
the maximum loss from a peak to a trough of a portfolio before a new peak is attained. It is an indicator
of downside risk over a specific time period. We can see from Table 3 that the MDD value of the RCEI
model is obviously smaller than those of the CEI model and the market index. It means that, when we
obtain excess returns by the RCEI model, we can simultaneously avoid heavy losses for more than ten
years. It is very important for the financial sustainability. In particular, a heavy loss is a big blow for
any investor, which will result in the unsustainability in financial investments.

Table 3 also reveals that the expectation of the positive part of the tracking error i.e.,
TE+ = E[(R>x − RI)+], and the expectation of the negative part of the tracking error, i.e.,
TE− = E[(R>x− RI)−]. In terms of TE+ and TE−, the performance of the RCEI model is better
than that of the CEI model. Moreover, the proposed partial penalty proximal ADMM algorithm is
highly efficient as the average CPU time is about 1 s in FTSE 100 enhanced problems and about 18 s in
S&P 500 enhanced problems.

Furthermore, we divide the out-of-sample period of FTSE 100 and S&P 500 into three market
regimes, respectively. Then, we compute the statistics of weekly return rates of the optimal portfolios
under different market regimes, shown in Table 4.

In Table 4, we not only list the performance of the RCEI model under each market regime, but also
that of the CEI model. We find that both RCEI and CEI models perform differently under different
market regimes. Comparing with the CEI model, the RCEI model performs better in terms of the
means, standard deviations and Sharpe ratios. In addition, the discrimination of the RCEI model
in three market regimes are larger, which means that the RCEI model can describe the influence of
different market regimes efficiently. In addition, in the bear market environment, the performance of
the RECI model is better than that of the market index, which can avoid suffering a huge financial
loss, and guarantee the sustainability of the investment consequently. It illustrates that the regime
switching plays a fundamental role in financial sustainability.

Finally, we consider the effect of the cardinality constraint in the RCEI model. We test a reference
of the RCEI model by removing the cardinality constraint, denoted by the REI model. We carry out the
out-of-sample test for the REI model in a similar rolling forward way. Some statistics of out-of-sample
weekly return rates of optimal portfolios determined by the RCEI and REI models are shown in Table 5.
The average number of actually invested stocks in the corresponding optimal portfolios as well as the
average CPU time are also shown in Table 5.

We can observe from Table 5 that, comparing with the REI model, the optimal portfolio obtained
from the RCEI model could significantly reduce the number of really invested stocks without losing too
much performance. Limiting the number of actually invested stocks is crucial in financial management
due to the following reasons. Firstly, the transaction cost is high relative to the number of stocks we
buy or sell. If we reduce the number of stocks in the indexation portfolio, we can save much capital
in the transaction cost. Secondly, as fund managers or individual investors, it is impossible for them



Sustainability 2019, 11, 4055 12 of 14

to manage dozens or hundreds of stocks at the same time, which can be regarded as another kind
of manpower cost. This further proves that the RCEI model is sustainable in long-term financial
investment problems if we take transaction costs into account.

Table 4. Statistics of the out-of-sample return rates under different market regimes.

Index Model State Mean Std SR TE+ TE−

FTSE 100

RCEI
Bull 0.0030 0.0142 0.2149 0.0053 0.0058

Consolidation 0.0015 0.0147 0.1006 0.0056 0.0051
Bear −0.0014 0.0202 −0.0678 0.0118 0.0068

CEI
Bull 0.0025 0.0120 0.2114 0.0048 0.0058

Consolidation 0.0003 0.0136 0.0243 0.0049 0.0056
Bear −0.0001 0.0191 −0.0058 0.0122 0.0059

Index
Bull 0.0036 0.0187 0.1902 - -

Consolidation 0.0010 0.0195 0.0518 - -
Bear −0.0063 0.0318 −0.3328 - -

S&P 500

RCEI
Bull 0.0040 0.0184 0.2148 0.0031 0.0031

Consolidation 0.0032 0.0241 0.1343 0.0055 0.0028
Bear 0.0005 0.0253 0.0193 0.0158 0.0088

CEI
Bull 0.0032 0.0206 0.1579 0.0033 0.0034

Consolidation 0.0024 0.0235 0.1017 0.0045 0.0035
Bear −0.0056 0.0393 −0.1419 0.0059 0.0044

Index
Bull 0.0033 0.0190 0.1731 - -

Consolidation 0.0014 0.0240 0.0591 - -
Bear −0.0071 0.0396 −0.1803 - -

Table 5. Statistics of out-of-sample return rates of RCEI and REI models.

Index Model Mean Std SR TE+ TE− Stocks Time(s)

FTSE 100
RCEI 0.0015 0.0158 0.0931 0.0067 0.0057 9.36 1.07
REI 0.0017 0.0173 0.0974 0.0071 0.0061 88.75 0.06

S&P 500
RCEI 0.0031 0.0220 0.1425 0.0060 0.0038 9.67 18.79
REI 0.0036 0.0282 0.1277 0.0104 0.0083 383.17 0.83

The average CPU time shows that the computational cost of the REI model is lower than that of the
RCEI model. The reason is that we need to introduce some auxiliary variables and extra computation
for dealing with the cardinality constraint, which not only increase the dimension of the problem but
also increase the number of iterations for obtaining the optimal solution. Fortunately, the computation
time of the RCEI model is quite acceptable even if we deal with 500 constituent stocks in the S&P
500 case.

5. Conclusions

In this paper, we propose a new sustainability-oriented enhanced indexation model with regime
switching and cardinality constraint. By adopting the regime switching technique, we can flexibly
set different risk thresholdsbenchmarks and cardinality bounds in different market environments,
which can mirror the fluctuation of market environment in a timely manner. We solve the resulting
deterministic optimization problem by the partial penalty proximal ADMM, which can deal with
the cardinality constraint optimization problem in an acceptable computation time. In addition,
we examine the performance of the proposed RCEI model in different financial markets and compare
the out-of-sample results with FTSE 100 and S&P 500 indices, respectively. The numerical results
show that the optimal portfolios obtained from the RCEI model have higher accumulative return and
lower risk compared with those obtained from the CEI model and the market indices in the long-term
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investment process. At the same time, the invested stocks can be streamlined without losing much
performance by adopting our proposed model and algorithm.

This innovative work fuels our conviction that the proposed model and algorithm are highly
compatible with sustainable strategies, and investors can reap significant benefits from their
joint cooperation. The accumulating evidence about the benefits of investment strategies would
cultivate the growth of a sustainable investing market. Firstly, fund managers and individual
investors can choose different threshold parameters and cardinality bounds in various financial
markets. Risk-preference investors can set the semi-absolute tracking error threshold larger for higher
excess returns. Risk-aversion ones who pursue a more secure return can set the threshold smaller.
Fund managers and individual investors can also adjust the cardinality bounds according to their
needs. Based on our experiences, cardinality bounds are suggested as no more than 20 for fund
mangers and no more than 10 for individual investors. Secondly, our proposed model is more effective
in mature financial markets. It should be used with caution in emerging financial markets which are
less effective. To speak plainly, arbitrage opportunities will often occur in emerging markets; therefore,
the optimal value may go to infinity. However, this is not consistent with the facts. In addition,
mature financial markets provide more products that can be taken into account in our portfolios,
such that investors can still maintain positive income by holding some short positions when the market
is slow. In general, our method echoes sustainable growth in long-term investment processes.

This work can further be improved such as using another tracking error measure instead of the
lower semi-absolute measure or extending the model to the multi-period case. These promising topics
are left for future research.
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