Explanation of equations and Parameters of Bioenergy-effect-policy System Dynamics model that make the biomass power generation project economically feasible.

- 1.distance from temporary storage station to biomass power plant=18 (unit: km)
- 2. SO2 emission factor of diesel heavy-duty vehicles=3e-007 (unit: ton/km)
- 3. SO2 emission factor of diesel light-duty vehicles= 1e-007 (unit: ton/km)
- 4. SO2 emission factor of traditional power= 0.0151579 (unit: ton/MWh)
- 5. CO emission factor of biomass power generation= 0.0080332 (ton/MWh)
- 6. NOx emission factor of biomass power generation= 0.0008626 (ton/MWh)
- 7. SO2 emission factor of biomass power generation= 0.0000228 (ton/ MWh)
- 8. NOx emission factor of traditional power=0.0038332 (unit: ton/MWh)
- 9. emission reduction of CO= equivalent traditional power*(CO emission factor of traditional power-CO emission factor of biomass power generation) (unit: ton)
- 10. CO emission factor of traditional power= 0.0001937 (unit: ton/MWh)
- 11. difference between fiscal subsidy and positive externalities=positive externalities-fiscal subsidy (unit: thousand US dollars)
- 12. accumulated difference between fiscal subsidy and positive externalities= INTEG(difference between fiscal subsidy and positive externalities,0) (unit: thousand US dollars)
- 13. CO2 emission factor of diesel light-duty vehicles=0.000356 (unit: ton/km)
- 14. distance from household to temporary storage station=13 (unit: km)
- 15. CO2 emission factor of diesel heavy-duty vehicles=0.000932 (unit: ton/km)
- 16. CO2 emission of transportation= total volume of biomass transportation/average load of light-duty vehicles per trip*distance from household to temporary storage station*tortuous factor of rural road*CO2 emission factor of diesel light-duty vehicles + total volume of biomass transportation/average load of heavy-duty vehicles per trip*distance from temporary storage station to biomass power plant*CO2 emission factor of diesel heavy-duty vehicles (unit: ton)
- 17. CO2 emission factor of traditional power= 1.09417 (unit: ton/MWh)
- 18. emission reduction of CO2=equivalent traditional power*CO2 emission factor of traditional power-CO2 emission of transportation-equivalent traditional power*life cycle GHG emission intensity of biomass power (unit: ton)
- 19. average load of heavy duty vehicles per trip=12 (unit: ton)
- 20. tortuous factor of rural road=1.414
- 21. average load of light-duty vehicles per trip=3.5 (ton)
- 22. life cycle GHG emission intensity of biomass power=0.045 (unit: ton/MWh)
- 23. benefit of CDM=emission reduction of CO2*price of CO2 (unit: thousand US dollars)
- 24. SO2 emission of transportation= total volume of biomass transportation/average load of light-duty vehicles per trip*distance from household to temporary storage station*tortuous factor of rural road*SO2 emission factor of diesel light-duty vehicles+total volume of biomass transportation/average load of heavy-duty vehicles per trip*distance from temporary storage station to biomass power plant*SO2 emission factor of diesel heavy-duty vehicles (unit: ton)
- 25. total volume of biomass transportation=consumption of apple branches+consumption of other biomass
- 26. price of CO= 0.34572 (unit: thousand US dollars/ton)
- 27. price of SO2= 2.2126 (unit: thousand US dollars/ton)

- 28. price of NOx= 2.76574 (unit: thousand US dollars/ton)
- 29. price of CO2= 0.01521 (unit: thousand US dollars/ton)
- 30. social benefits = benefits of employment increase + increased income from biomass sales (unit: thousand US dollars)
- 31. positive externalities = positive environmental externalities + social benefits (unit: thousand US dollars)
- 32. positive environmental externalities = benefit of CDM + environmental value of CO emission reduction+ environmental value of NOx emission reduction + environmental value of SO2 emission reduction (unit: thousand US dollars)
- 33. retrieve of circulating fund = IF THEN ELSE(Time=2039, 4231, 0) (unit: thousand US dollars)
- 34. environmental value of CO emission reduction=emission reduction of CO*price of CO (unit: thousand US dollars)
- 35. environmental value of NOx emission reduction =emission reduction of NOx*price of NOx (unit: thousand US dollars)
- 36. environmental value of SO2 emission reduction=emission reduction of SO2*price of SO2 (unit: thousand US dollars)
- 37. emission reduction of SO2 = equivalent traditional power*(SO2 emission factor of traditional power-SO2 emission factor of biomass power generation) (unit: ton)
- 38. emission reduction of NOx = equivalent traditional power*(NOx emission factor of tradional power-NOx emission factor of biomass power generation) (unit: ton)
- 39. equivalent traditional power = biomass power generation (unit: MWh)
- 40. available sales rate of apple branches = INTEG(increment of sales rate, 0.5)
- 41. increment of sales rate = IF THEN ELSE(available sales rate of apple branches<=0.7,0.02, 0)
- 42. production rate of other biomass ash = 0.0514 (unit: ton/ton)
- 43. production rate of apple branches ash = 0.0247 (unit: ton/ton)
- 44. production of ash = consumption of apple branches*production rate of apple branches ash + consumption of other biomass*production rate of other biomass ash (unit: ton)
- 45. consumption of apple branches = IF THEN ELSE(available sales rate of apple branches*total output of apple branches>=demand of apple branches, demand of apple branches, available sales rate of apple branches*total output of apple branches) (unit: ton)
- 46. benefit of biomass ash = price of ash*production of ash (unit: thousand US dollars)
- 47. price of ash = 39.29 (unit: US dollars/ton)
- 48. demand of apple branches = biomass power generation*3.6*10000/lower heat value of apple branches/generating efficiency/1000 (unit: ton)
- 49. total output of apple branches = yield of apple branches per unit area*apple cultivated area*10000 (unit:ton)
- 50. yield of apple branches per unit area = (([(2018,300)-(2040,700)],(2018,375),(2020,450),(2025,480),(2030,525),(2035,600),(2040,660))) (unit: ton/km²)
- 51. apple cultivated area = 707 (unit: km²)
- 52. agricultural population = IF THEN ELSE(Time=2018,387802 ,-2.41667e+007*EXP(-0.0184247* (Time-2010))-(-2.41667e+007*EXP(-0.0184247*(DELAY1(Time, 1)-2010)))) (unit: person)
- 53. total population = IF THEN ELSE(Time=2018,487821,-3.65806e+009*EXP(-0.000133* (Time-2010))+3.65854e+009-(-3.65806e+009*EXP(-0.000133*(DELAY1(Time,1)-2010))+3.65854e+009)) (unit: person)

- 54. urbanization rate = (total population-agricultural population)/total population
- 55. increment of rural per capita net income = fuel cost*1000/agricultural population (unit: US dollars/person)
- 56. fuel cost = price of apple branches*consumption of apple branches/1000+consumption of other biomass*price of other biomass/1000 (unit: thousand US dollars)
- 57. consumption of other biomass = IF THEN ELSE(consumption of apple branches<demand of apple branches, (demand of apple branches-consumption of apple branches) *lower heat value of apple branches/lower heat value of other biomass, 0) (unit: ton)
- 58. demand of apple branches = biomass power generation*3.6*1000/lower heat value of apple branches/generating efficiency/1000 (unit: ton)
- 59. lower heat value of apple branches = 16.34 (unit: MJ/kg)
- 60. generating efficiency = 0.175
- 61. biomass power generation = IF THEN ELSE(Time=2018, 0 , 210000) (unit: MWh)
- 62. price of apple branches =45 (unit: US dollars/ton)
- 63. lower heat value of other biomass = 15.33 (unit: MJ/kg)
- 64. price of other biomass = 45 (unit: US dollars/ton)
- 65. increased income from biomass sales = fuel cost-electricity expense/1000 (unit: thousand US dollars)
- 66. rural energy consumption from biomass = (consumption of apple branches*1000*lower heat value of apple branches+consumption of other biomass*1000*lower heat value of other biomass)*combustion efficiency/3.6 (unit: kWh)
- 67. combustion efficiency = 0.1
- 68. electricity expense = rural energy consumption from biomass*rural electricity price (unit: US dollars)
- 69. rural electricity price = 0.0771 (unit: US dollars/KWh)
- 70. value-added tax payable = INTEG(output tax-input tax,0) (unit: thousand US dollars)
- 71. urban construction tax = (output tax-input tax)*tax rate of urban construction (unit: thousand US dollars)
- 72. tax rate of urban construction = 0.05
- 73. business tax and surcharges = education surcharges+urban construction tax (unit: thousand US dollars)
- 74. input tax = (fuel cost+material expenses+purchased water)*VAT Rate (unit: thousand US dollars)
- 75. output tax = business income*VAT Rate (unit: thousand US dollars)
- 76. VAT Rate = 0.17
- 77. value-added tax exempted = output tax-input tax (unit: thousand US dollars)
- 78. education surcharges = (output tax-input tax)*tax rate of education surcharges (unit: thousand US dollars)
- 79. business income = earnings from electricity sales+heating income+ benefit of biomass ash (unit: thousand US dollars)
- 80. tax rate of education surcharges = 0.03
- 81. purchased water = consumption of water*price of water (unit: thousand US dollars)
- 82. price of water = 0.5289 (unit: US dollars/ton)
- 83. consumption of water = IF THEN ELSE(Time=2018, 0, 1279.2) (unit: thousand ton)

- 84. price of heating = 3.92904 (unit: US dollars/GJ)
- 85. heating income = Heat output*price of heating (unit: thousand US dollars)
- 86. Heat output = IF THEN ELSE(biomass power generation=0, 0, 483) (unit: thousand GJ)
- 87. earnings from electricity sales = price of biomass power*biomass power generation*ratio of electricity sales (unit: thousand US dollars)
- 88. price of biomass power = price of traditional power + subsidy intensity of biomass power price (unit: US dollars/kWh)
- 89. price of traditional power= 0.0453 (unit: US dollars/kWh)
- 90. subsidy intensity of biomass power price= 0.0619 (unit: US dollars/kWh)
- 91. ratio of electricity sales = 0.9
- 92. total investment = INTEG(current year investment,0) (unit: thousand US dollars)
- 93. current year investment = circulating fund investment + Fixed assets investment (unit: thousand US dollars)
- 94. Fixed assets investment = IF THEN ELSE(Time=2018,self-owned construction fund + long-term loan, 0) (unit: thousand US dollars)
- 95. long-term loan = 31844 (unit: thousand US dollars)
- 96. self-owned construction fund = IF THEN ELSE(Time=2018,13649, 0) (unit: thousand US dollars)
- 97. self-owned circulating fund = IF THEN ELSE(Time=2018, 1269, 0) (unit: thousand US dollars)
- 98. circulating fund investment = IF THEN ELSE(Time=2018, "self-owned circulating fund"+ "short-term loan", 0) (unit: thousand US dollars)
- 99. short-term loan = 2962 (unit: thousand US dollars)
- 100. total cost = Depreciation of fixed assets + financial expenses + fuel cost + maintenance cost of fixed assets + material expenses + purchased water + wages and benefits (unit: thousand US dollars)
- 101. Depreciation of fixed assets = IF THEN ELSE(Time=2018, 0, 1911) (unit: thousand US dollars)
- 102. maintenance cost of fixed assets = IF THEN ELSE(Time=2018, 0 , 796.196) (unit: thousand US dollars)
- 103. financial expenses = "long-term loan"*"Long-term loan interest rate"+"short-term loan"*"Shor-term loan interest rate" (unit: thousand US dollars)
- 104. material expenses = IF THEN ELSE(Time=2018, 0, 36.26)
- 105. Long-term loan interest rate = 0.0594
- 106. Short-term loan interest rate = 0.0556
- 107. average wage = IF THEN ELSE(Time=2018, 7.56, $7.56*(1+0.05)^{(Time-2018)}$) (unit: thousand US dollars)
- 108. benefits of employment increase = IF THEN ELSE(Time=2018, 0, wages and benefits-number of employees*(rural average income*(1-urbanization rate)+urban average income* urbanization rate)/1000) (unit: thousand US dollars)
- 109. rural average income = IF THEN ELSE(Time=2018, 1160, 1160*(1+0.05)^(Time-2018)) (unit: US dollars)
- 110. urban average income = IF THEN ELSE(Time=2018, 3840, 3840*(1+0.05)^(Time-2018)) (unit: US dollars)
- 111. number of employees = 74 (unit: person)
- 112. wages and benefits = IF THEN ELSE(Time=2018, 0, average wage*number of employees)

- (unit: thousand US dollars)
- 113. current year profit = business income-business tax and surcharges-total cost (unit: thousand US dollars)
- 114. subsidy of biomass power price = 0.0619 (unit: US dollars)
- 115. subsidy from exempted tax = income tax exempted+"value-added tax exempted" (unit: thousand US dollars)
- 116. fiscal subsidy = price subsidy + subsidy from exempted tax (unit: thousand US dollars)
- 117. price subsidy= biomass power generation*subsidy intensity of biomass power price (unit: thousand US dollars)
- 118. accumulated net profit = INTEG(net profit,0) (unit: thousand US dollars)
- 119. net profit = current year profit-Income tax (unit: thousand US dollars)
- (net profit = current year profit-Income tax -subsidy from exempted tax; in Scenario V and VI)
- 120. Income tax = IF THEN ELSE(Time<=2021, 0 , IF THEN ELSE(Time<=2024, current year profit*0.9*income tax rate*0.5 , current year profit*0.9*income tax rate)) (unit: thousand US dollars)
- 121. income tax exempted = IF THEN ELSE(Time<=2021, IF THEN ELSE(current year profit<=0, 0, current year profit*income tax rate), IF THEN ELSE(Time<=2024, current year profit*income tax rate-current year profit*0.9*income tax rate*0.5, current year profit*0.1*income tax rate)) (unit: thousand US dollars)
- 122. income tax rate = 0.25
- 123. coefficient of present value = 1/(1+discount rate)^(Time-2018)
- 124. discount rate = 0.14
- 125. accumulated after-tax present value = INTEG(after-tax present value,0) (unit: thousand US dollars)
- 126. after-tax present value = after-tax net cash flow*coefficient of present value (unit: thousand US dollars)
- 127. accumulated net cash flow = INTEG(net cash flow,0) (unit: thousand US dollars)
- 128. net cash flow = cash inflow-cash outflow (unit: thousand US dollars)
- 129. cash outflow = business tax and surcharges + operating cost + circulating fund investment + Fixed assets investment+subsidy from exempted tax (unit: thousand US dollars)
- 130. operating cost = total cost-Depreciation of fixed assets-financial expenses (unit: thousand US dollars)
- 131. cash inflow = business income+retrieve of circulating fund+residue value of the fixed assets (unit: thousand US dollars)
- 132. residue value of the fixed assets = IF THEN ELSE(Time=2039, 2275, 0) (unit: thousand US dollars)