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Abstract: Water availability is essential for the appropriate analysis of its sustainable management.
We performed a comparative study of six hydrological balance models (Témez, ABCD, GR2M, AWBM,
GUO-5p, and Thornthwaite-Mather) in several basins with different climatic conditions within Spain
in the 1977–2010 period. We applied six statistical indices to compare the results of the models:
the Akaike information criterion (AIC), the Bayesian information criterion (BIC), Nash–Sutcliffe
model efficiency coefficient (NSE), coefficient of determination (R2), percent bias (PBIAS), and the
relative error between observed and simulated run-off volumes (REV). Furthermore, we applied
the FITEVAL software to determine the uncertainty of the model. The results show that when the
catchments are more humid the obtained results are better. The GR2M model gave the best fit in
peninsular Spain in a UNEP aridity index framework above 1, and NSE values above 0.75 in a 95%
confidence interval classify GR2M as very good for humid watersheds. The use of REV is also a key
index in the assessment of the margin of error. Flow duration curves show good performance in the
probabilities of exceedance lower than 80% in wet watersheds and deviations in low streamflows
account for less than 5% of the total streamflow.

Keywords: hydrological balance models; lumped models; water resources; model comparison; model
selection; Spain

1. Introduction

Water resources assessment is key to the analysis of catchment management [1]. The cost and
irregular distribution of worldwide water resources are evident. Even in parts of the planet where
water resources are abundant, the problems of availability or scarcity are common due to, largely,
weak water management practices and anthropic activities [2]. The development of models to study
water availability is a complex task that presents a fundamental scientific challenge. Complex cases,
in particular, occur in arid and semi-arid regions, where precipitation is limited or irregular and
evapotranspiration (ET) rates are high. Hydrological balance models are used to reconstruct historical
series and predict future ones [3]. They are based on the principle of mass conservation or the continuity
equation [4], which considers that the difference of inputs and outputs will be reflected in water storage
in the catchment [5,6].

The concept of hydrological balance models was first introduced by Thornthwaite [7] and
Thornthwaite and Mather [8]. They proposed two different conceptual models based on two parameters:
soil moisture capacity and water excess above the maximum soil moisture storage capacity. These models
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demonstrated a good fit to estimate monthly run-off [9] and have formed the basis of many other
two-parameter hydrological models [9–14]. There are also water balance models that comprise more
than two parameters [15–17]. However, Xiong and Guo [10] showed that their proposed two-parameter
model in China performed as well as a five-parameter model. To date, several studies have shown
that many models produce similar results to previous ones [18–21]. In a lumped water balance
model, catchment parameters and variables are averaged in space, so hydrological processes are
approached by conceptual solutions formulated using semi-empirical equations. The system is
described using different reservoirs, the moisture content of which depends on the relationships
(physical and empirical) between them [22]. A lumped hydrological balance model may have only
three or four parameters [9,22,23] and can be implemented with several lines of computer code,
whereas a complex model may have more than 20 parameters [24]. Some examples of lumped
models are the ABCD model [14,25–27], GR2M [28,29], Sacramento [30], Guo-5p [10,31], Témez [32–36],
Thornwaite-Mather [37–39], IHACRES [40], SIMHYD [41], GR4J [42], AWBM [43–47], and SMAR [48].
More examples of rainfall run-off models can be found in Singh [49] and Singh and Frevert [50].

With the development of computer aided tools and more detailed information, there is an
increasing trend toward using distributed or semi-distributed models [51,52]. They provide more
detailed distributed results on a catchment scale approximating heterogeneities of the system. Following
these assumptions, many complex models have been developed that are assumed to be capable of
simulating environmental change. These spatially explicit and physically-based model approaches
are often criticized because the necessary a priori estimation of model parameters is difficult [53,54],
and uncertainty at high resolution may diminish potential gains in prediction accuracy [55]. Thus,
efficient calibration of the models is difficult due to the spatially distributed nature of those models,
showing, sometimes, a decrease in efficiency [56], and lumped models can provide a more appropriate
alternative [57]. Moreover, lumped models do not need as much data as distributed models, and the
complexity and requirements to process them are lower. The calibration of the lumped parameter
models is much less time consuming and produces higher overall model performance in comparison to
the more complex distributed models [58]. Notwithstanding, recent studies in distributed hydrologic
models have developed methodology approaches that improve the limitations mentioned above.
Samaniego et al. [59] used a multiscale parameter regionalization (MPR) technique in a fully spatially
distributed conceptual hydrologic model, resulting in the limitation of a number of model parameters
and the transferability of the global parameters at a coarser scale to a finer scale, meaning that there is
a substantial shortcoming in the calibration procedure. Beck et al. [60] developed a scheme for the
regionalization of model parameters at the global scale, resulting in HBV parameter maps, such as
ancillary data that are available via www.gloh2o.org.

Notwithstanding, despite the simplicity of lumped models, they performed well in many
studies [61–64]. Other studies that have compared lumped and distributed models confirmed that both
of them lead to similar accuracy [65–75] and that lumped models can be calibrated more efficiently [76].
Vansteenkiste et al. [77] learned that in a Belgian catchment, the lumped models perform better than the
distributed ones in seasonal events and in terms of overall water balance, with very low discrepancies
in the subflow volumes in comparison to the distributed models. Furthermore, lumped models
provide a valuable integrated view of the basin outlet response, as concluded by the Distributed
Model Intercomparison Project for the Oklahoma region by Reed et al. [72] and Smith et al. [66].
Martínez-Santos and Andreu [78] used lumped and distributed approaches to model natural recharge
in semi-arid aquifers in Spain, and even though both approaches performed similarly, the lumped
models exhibited a better agreement with field records.

Therefore, spatial discretization is not the only determinant of the simulation’s quality. The choice
of model is dictated by the modelling purpose. When flow at the catchment outlet is the main required
goal in water resources management, lumped models may be the best choice, but when spatially explicit
predictions or land use change predictions are required, a (semi-)distributed model would be more
appropriate, although land use changes can also be carried out in a lumped model by means of transfer
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functions [68]. Recently, lumped models have been used, among other purposes, to obtain detailed
assessments of surface flow, water balance components, and the impact of climate change [79,80]
to estimate catchment discharge [81–83], and to explore transferability under contrasting climate
conditions [84,85].

In this study, choosing the models is mainly based on known performance in different climatic
regions, both in Spain and Europe, and structural diversity (i.e., 3–6 free parameters and 2–4 storage
units). However, an inadequate complexity often results in over-parameterization [19,86,87], so the
models with too many parameters (more than 6) are excluded from this study. Thus, the Témez
model has been widely used in Spanish catchments [88–91] and by the Spanish government in water
management [92]. The widely used ABCD model has proven to have reasonable predictability
and has been compared with numerous monthly water balance models, thus leading to its
recommendation [27,93–96]. Vandewiele and Xu [17] also found that the ABCD model compares
favorably with other more recent monthly water balance models in Belgium. Currently, the ABCD
model has been found to have the best performance in the Segura River basin in southern Spain [97].
The GR2M model is widely used in France in all of its different versions [98]. Wriedtand and
Bouraoiu [99] used this model in 492 catchments in Germany, France, Spain, and Portugal and obtained
high NSE in the center and north of Spain and in Central European basins. The AWBM is one of the
most widely used rainfall run-off models in Australia [46], but it has been used in different global
catchments [25,100,101], both humid and dry basins, and it has proven to have performance similar
to the distributed models [102]. The Thornthwaite and Mather water balance model is valid as a
water accounting procedure when only reduced information about hydrologic inputs and aquifer
characteristics is available, as applied by Peranginangin et al. [103]. It has been successfully used
in different water balance research studies in Spain [104–107]. Finally, Guo-5p is an adaptation of
Thornthwaite and Mather’s model with five parameters, so it was chosen to compare with the latter.
Its use is particularly recommended in humid and semi-humid regions [10,31].

Our primary objective in this study is to use model predictions for the assessment of water
resources, as the first step in predicting future resources under climate change. This should predict
and solve problems related to the quantity and quality of water, as well as ensure its sustainable
use. Furthermore, the following must also be considered: the population growth rate, increasing
demand, depleted fluvial networks, the requirements concerning ecological flow, and the reduction
in the amount of groundwater. Thus, efficient water management becomes an essential issue due to
global scarcity. Our work is mainly focused on the comparative analysis of hydrological models and
their ability to predict and quantify outflows on the basis of different watersheds in Spain, where the
wide range of climates is optimal for such hydrological research.

The first step, which is developed in this research, addresses the issue of comparing and selecting,
using different metrics and graphics, the water balance model that has the best fit according to our
goal: water resources assessment. Although, as previously stated, there are many studies that compare
different hydrological models, we have used a full set of statistical methods in order, not only to verify
the feasibility and the performance of these models in different climatic areas, but also to assess the
usefulness of the combination of different goodness-of-fit tools depending on the purpose of the study.
Therefore, six lumped water balance models were evaluated in 16 basins located in different climatic
regions of Spain, where a long-time series of climatic and natural streamflow data are available (more
than 30 years). We intended to calibrate parsimonious approaches to estimate natural streamflow series,
and we intended to generate a series that represents the stochastic variability of the rainfall process.
These series can be used as inputs of management models to assess the operation of water resource
systems. In these cases, we need long time series of inflows (natural streamflows) to account for the
influence of the hydrology’s stochastic behaviors in the reliabilities of the demand supply [108,109].
Our aim is to select the models with the best fit and to assess the comparison methods used according
to the region’s characteristics. We structured the paper’s contents as follows. Section 2 introduces the
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data and methodology; Section 3 presents the results and the discussion; and Section 4 highlights the
main conclusions.

2. Materials and Methods

2.1. Study Area and Data

Spain is the second largest country in Western Europe, with a territory covering 505,990 km2,
a dense network of rivers with many branches and a large number of aquifers. This disparity within
the Iberian Peninsula is optimal for hydrological research. Spain features a wide range of climates due
to its position between the European temperate zone and the subtropical zone. It also includes some
of the rainiest areas in Europe in the northeast and the driest areas in the southeast, with a marked
summer drought. To ensure the validity of the results, the 16 selected catchments are in the natural
regime. They are located all over the country, as shown in Figure 1. Thus, the geographic and climatic
variety in Spain are reflected wherever data were available.

Their altitudes vary from 1632 to 342 m above sea level (MASL), and catchment areas range from
29–837 km2 with an average of 300 km2 (Table 1). There is no southwestern catchment in this study due
to the lack of data in this area, where most gauging stations have data for a period of less than 10 years.
As shown in Table 1, the average temperatures range from 8–16 ◦C, depending on the latitude and
average altitude of the catchment, with a positive gradient to the south. With regards to the rainfall
regime, the highest yearly precipitation occurs in the north of Spain, where average temperatures
are lower, and consequently, ET is less. However, in the southern half of the Iberian Peninsula, ET is
generally higher than precipitation, especially in the lowlands, which have an average altitude of less
than 600 m.
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The study area comprises the most common climate groups in the Iberian Peninsula, according
to Köppen’s [110–112] classification: Bsk. (Cold semi-arid), Csb. (Warm-summer Mediterranean),
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Csa. (Hot-summer Mediterranean climate), Cfb. (Temperate oceanic), and UNEP aridity index [113].
This index (AIU) is defined by Equation (1).

AIU =
P

PET
(1)

where P is the average annual precipitation and PET is the potential evapotranspiration. The thresholds
that define the various degrees of aridity depend on the value of AIU: hyper-arid (AIU < 0.05), arid
(0.05 < AIU < 0.20), semi-arid (0.20 < AIU < 0.50), dry sub-humid (0.50 < AIU < 0.65), humid sub-humid
(1.00 < AIU < 0.65), and humid (AIU > 1.00). Among the 16 catchments studied, nine are considered
humid; thus, their AIU exceeds one, and five of them even have an aridity index near to or above 2.
All are located in northern Spain. Despite the rainfall gradient from the northwest to the southeast, the
SEG and ZUM catchments are classified as humid sub-humid due to their altitude above 1000 MASL.
The BOL catchment, which is close to the Mediterranean Sea, is the only eastern dry sub-humid region
of the regions studied; thus, the other dry sub-humid catchments (TAM and CUE) are located in
the center of the Iberian Peninsula. The only semi-arid region in the studied catchments is RVA, the
average altitude of which is approximately 600 MASL.

We carried out an analysis of land cover variations in the period 1990–2012 in the watersheds
(Table 1) in order to consider their influence in models both in the calibration and the validation.
Notwithstanding, nearly all watersheds show a variation below 5%, which will not affect the main
conclusions. However, RVA and LEM land cover have changed 9.18% and 19.12%, respectively, in the
available data period, and will be further discussed.

Precipitation and PET data series in each basin are from a 33-year period (1977–2010). We obtained
the data from the official monthly series provided by the CEDEX (Centre of Studies and Experimentation
of Civil Works) for the Spanish government [114] at a spatial resolution of 500 × 500 m2 [115]. The model
has been validated at more than 100 control points [91] and used in Spain for water resources assessment,
in the White Paper Book of Waters [89], and in several studies [116–118]. Natural streamflow data in
each catchment are available for the same period. They come from measurements at gauging stations
in the official Spanish network. Missing streamflow values range from 2–8% in the stations considered.
We obtained digital elevation models and land cover variations [119] from the National Geographical
Institute of Spain [120]. Furthermore, in order to assess hierarchical order of the main river courses of
the basins, the Pfastetter code is considered. As shown in Table 2, the range of the code of the basins
studied varies between 913685 and 104080, indicating a wide variety of topological location within
the watershed.



Sustainability 2019, 11, 2872 6 of 36

Table 1. Summary of catchments characteristics (1977–2010) (Pfafstetter Code is the river Pfafstetter code; X and Y coordinates refer to the centroid of the basin; CLC,
Corine Land Cover, 1990–2012 period).

Code Name Area
(km2)

Pfafstetter
Code

X ETRS89
UTM 30N

Y ETRS89
UTM 30N

MASL
(m)

Köppen
Class.

UNEP
Aridity
Index

Average
Temperature

(◦C)

Average Yearly
Precipitation

(mm)

Average
Yearly ETP

(mm)

CLC
Variation

(%)

AND Andoain 778.49 172988 573,531.02 4,769,234.41 486.01 Cfb 2.15 11.62 1563.47 727.86 5.23
BEG Begonte 836.89 104080 111,096.28 4,799,111.26 504.01 Csb 2.07 11.44 1332.62 632.50 1.89
BOL Bolulla 29.23 806014 749,970.13 4,286,756.78 600.31 Csa 0.54 16.56 579.71 1080.30 0.00
COT Coterillo 488.22 184926 460,081.35 4,786,345.03 559.51 Cfb 1.65 11.48 1311.12 793.16 2.47
CUE Cuernacabras 139.86 308769 280,997.89 4,392,588.21 610.63 Csa 0.52 15.33 570.56 1098.46 1.32
GAR Gargüera 69.92 301389 251,972.85 4,439,204.60 689.98 Csa 1.02 14.73 1060.18 1043.32 5.31
HOY Hoyos 66.15 211914 318,316.11 4,466,995.19 1632.12 Csb 1.01 8.58 777.22 770.35 0.87
JUB Jubera 207.66 913685 549,719.20 4,553,001.74 1150.05 Csb 0.65 10.84 509.76 783.22 0.12
LEM Lemona 252.58 172552 530,214.27 4,779,163.90 342.18 Cfb 1.96 12.35 1393.18 709.20 19.12
PRI Priego 328.16 309656 578,643.32 4,473,678.12 1255.05 Csb 1.19 10.96 763.04 642.86 0.02
PUE Puenteareas 263.85 104192 52,975.07 4,692,077.36 400.05 Csb 2.20 14.07 1662.05 756.42 5.48
RVA Vallehermoso 85.68 304523 407,367.20 4,444,846.50 607.70 Bsk 0.40 14.69 396.53 998.49 9.18
SEG Segura 232.89 702180 533,459.57 4,225,568.22 1416.46 Csb 0.88 11.53 807.66 915.83 0.94
TAM Tamuja 458.12 309755 237,068.72 4360580.97 447.46 Csa 0.54 15.93 596.36 1112.84 0.02
TRE Trevias 413.54 185314 217,492.08 4,812,225.19 526.64 Cfb 1.84 12.31 1220.91 663.77 5.00
ZUM Zumeta 266.03 702184 536,758.71 4,213,732.23 1549.95 Csb 0.79 11.35 750.28 951.88 0.04
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2.2. Methodology

The methods we used in this investigation are based on the identification of the hydrological
models that best fit each catchment considered. Six monthly water balance models were used: Témez,
ABCD, GR2M-1994, Australian Water Balance Model (AVBM), Guo-5p, and Thornwaite-Mather.
All these models use precipitation and PET as input data. We assessed the goodness of fit for the six
models using various model selection criteria for the purpose of establishing a robust methodology that
can validate the conclusions obtained and its application in other different regions. Accepting the fact
that models only approximate reality, our objective was to determine which of the candidate models
best approximates the data. Because the field of information theory is used to quantify or measure
the expected value of the information, we used the information theoretic approach to derive the two
most-commonly-used criteria in model selection: the Akaike information criterion (AIC) [121,122]
and the Bayesian information criterion (BIC) [123]. The difference between the BIC and the AIC is the
greater penalty imposed for the number of parameters by the former than the latter. Alternatively, and
based on Moriasi et al. [124] and Bressiani et al. [125], we established a grading method to evaluate
the good performance of the model based on the NSE, R2, and PBIAS values. We also analyzed the
relative error between observed and simulated run-off volumes and the flow duration curves (FDCs)
in the studied period to assess both low-flows and high-flows. Finally, we carried out the uncertainty
of the model selected in each watershed with the FITEVAL software [126]. All of these hydrological
models are defined with four parameters, except Thornwaite-Mather (three parameters) and Guo-5p
(five parameters). Through all phases of the hydrological cycle, the models conduct different moisture
balances according to the different processes in a hydrological system. The processes are governed by
the continuity principle and mass balance and remain regulated by the specific laws of division and
the transfer between the reservoirs of each model [90].

2.2.1. Water Balance Models

Témez Model

Témez [127] developed the Témez model, which has been widely used in Spanish
catchments [88–91] and by the Spanish government in water management [92]. This model considers
the system to be divided into two zones (Figure 2): the upper or non-saturated zone (S) and the lower
or saturated zone (G). Some of the precipitation (P) drains directly into the river or through the aquifer,
while the remainder is converted into ET. Excess is divided into run-off (Qs) through river networks at
the present time, and infiltration to aquifers, draining one part (Qg) at the present time, with the rest
remaining in the groundwater storage tank (G) for drainage at a later date (Figure 2).
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ABCD Model

The ABCD 4-parameter model [9] introduces a different formulation in the ET process and allows
for a water surplus even though the soil moisture tank (S) is not full yet. As shown in Figure 2, this
model also considers two storage tanks: upper storage (S), or soil, and groundwater storage (G).
The upper storage tank (S) has two outputs: run-off (Qs) and infiltration. Thus, the model has two
inputs, precipitation (P) and PET, and their outputs are soil moisture content at the end of the month (S),
monthly available water, ET, run-off (Qs), infiltration, groundwater run-off (Qb), monthly groundwater
storage (G), and total run-off (Q) (Figure 2).

GR2M-1994 Model (GR4-1994)

This model [11] was developed in the 1990s by the CEMAGREF (Centre of Agricultural and
Environmental Research of France). It is also based on monthly precipitation and ET [128]. Afterwards,
the model evolved into different versions, such as GR1A, GR2M, GR3J, and GR4J, denominated by the
number of required parameters and with the last letter denominating the period considered: J (daily),
M (monthly), or A (yearly). GR2M transforms precipitation into run-off through the implementation
of two equations: production and transfer functions [128,129]. Initially, P and ET are balanced and
precipitation is distributed between the upper storage tank (S) with a limited capacity and groundwater
storage tank (G) [130]. Nief et al. [131] showed that model parameters are robust to non-stationary
rainfall series, and calibrated parameter values are highly correlated with land use. Like previous
models, monthly P and ET are the inputs, and the operating diagram is shown in Figure 2.

AWBM Model

The AWBM was also developed in the 1990s and is the most commonly used water balance
method in Australia [46]. This model has three surface water-storage tanks (S1, S2, and S3). The water
balance of each is estimated independently, resulting in three surpluses. One part of these surpluses is
transformed into run-off (Qs), and the other part percolates to a groundwater storage tank or aquifer
(G), which in turn goes to groundwater run-off (Qg). Total flow (Q) is obtained by adding both run-offs
(Figure 2).

Guo Model (Five Parameters)

This model was developed to estimate the run-off in 70 catchments in southern China. It has a
similar performance to the two-parameter Guo model, and its use is particularly recommended in
humid and semi-humid regions [10,31]. Precipitation and evapotranspiration (P and ET) are the input
data, on the basis of which the remaining parameters are estimated: ET, soil water storage (S), water
surpluses, surface run-off (Qs), subsurface run-off (Qb), aquifer recharge, groundwater storage (G),
groundwater run-off (Qg), and total flow (Q).

Thornthwaite-Mather Model

This model was developed by Thornwaite and Mather [8,132] in the early 1940s for the Delaware
River, and many water balance models are based on it. The model distinguishes two water storage
tanks: surface (S) and groundwater (G), which lead to the output flow (Q) through different calculations.

More detailed information about model performance and governing model equations is provided
in Appendix A.

2.2.2. Goodness-of-Fit Tests

The study period is 34 years (1977–2010). We employed three years for warming up, and the
other 30 years, starting October 1980, for calibration and validation, applying the split sample test
proposed by KlemeŠ [133]. Therefore, the data series from 1980–2010 (30 years) was divided into two
sets. We used the first 15 years (1980–1995) for calibration, and the remaining 15 years (1995–2010) for
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model validation, namely as a security measure of calibration. As suggested by Kirchner [87], both
series (calibration and validation) should exhibit different revealing behaviors with regards to the
representativeness and reliability of modelling results and their deployment. Thus, we provided a
comparison of precipitation values in both calibration and validation periods. We conducted calibration
of all models’ parameters by comparing the predicted data with the observed data. The optimal
value for each parameter is the value that minimizes the differences between both flow series and the
objective function that minimizes the sum of the square of deviations. We used the generalized reduced
gradient as the optimization algorithm [134], which searches for the extreme values of the functions
by the generalized reduced gradient algorithm method (GRG2) [135–138]. We used the multi-start
method to find a globally optimal solution [139,140]. The multi-start method operates by generating
candidate starting point values randomly selected between the bounds specified for the variables.
These points are then grouped into clusters that are run repeatedly to capture the locally optimal
solution. We used a Bayesian test to determine whether the process should continue or stop. As the
number of runs of the non-linear iterations increases, the probability that the globally optimal solution
has been found also increases 100%. For most non-linear problems, this method will at least yield very
good solutions [140]. In this study, 1000 starting points have been used for each model and watershed.
Once the model was calibrated and the parameters validated, we executed the predictive stage.

To evaluate model accuracy, six statistic indices were obtained: AIC [121,122], BIC [123], NSE [141],
R2 [142], PBIAS [143], and REV [144]. The formulas used are presented in Equations (2)–(11).

AIC = −2log L
(
Ŏ
)
+ 2k (2)

BIC = −2log L
(
Ŏ
)
+ klog n (3)

where Ŏ is the set (vector) of model parameters
L(Ŏ) is the likelihood of the candidate model given the data when evaluated at the maximum

likelihood estimate of θ. Root mean squared error of the model output (RMSE) was used in this study;
k is the number of estimated parameters in the candidate model, and n is the sample size

NSE = 1−

∑n
i=1

(
Qobs,i −Qsim,i

)2

∑n
i=1

(
Qobs,i −Qobs

)2 (4)

RMSE =

√∑n
i=1

(
Qsim,i −Qobs,i

)2

n
(5)

R2 =

(
Sobs,sim
√

Sobs∗Ssim

)2

(6)

Sobs,sim =
1

n− 1
∗

n∑
i=1

(Qobs,i −Qobs) ∗ (Qsim,i −Qsim) (7)

Sobs =
1

n− 1
∗

n∑
i=1

(Qobs,i −Qobs)
2

(8)

Ssim =
1

n− 1
∗

n∑
i=1

(Qsim,i −Qsim)
2

(9)

PBIAS =

∑n
i=1

(
Qobs,i −Qsim,i

)
∗ 100∑n

i=1 Qobs,i
(10)
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REV =

∑n
i=1(Vobs,i −Vsim,i)∑n

i=1 Vobs,i
(11)

where Qobs, Vobs and Qsim, Vsim are the observed and simulated streamflow and run-off

volumes, respectively.
According to Moriasi et al. [124], a grading method was established to evaluate the good

performance of the model based on the NSE, R2, and PBIAS values. A model was considered
unsatisfactory if one of the previous tests is set as unsatisfactory, according to Moriasi et al. [124].
In any other case, the grading system proposed based on Moriasi et al. [124] and Bressiani et al. [125]
was applied to classify the models in four categories—very good, good, satisfactory, and
unsatisfactory—calculated by adding 3, 2, or 1 for each goodness-of-fit result according to Table 2.

Table 2. Classification criteria for hydrological models.

Goodness-of-Fit NSE PBIAS (%) R2 Grading Classification-Sum

Very Good (V) 0.75 < NSE ≤ 1.00 PBIAS < ±10 R2
≥ 0.85 3 7 < E ≤ 9

Good (G) 0.65 < NSE ≤ 0.75 ±10 ≤ PBIAS < ±15 0.75 < R2
≤ 0.85 2 5 < E ≤ 7

Satisfactory (S) 0.50 < NSE ≤ 0.65 ± 5 ≤ PBIAS < ±25 0.60 < R2
≤ 0.75 1 3 < E ≤ 4

Unsatisfactory (U) NSE ≤ 0.50 PBIAS ≥ ±25 R2 < 0.60 Unsatisfactory Unsatisfactory

Furthermore, as our ultimate goal in this study is to use model predictions for water management,
especially regarding the assessment of interannual water volumes, flow duration curves (FDCs) have
been analyzed for the selected water balance models, and we evaluated specific hydrological metrics
according to Yilmaz et al. [145] and Shafi and Tolson [146]. The signatures (Si) that will assess low-flows,
high-flows, and mid-flows, in both observed and simulated ones, are shown in Equations (12)–(14).

FDC mid-segment slope (MS):

log (Qm1) − log (Qm2) (12)

where m1 and m2 are the lowest and the highest flow exceedance probabilities within the mid-segment
of the FDC (0.2 and 0.7, respectively)

FDC high-segment volume (HV):
H∑

h=1

Qh (13)

where h = 1, 2, . . . , H are flow indices located within the high-flow segment probabilities of exceedance
lower than 0.02; H is the index of the maximum flow.

FDC low-segment volume (LV):

L∑
l=1

[log(Ql) − log(QL)] (14)

where l = 1, 2, . . . , L are the flow indices located within the flow-segment (0.7–1.0 flow exceedance
probabilities); L is the index of the minimum flow.

The score for each signature will be calculated as Equation (15) [146]:

DI =
Sobs

i − Ssim
i

Sobs
i

× 100 (15)

where Di is the deviation between the signatures (Si) of the observed data (obs) and simulated model
result (sim).

Model uncertainty for each watershed was assessed using FITEVAL software [126]. FITEVAL
uses the general formulation of the coefficient of efficiency Ej (Equation (16)).
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Ej = 1− I (16)

where Bi is a benchmark series, which may be a single number (such as the mean of observations),
seasonally varying values (such as seasonal means), or predicted benchmark values using a function
of other variables. For j = 2 and Bi = Qobs, Ej yields E2 = NSE. Threshold values used for delimiting
model efficiency classes are denoted as Unsatisfactory (NSE < 0.50), Acceptable (0.50 ≤NSE < 0.65),
Good (0.65 ≤ NSE < 0.75), and Very good (NSE ≥ 075). We studied two methods to account for model
uncertainties and then implemented them within FITEVAL: Probable Error Range (PER) and Correction
Factor (CF) [126].

3. Results

3.1. Precipitation Data Series Assessment

Firstly, we carried out an analysis of the monthly precipitation data series in Figure 3 using the
boxplot graphics, distinguishing calibration (blue boxes) and validation (red boxes) periods, as the
form of the evapotranspiration equation has limited influence on model performance in monthly
hydrological models [147]. As can be seen in Figure 3, patterns of precipitation series in both periods are
usually different, especially during the rainiest months that occur, mainly, from October to February in
the more humid catchments (PUE, AND, BEG), thus decreasing (until May, even June) as the watershed
becomes less humid (LEM, TRE, COT, PRI). The humid sub-humid ones (SEG, ZUM, JUB) shifted the
rainiest period to spring, although maximums were also reached in winter. When the watershed is
more arid, the distribution of precipitation over the year is more irregular, reaching similar values
in December and June (RVA). This heterogeneity, not only between regions but also within the same
watershed in both calibration and validation periods, represents different conditions and behaviors,
which provides an optimal framework for hydrological purposes [87]. The driest period for all the
watersheds occurs in summer months reaching, obviously, the lowest values in semi-arid and dry
sub-humid watersheds. Likewise, July and August show the lowest variations, and consequently, the
smallest boxplots. On the contrary, the highest differences are shown in the rainy months, varying in a
wide range, reaching up to three times the median precipitation in nearly all watersheds. Concerning
outliers in precipitation values (points and asterisks in Figure 3), the most humid watersheds, with
aridity indices above 2 (PUE, AND, BEG), do not usually show numerous cases outside the bounds of
the boxplots compared with the rest of the studied watersheds. When the aridity index ranges between
1 and 2, the monthly outliers in the boxplots occur more often and they are especially far out in the late
spring or at the beginning of autumn. This trend levels out in humid sub-humid watersheds but dry
sub-humid and semi-arid regions show extreme values for practically the whole year.

3.2. Models’ Parameters

Table 3 shows the main characteristics of the models’ structure, besides the range of parameters
to be calibrated and the optimal ones found in the models and watersheds studied. Nearly all the
optimal parameters of the models vary over the entire possible range. This circumstance is probably
caused by the adaptation of the different hydrological processes embedded in the models’ structure to
the wide diversity of the climatic conditions in the regions analyzed. Parameters related to storage
capacity of the superficial tanks (H in Témez; a in GR2M; φ in Thornthwaite-Mather; A1, A2, A3 in
AWBM, etc.) have a strong decreasing value trend when the watershed is drier, due to the average soil
moisture throughout the year and the specific climatic conditions of each watershed. The finding is
further confirmed in other parameters, such as the maximum soil moisture included in the Guo-5p
model in the S parameter, whose values are around 500–1000 mm in humid and sub-humid regions
and drop out at 50–70 mm in the driest watersheds, but we found no tendency when PET is summed,
as the ABCD model takes parameter b into account. However, underground storage is only regionally
sensitive when the aquifer capacity is important, regardless of the climatic location. Moreover, the
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ABCD model fails to perform the groundwater processes in semi-arid regions (d = 0), which is of high
importance in the watersheds’ hydrological water balance. No correlations were found between the
parameters and catchment area.
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Table 3. Models’ characteristics, parameters’ value range, and optimal values obtained by calibration.

Model Number of
Storages

Number of Optimized
Parameters

Parameters Value
Range

Optimal Value
Range

Témez 2 4

50 < H < 250 50 < H < 140
0.2 < C < 1 0.2 < C < 1
10 < I < 150 13 < I < 150

0.001 < α < 0.9 0.2 < α < 0.9

ABCD 2 4

0 < a < 1 a = 1
5 < b 157 < b < 554

0 < c < 1 0.35 < c < 0.83
0 < d < 1 0.015 < d < 1

GR2M-GR4 2 4

0.6 < X1 < 1.9 0.46 < X1 < 1.87
0.03 < X2 < 18.2 0.07 < X2 < 0.94

100 < a 126 < a < 462
0.2 < α < 0.5 0.2 < α < 0.41

AWBM 4 6

50 < C < 200 42 < C < 92
0 < B < 1 0.4 < B < 0.5
0 < K < 1 0.3 < K < 0.61

0.5 < A1 < 1.5 0.2 < A1 < 0.3
0.5 < A2 < 1.5 0.35 < A2 < 0.4
0.5 < A3 < 1.5 0.35 < A3 < 0.4

Guo 5p 2 5

0 < K0 < 2 0.6 < K0 < 1.5
0 < K1 < 1 0 < K1 < 0.5
0 < K2 < 1 0 < K2 < 0.6
0 < C < 1 0 < C < 0.7

0 < S 250 < S < 1000

Thorn
Thwaite-Mather

2 3
0 < α < 1 0.02 < α < 1

0 < φ 0.001 < φ < 256
0 < λ < 1 0.001 < λ < 0.91

3.3. Goodness-of-Fit Tests

For a better understanding of the research and subsequent discussion, we ranked the results in
tables and figures according to the AIU values.

3.3.1. AIC and BIC Criteria

AIC and BIC criteria classify the best model when the value achieved is lower. Although
they penalize the number of estimated parameters, neither of them provide priority to the
Thornthwaite-Mather model in this study (Tables 4 and 5), as it has the fewest parameters to be
estimated compared to the others used. In fact, it achieves less value in either of the watersheds.
Both AIC (Table 4) and BIC (Table 5) show better results globally when using GR2M, proving to be
the best model in 12 of the 16 catchments for AIC and 8 of the 16 for BIC, both in humid and dry
sub-humid catchments. Témez, widely used in Spain, achieves the best result only in CUE for AIC and
BIC, as well as for LEM and PRI, located in humid sub-humid areas. AWBM and Guo-5p reach the
lowest values in humid sub-humid HOY, SEG, and ZUM. Focusing on the coefficient of variation (C.V.)
in the last column of Tables 4 and 5, it is clear that when the watershed is less humid, the C.V. obtained
is higher, which means a clear difference between the used models. When AIU is higher than 1.5, the
C.V. is below 10% but in the LEM watershed, the cover land changes are highlighted, for both AIC and
BIC. Such minor differences indicate the similar performance of nearly all models studied in the most
humid catchments. Nonetheless, if AIU is below 1.5, the C.V. becomes greater, which means a huge
difference between the results achieved with the best model and with the rest of the models, reaching
more than 130% in ZUM. Furthermore, in the driest watersheds, the C.V. is between 20% and 75%,
which means that the AIC and BIC criteria are also the basis for the hydrological model selection in the
dry and semi-arid ones, although the results may not differ in the humid ones.
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Table 4. AIC criterion values for calibration (Calib.) and validation (Valid.) periods for the selected
models (best model in bold; C.V. (%) is the coefficient of variation).

Témez ABCD GR2M AWBM GUO5P TH-MTH
Average CV (%)

Calib. Valid. Calib. Valid. Calib. Valid. Calib. Valid. Calib. Valid. Calib. Valid.

PUE 1311 1268 1293 1119 1189 1058 1320 1146 1293 1135 1289 1131 1213 7.60
AND 1095 1213 1093 1208 1060 1182 1123 1218 1190 1148 1112 1208 1154 4.83
BEG 1150 1152 1138 1164 1114 1130 1145 1173 1139 1169 1137 1165 1148 1.54
LEM 1053 718 1042 799 1015 877 1064 786 1041 828 1048 790 922 14.41
TRE 869 783 855 753 796 758 889 790 773 833 876 772 812 6.06
COT 1376 1231 1286 1163 1154 1184 1389 1259 1282 1166 1278 1162 1244 6.60
PRI 365 470 357 505 326 482 371 499 357 500 355 501 424 17.24
GAR 22 255 35 286 −2 205 27 230 138 151 −10 245 132 84.95
HOY 352 477 256 430 216 504 326 470 231 456 306 498 377 28.72
SEG 206 609 170 454 84 461 344 482 172 431 161 458 336 50.37
ZUM 221 499 −12 207 −146 163 −89 196 −87 197 30 342 127 151.57
JUB −319 −132 −296 −144 −397 −196 −391 −191 −366 −152 −411 −172 −264 −41.57
BOL −50 −30 −72 −27 −118 −27 −52 2 −61 −88 −55 −23 −50 −64.86
TAM 348 609 375 478 423 433 353 545 444 417 400 671 458 22.15
CUE 447 292 440 352 431 387 444 326 191 503 433 321 381 22.92
RVA −1050 −316 −1036 −985 −1089 −350 −1056 −325 −429 −601 −980 −301 −710 −48.87

Table 5. BIC criterion values for calibration (Calib.) and validation (Valid.) periods for the selected
models (best model in bold; C.V. (%) is the coefficient of variation).

Témez ABCD GR2M AWBM GUO5P TH-MTH
Average CV (%)

Calib. Valid. Calib. Valid. Calib. Valid. Calib. Valid. Calib. Valid. Calib. Valid.

PUE 1324 1280 1306 1132 1213 1071 1339 1159 1309 1151 1299 1140 1227 7.57
AND 1108 1226 1106 1221 1083 1195 1143 1231 1206 1164 1122 1217 1168 4.63
BEG 1163 1165 1150 1177 1137 1143 1164 1186 1155 1184 1147 1174 1162 1.39
LEM 1066 730 1055 812 1038 890 1083 799 1057 843 1058 800 936 14.34
TRE 881 796 868 765 820 770 908 802 789 848 885 781 826 6.02
COT 1388 1243 1299 1176 1177 1197 1408 1272 1298 1182 1287 1171 1258 6.54
PRI 378 482 370 518 349 495 390 512 373 516 364 511 438 16.36
GAR 34 268 48 299 20 218 46 242 153 167 −1 255 146 75.84
HOY 364 489 268 443 237 517 344 482 246 472 315 508 390 27.37
SEG 218 622 183 467 107 474 215 430 187 447 171 468 332 50.47
ZUM 233 511 1 220 −123 176 −70 209 −71 213 40 352 141 134.65
JUB −306 −120 −283 −131 −374 −196 −372 −178 −350 −136 −401 −163 −251 −42.82
BOL −38 −17 −59 −27 −95 −15 −33 15 −46 −72 −45 −14 −37 −78.51
TAM 360 621 388 490 423 445 372 557 460 432 410 680 470 21.42
CUE 460 304 452 365 454 400 463 338 207 519 443 331 395 22.31
RVA −1037 −304 −1036 −972 −1066 −337 −1037 −312 −413 −585 −970 −292 −697 −49.76

3.3.2. Grading Classification (NSE, PBIAS, R2)

In addition to the BIC and AIC criteria, we calculated NSE, PBIAS, and R2 and assessed a grading
classification, according to Table 2, of the observed and simulated streamflow data (Qobs-Qsim) for all the
evaluated approaches (Figure 4). The NSE for each model considering the 16 basins (Figure 4a) showed
good results for all models except Témez, for which the average NSE (0.44) was below 0.50. Likewise,
the most extreme outliers are shown for the Témez model in both the calibration and validation
periods, reaching an absolute minimum below −1 in ZUM. AWBM and Guo-5p also show outliers in
the validation period, although closer to the minimum values in respective boxplots, which correspond
with the semi-arid watershed (RVA). GR2M and ABCD seem to be the best models, in general, in
peninsular Spain according to the NSE values, although NSE for GR2M in semi-arid watersheds (RVA)
is close to zero (0.18), and it is considered unsatisfactory. Despite being a five-parameter model, the
Guo-5p would only be satisfactory according to the NSE criterion. However, a three-parameter model,
such as the Thornthwaite-Mather, also achieved good results when considering only NSE (except in
RVA), accounting for both wet and dry sub-humid Spain, which confirms the absence of the need for
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very complex water balance models, as suggested by Clark et al. [148], Perrin et al. [19], Jakeman and
Hornberger [149], Michaud and Sorooshian [150], or Beven [151].
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However, NSE cannot help identify model bias [124], and it should be complemented by other
measures, such as PBIAS, in order to consider how well the model simulates the average magnitudes for
the outputs and to identify the average model simulation bias (overprediction versus underprediction).
The PBIAS boxplot for the models analyzed (Figure 4b) shows that this statistic technique provides an
irregular rating of model performance without correlation with the aridity, as it provides high absolute
values in the calibration and validation periods for all the models and watersheds. This may happen
because PBIAS is very sensitive to extreme values [124] and its use is not particularly recommended to
identify differences in the timing and magnitude of peak flows, such as in the case of the watersheds in
peninsular Spain, as shown in the previous section. Notwithstanding, the best results are achieved
with GR2M in calibration, but the validation period is more varied and ABCD and AWBM obtain
similar results in PBIAS values.

Although the GR2M showed the best fit according R2 results, in nearly all catchments in the
calibration (16 out of 16) and validation periods (14 out of 16), both semi-arid and sub-humid, we
found an average correlation coefficient of close to 0.90. Boxplots for the rest of the models are
not very different in either the median or amplitude (Figure 4a). The ABCD and AWBM models
did not give the best fit in the validation period for any of the studied catchments, although their
values were similar to those using the GR2M, especially for humid and sub-humid catchments.
Increasing the number of parameters does not guarantee a better performance, as previous studies
have shown [19,21,147,150,152], as the AWBM (6 parameters) did not show better results than the rest,
even when it was compared to the lowest parameter model, the Thornthwaite-Mather (3 parameters),
which had better results for nearly all watersheds, both humid and semi-arid. All water balance
models showed correlation coefficients above 0.70 for humid and sub-humid catchments. In the dry
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sub-humid HOY and semi-arid RVA catchments, some values fell below 0.60, especially with the
Thornthwaite-Mather and Témez models, despite the latter being widely used in Spain. It achieved
the best fit only in the GAR and PRI catchments, taking similar values as the Guo-5p and GR2M
coefficient. When the catchment was more arid, the R2 obtained was lower, which is in line with other
studies [82,147]. It is essential to consider that R2 is oversensitive to extreme values [153] and insensitive
to additive and proportional differences between model predictions and measured data [154], and it
should be used with other goodness-of-fit tests and different criteria, both graphical and metrics, as we
considered in this study, to provide consistency in the selection of models.

According to the grading classification criteria (Table 2) shown in Figure 4d, only the Témez
model was unsatisfactory, whereas the rest were, on average, between good and satisfactory. This may
be because the surpluses law of Témez is asymptotic to the one proposed by Thornthwaite-Mather for
the highest precipitation values, but it differs on the lowest side of the curve, without requiring both
the PET and soil moisture deficit to be used up completely. Furthermore, despite being a widely used
hydrological model in Spain, underground Témez modeling is oversimplified and is invalid for karstic
aquifers where there is more than one curve of discharge in the depletion of the aquifer [106].

With regards to the performance of the models’ results in each basin (Figure 5), we highlighted
the influence of the aridity index, as mentioned before, which indicates that the climatic characteristics
of the watershed are the most important issues in a model’s performance. When the watershed is
drier, the worst performance is achieved, as the grading classification value decreases from humid
to semi-arid regions. As might be expected, validation results (Figure 5a) are usually worse than the
calibration ones (Figure 5b), reducing the range in the validation boxplots. However, PUE and LEM
show better classification in the validation period, as there are more hydrological models whose NSE
reach higher values than in calibration period. This may occur in cases where the measured data are
bi-modal with high and low distributions in the same study area, such as the measured flows [155].
PRI is the only watershed that shows similar behavior to nearly all the models studied. Changes in
land use in the last two decades (over 10% noticed in LEM and RVA) are not highlighted when using
these metrics, especially in LEM, where the land use has changed almost 20% due to reforestation.
Humid and humid sub-humid watersheds show good results in many of the hydrological models,
with an average of 5–6 in the grading classification. This value decreases in dry sub-humid catchments
until 4–2, and the semi-arid RVA only obtains satisfactory classification with GR2M in the calibration
period and Guo5p in the validation period.
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Table 6 summarizes the classification sum according to the grading criteria proposed in Table 2
for all studied catchments and models in both the calibration (1980–1995) and validation (1995–2010)
periods. We selected the model that best fits each watershed according to the highest and similar
values in the calibration and validation periods (Table 6). The GR2M gave the best fit of the catchments,
with around 80% in the calibration period and 50% in the validation period with values over 7,
meaning they all had a very good fit. The disparities between calibration and validation may be due
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to the climatic differences between the calibration and validation periods, as analyzed in previous
sections. Semi-arid catchment, RVA, was unsatisfactory for the GR2M and for the rest of the models
studied. These watersheds have a very irregular rainfall distribution, producing frequent run-off

peaks, and although they have deep soil, low infiltration is produced; therefore, models do not achieve
good results.

Table 6. Classification values (calibration: 1980–1995/validation: 1995–2010). Best global fit in bold.

Catchment Témez ABCD GR2M AWBM GUO-5P THOR-MATH Best Model Classification

PUE 1/1 2/5 6/5 1/2 2/4 2/4 GR2M Good
AND 8/6 9/7 9/8 7/6 9/8 9/7 GR2M Very Good
BEG 7/8 9/8 9/9 8/7 8/8 8/7 GR2M Very Good
LEM 3/8 4/5 6/3 2/7 4/4 5/6 TH-MT Good
TRE 7/8 8/8 9/8 5/6 8/7 6/7 GR2M Very Good
COT 2/3 4/6 8/5 1/2 6/6 6/7 TH-MT Good
PRI 6/7 6/7 8/8 6/7 6/7 6/6 GR2M Very Good

GAR 8/5 6/4 9/5 8/5 7/4 8/5 GR2M Good
HOY 1/0 4/2 6/0 1/0 4/1 1/4 ABCD Unsatisfactory
SEG 8/3 8/3 9/3 8/5 8/4 9/6 TH-MT Good
ZUM 4/0 6/3 8/6 8/5 8/5 4/4 GR2M Good
JUB 5/1 5/3 8/4 8/3 6/3 8/5 TH-MT Good
BOL 2/3 3/4 6/1 2/1 5/4 2/2 GUO-5P Satisfactory
TAM 7/2 5/4 1/5 6/2 6/4 3/2 GUO-5P Satisfactory
CUE 1/4 2/3 2/3 0/4 4/3 1/4 GUO-5P Satisfactory
RVA 3/0 0/1 4/1 2/1 1/3 0/0 GR2M Unsatisfactory

Best Fit
(Number of Times) 0 1 8 0 4 4

The Guo5p and Thornthwaite-Mather models were the best in the four catchments. The former
has the best fit in some of the humid and humid sub-humid catchments but gives similar results to
GR2M. However, Guo5p provides satisfactory results in dry sub-humid regions, whereas the rest
of the models show important differences between calibration and validation periods. The ABCD
model was the best in only one catchment but showed a value below 3 in the validation period, which
means unsatisfactory. Nevertheless, humid watersheds show good behavior with nearly all the models,
corroborating the better performance of nearly all models in wetter conditions. In general, the models
that showed the best results on average, in all catchments, were first the GR2M, and then the Guo5p
and Thornthwaite-Mather, with values around 7/5 (calibration/validation) for the GR2M model and
around 5/5 (calibration/validation) for the Guo5p and Thornthwaite-Mather models. The AWBM and
Témez showed the worst results, with 4/4 on average, which are almost unsatisfactory.

As with previous comparison methods, the best results were obtained in more humid basins, and
the drier regions showed more unsatisfactory results. All of the analyses taken into account did not
show a correlation between the catchment area and goodness-of-fit results, so higher model resolution
does not seem to be an improvement for humid and sub-humid watersheds [74,156,157].

4. Discussion

4.1. Water Volume Assessment (REV)

The main aim of hydrological balance models is to assess inflows in a water resource system,
and it is essential for appropriate analysis of its availability. Therefore, in addition to the assessment
performed with the proposed grading classification (Table 2), we should analyze the differences
between the total observed and simulated run-off volumes to validate or discard a model. Unlike the
previous tests taken into account, REV results do not highlight one or two specific hydrological models,
but the best fitted model for each catchment differs quite substantially. Table 7 shows the REV results
of these comparisons for the catchments we studied and the models considered. According to this
criterion, the Guo-5p and Thornwaite-Mather show the best results, on average, giving the best fitted
models in three of the catchments studied. Témez is the worst model for nearly all catchments, reaching
disparities that range between 10% and 80% compared to the best performances of other models.
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As with the BIC and AIC criteria, when the catchment is more arid, the differences between REV results
are higher; therefore, there are several models that achieve REV lower than 10% for humid regions,
provided that AIU is higher than 1.1. However, results for GR2M for LEM are higher, probably caused
by the land cover change in the studied period. The worst results are shown in humid areas, with
AIU around 1.0 and dry sub-humid and semi-arid catchments with REV around 20–40%, on average.
REV is particularly unsatisfactory in semi-arid regions (RVA), where no model achieves values below
30%. Also noteworthy is the poor results shown by GR2M in dry sub-humid and semi-arid regions,
which is in line with the classification of models in Table 6.

Table 7. REV (%) values in period 1980–2010. Best fit (lowest absolute value for each watershed)
in bold.

Catchment Témez ABCD GR2M AWBM GUO-5P THOR-MATH

PUE −36.72 −12.76 11.92 −39.73 −9.86 −9.56
AND −12.40 −6.44 3.14 −11.45 −0.15 −9.85
BEG −9.53 −5.56 1.72 −11.25 −2.83 −10.45
LEM −9.10 1.04 14.85 −17.41 1.85 7.11
TRE −7.41 −0.67 7.38 −14.28 −2.23 −9.94
COT −42.95 −9.74 10.60 −46.93 −5.43 −5.36
PRI −7.94 1.63 2.99 −5.53 −0.61 −3.10

GAR 41.31 50.72 13.54 32.88 −11.47 40.90
HOY −51.91 8.98 26.48 −41.58 13.96 3.08
SEG −2.45 11.07 7.47 1.10 4.65 3.34
ZUM 15.43 11.43 0.41 −2.51 −2.08 −1.63
JUB −15.12 −11.59 −8.72 −10.54 −13.31 −12.31
BOL −3.30 10.26 49.61 −4.03 17.32 −1.75
TAM 89.01 55.40 58.10 71.97 13.16 111.98
CUE 5.15 20.24 24.40 −3.28 −46.18 12.45
RVA −63.14 −29.66 −47.55 −60.21 −33.07 −68.22

Average (Absolute Value) 25.80 15.45 19.12 23.42 11.14 19.44

Best fit (Number of Times) 0 3 3 2 4 4

4.2. Model Selection

Table 8 shows the proposed model for each catchment, taking into account the proposed set of
criteria: AIC, BIC, the grading method, and REV. Values of AIC and BIC in Table 8 denote the ranking
position of the model according to these methods, varying between 1 and 6; 1 for the best result (lower
value of the index) and 6 for the worst one. As seen in previous sections, the best results are achieved
in humid regions for all the criteria taken into account. Furthermore, the AIC and BIC values match in
most cases with the other used methods. We confirmed GR2M, as it was the best model in 50% of
the catchments analyzed and had the best results in all of the goodness-of-fit tests applied. Moreover,
it reached grades from good to very good according to Table 2, not only in humid catchments but also
in humid sub-humid ones, with AIU being higher than 0.6 for ZUM and JUB. The good performance
of GR2M may be due to its inclusion of a water exchange function alongside two independent parallel
routing paths, which is of great importance in the transference between contrasting wet and dry
periods [82]. Despite a value of AIU of 1.96 in LEM, only Témez is able to provide satisfactory results
for all the criteria, with a REV lower than 10%. However, consideration should be made, as the land
cover in LEM has changed more than 20% in the studied period.

Thornthwaite-Mather shows good performance in COT and SEG, although the AIC and BIC
criteria do not classify this model as the best one, despite the low number of parameters. ABCD is
considered unsatisfactory for HOY, but none of the remaining models obtained better results in this
catchment. This may be caused by its altitude, as it is situated at around 1600 m, resulting in the
highest altitude in our study, and snow precipitation events are relatively important and could affect
hydrological modeling. Nonetheless, REV was below 10%, and the total volume assessment in the
studied period can be considered good, although better results of REV (3.08) were achieved with
Thornthwaite-Mather in HOY. Furthermore, the ABCD model enables surpluses, even when soil is
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not saturated, and the division between run-off and aquifer recharge is modeled by a constant time
coefficient, which is rather unrealistic. Dry sub-humid and semi-arid catchments with AIU lower than
0.6 obtained the best performance with Guo5p, but results are unsatisfactory when AIU falls below 0.54,
highlighting the relevance of aridity in lumped model performance. Regarding REV results, nearly all
models show an error below 10%, although REV values increase to about 20% when the catchment is
more arid. We did not find a trend for the catchment area or location and for the models used.

Table 8. Summary of performance of the selected water models. AIC and BIC values are referred to
first–third place in increasing order value in Tables 4 and 5, respectively.

Catchment Area (km2) Altitude (MASL) Model AIC BIC Grading Method REV (%)

PUE 263.85 400.05 GR2M 1 1 Good +11.92
AND 778.49 486.01 GR2M 1 1 Very Good +3.14
BEG 836.89 504.01 GR2M 1 1 Very Good +1.72
LEM 252.58 342.18 Témez 1 1 Good −9.10
TRE 413.54 526.64 GR2M 1 1 Very Good +7.38
COT 488.22 559.51 Th-Mt 2 1 Good −5.36
PRI 328.16 1255.05 GR2M 1 2 Very Good +2.99

GAR 69.92 689.98 GR2M 1 1 Good +13.54
HOY 66.15 1632.12 ABCD 1 1 Unsatisfactory +8.98
SEG 232.89 1416.46 Th-Mt 2 3 Good +3.34
ZUM 266.03 1549.95 GR2M 1 1 Good +0.41
JUB 207.66 1150.05 GR2M 1 1 Good −8.72
BOL 29.23 600.31 Guo-5p 1 1 Satisfactory +17.32
TAM 458.12 447.46 Guo-5p 1 2 Satisfactory +13.16
CUE 139.86 610.63 Témez 1 1 Unsatisfactory +5.15
RVA 85.68 607.70 Guo-5p 1 2 Unsatisfactory +11.14

4.3. Models Uncertainty Analysis

After selecting the best model for each catchment in the studied period, defining the thresholds of
acceptance of the model depends on its application of itself [158]. We used FITEVAL software [126] to
provide an uncertainty framework of the results achieved. This application performs the goodness-of-fit
of observed and simulated streamflows by the line balancing graphic versus line 1:1, the computation
of NSE and RMSE and their corresponding values for the 95% confidence interval, the qualitative
measure of adjustment, and the presence of bias and outliers. Figure 6 collects, as examples of FITEVAL,
the outputs obtained for PUE, BEG, CUE, and RVA, and Table 9 shows the summary of results for each
catchment and model selected in the previous sections. The values and graphics shown for GR2M
models are by far the best compared to the rest of the models selected; therefore, more than 90% of
the confidence intervals are above 0.75 NSE, considering that the model was very good in humid
watersheds. When AIU was below 1.0, the confidence interval became greater for all the models,
although GR2M also remained lower than the rest with an average range of 0.6–0.8 NSE, which means
acceptable and very good models, respectively. On the contrary, Témez and Thornthwaite-Mather
did not reach 0.75 NSE, even in humid catchments, and they fell by up to 0.1–0.3 NSE when AIU
was below 1.0, such as SEG and CUE. Guo5p had similar performance in the most arid catchments
and the confidence interval range comprises up to 70% of the uncertainty in the case of the semi-arid
RVA. In general, outliers in catchments with AIU lower than 1.0 tend to underestimate the streamflow,
whereas in the humid ones, the unusual presence of outliers tends to overestimate predictions around
5–10%.
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Table 9. Summary of uncertainty analysis for each catchment using FITEVAL in 1980–2010 period.

Catchment Model Probability
NSE = 0.75–1.00

Probability
NSE = 0.65–0.75

Probability
NSE = 0.50–0.65

Probability
NSE < 0.50 Classification

PUE GR2M 44.5 % 55.1% 0.4% 0.0% Good-Very Good
AND GR2M 100% 0.0% 0.0% 0.0% Very Good
BEG GR2M 100% 0.0% 0.0% 0.0% Very Good
LEM Témez 3.6% 65.9% 30.5% 0.0% Acceptable-Good
TRE GR2M 95.2% 4.8% 0.0% 0.0% Good-Very Good
COT Th-Mt 0.1% 87.0% 12.9% 0.0% Acceptable-Good
PRI GR2M 91.8% 8.2% 0.0% 0.0% Good-Very Good

GAR GR2M 94.6% 5.2% 0.2% 0.0% Good-Very Good
HOY ABCD 0.0% 0.4% 49.8% 49.8% Unsatisfactory-Acceptable
SEG Th-Mt 25.3% 25.4% 31.0% 18.3% Unsatisfactory-Very Good
ZUM GR2M 14.6% 43.7% 41.7% 0.0% Acceptable-Very Good
JUB GR2M 17.9% 60.9% 21.0% 0.2% Acceptable-Very Good
BOL Guo-5p 1.9% 42.8% 50.1% 5.2% Unsatisfactory-Good
TAM Guo-5p 34.3% 50.0% 15.2% 0.5% Acceptable-Very Good
CUE Témez 0.3% 10.1% 60.2% 29.4% Unsatisfactory-Good
RVA Guo-5p 0.2% 5.0% 29.5% 65.3% Unsatisfactory-GoodSustainability 2019, 11, x FOR PEER REVIEW 20 of 34 

 
Figure 6. Uncertainty analysis of the models selected in PUE, BEG, CUE, and RVA using FITEVAL 
application. 

4.4. Flow Duration Curves 

As our ultimate goal in this study is to use model predictions for the assessment of water 
availability, we developed FDCs for the observed and simulated streamflows for the whole studied 
period (1980–2010) (Figure 7) in order to evaluate the quality metrics related to different segments of 
the streamflow series. As previously determined, when the watershed is more humid, the best 
performance is obtained. All the watersheds had a similar pattern, in general terms, except the BOL, 
TAM, CUE, and RVA, which were the driest of those studied and were performed by the Guo5p and 
Témez models. However, Témez for LEM had good results, as REV suggested, although differences 
reached 59.4% in the low volumes. The graphics confirm the previous values of criteria and grading 
classification proposed, showing, in general, good performance in the highest and medium volumes. 
Lowest volumes had poor performance, especially when AIU was lower than 1. Concerning the 
humid and sub-humid regions, GR2M had good performance in probabilities of exceedance lower 
than 80%, (i.e., in high and medium volumes), but both curves were separated when the streamflow 
was lower. Thornthwaite-Mater´s model structure tends to underestimate low streamflow and to 
overestimate high streamflow, thus, even in COT with an AIU of 1.65, the observed and simulated 
FDCs are separated for high and low volumes. Table 10 quantifies the variabilities identified by FDCs 
using the signatures for high, low, and mid-segment volumes, as we described earlier. Deviations in 
humid and sub-humid watersheds ranged from 0–30% in both high volumes and mid-segment 
slopes, provided that GR2M was the model used. When AIU is below 1, the differences are 
significantly greater, regardless of the model, especially in the mid-segment and low-segment 
volume. Therefore, values in low volumes for humid watersheds showed an average of 30% but 
reached values higher than 100% when AIU was below 1, particularly marked in SEG, BOL, and RVA, 
which we performed using Guo5p and Thornthwaite-Mater. The best performance was obtained in 
the AND, BEG, and TRE watersheds (GR2M model), with values below 25% for all the signatures. 
Nonetheless, low volumes in most humid watersheds accounted for less than 5% of the total 
streamflow in the watersheds in the studied period, so their importance is relative for water resources 
assessment related to urban and agriculture water demand. Notwithstanding, as suggested by 
Operacz et al. [159] and Pusłowska-Tyszewska and Tyszewski [160], low flows have to be taken into 
account from an environmental point of view to maintain minimum ecological discharge. The 
differences in low volumes increased when the watershed was less humid. While high volumes’ 
differences stood at around 10–40%, signatures in low volumes reached negative 200–400%, 

Figure 6. Uncertainty analysis of the models selected in PUE, BEG, CUE, and RVA using
FITEVAL application.

4.4. Flow Duration Curves

As our ultimate goal in this study is to use model predictions for the assessment of water
availability, we developed FDCs for the observed and simulated streamflows for the whole studied
period (1980–2010) (Figure 7) in order to evaluate the quality metrics related to different segments
of the streamflow series. As previously determined, when the watershed is more humid, the best
performance is obtained. All the watersheds had a similar pattern, in general terms, except the BOL,
TAM, CUE, and RVA, which were the driest of those studied and were performed by the Guo5p and
Témez models. However, Témez for LEM had good results, as REV suggested, although differences
reached 59.4% in the low volumes. The graphics confirm the previous values of criteria and grading
classification proposed, showing, in general, good performance in the highest and medium volumes.
Lowest volumes had poor performance, especially when AIU was lower than 1. Concerning the
humid and sub-humid regions, GR2M had good performance in probabilities of exceedance lower
than 80%, (i.e., in high and medium volumes), but both curves were separated when the streamflow
was lower. Thornthwaite-Mater’s model structure tends to underestimate low streamflow and to
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overestimate high streamflow, thus, even in COT with an AIU of 1.65, the observed and simulated
FDCs are separated for high and low volumes. Table 10 quantifies the variabilities identified by FDCs
using the signatures for high, low, and mid-segment volumes, as we described earlier. Deviations in
humid and sub-humid watersheds ranged from 0–30% in both high volumes and mid-segment slopes,
provided that GR2M was the model used. When AIU is below 1, the differences are significantly greater,
regardless of the model, especially in the mid-segment and low-segment volume. Therefore, values in
low volumes for humid watersheds showed an average of 30% but reached values higher than 100%
when AIU was below 1, particularly marked in SEG, BOL, and RVA, which we performed using Guo5p
and Thornthwaite-Mater. The best performance was obtained in the AND, BEG, and TRE watersheds
(GR2M model), with values below 25% for all the signatures. Nonetheless, low volumes in most
humid watersheds accounted for less than 5% of the total streamflow in the watersheds in the studied
period, so their importance is relative for water resources assessment related to urban and agriculture
water demand. Notwithstanding, as suggested by Operacz et al. [159] and Pusłowska-Tyszewska
and Tyszewski [160], low flows have to be taken into account from an environmental point of view to
maintain minimum ecological discharge. The differences in low volumes increased when the watershed
was less humid. While high volumes’ differences stood at around 10–40%, signatures in low volumes
reached negative 200–400%, overestimating streamflows in spring and summer seasons. As with
humid regions, volumes with a probability of exceedance of 80% accounted for less than 8% of the
total volume in the studied period. On the contrary, semi-arid regions showed good performance in
high volumes, but both mid-segment slopes and low volumes had differences above 100% in most
cases, and high volumes in these watersheds accounted for only 25% of the total streamflow in the
studied period.

Table 10. Quality metrics of FDC. (MS: Mid-segment slope; HV: High-segment volume; LV:
Low-segment volume; Di: Relative difference percentage).

Catchment Model
Observed Simulated Di

MS HV LV MS HV LV MS HV LV

PUE GR2M 0.71 1878.65 67.54 0.81 1435.18 86.01 −14.68 23.61 −27.35
AND GR2M 0.75 2239.05 164.43 0.71 1679.94 122.85 6.0 25.0 25.3
BEG GR2M 0.76 2283.95 61.11 0.73 1789.04 59.91 4.0 21.7 2.0
LEM Témez 0.70 943.00 138.90 0.76 569.64 56.39 −8.6 39.6 59.4
TRE GR2M 0.58 701.70 47.69 0.63 643.24 59.56 −8.6 8.3 −24.9
COT Th-Mt 0.73 1725.80 110.60 0.44 1189.46 74.69 39.5 31.1 32.5
PRI GR2M 0.40 321.01 29.96 0.38 216.56 16.61 7.3 32.5 44.6

GAR GR2M 0.98 107.54 181.15 0.74 94.75 24.97 24.8 11.9 86.2
HOY ABCD 0.70 147.23 72.38 0.39 109.93 16.41 44.8 25.3 77.3
SEG Th-Mt 0.36 179.70 24.21 0.57 198.59 129.37 −56.1 −10.5 −434.5
ZUM GR2M 0.35 118.50 37.60 0.42 80.15 145.56 −23.0 32.4 −287.2
JUB GR2M 0.42 33.88 27.07 0.31 24.34 32.34 25.0 28.2 −19.5
BOL Guo-5p 1.10 45.43 115.76 4.02 35.13 696.28 −265.3 22.7 −501.5
TAM Guo-5p 3.34 283.49 9.26 0.32 299.61 0.10 90.4 −5.7 98.9
CUE Témez 0.79 168.00 278.79 0.78 145.80 99.88 1.17 13.21 64.17
RVA Guo-5p 1.09 12.55 37.87 6.05 14.56 93.40 −455.4 −16.1 −146.6
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5. Conclusions

Spain has wide climate variation due to its complex orography and geographic situation. It has
the driest and rainiest regions in continental Europe. Indeed, the 16 basins we selected as case studies
cover a range of aridity index classifications from humid to semi-arid. We performed the assessment
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of the goodness-of-fit using various model selection criteria, so as to establish a robust methodology
that can validate the conclusions obtained and its application in other different regions. Lumped
hydrological balance models performed well in humid and sub-humid regions, regardless of the area,
so higher model resolution does not seem to be an improvement for humid and sub-humid watersheds.
The influence of the aridity index is highlighted in all of the goodness-of-fit tests carried out, which
indicates that the climatic characteristics of the watershed are the most important issue in a model’s
performance. When the watershed is more arid, the distribution of precipitation over the year is
more irregular, and although these catchments have deep soil, low infiltration was produced; thus,
the models did not achieve good results. Complexity in the models and over-parametrization do
not guarantee a better performance, and three-parameters models, such as the Thornwaithe-Mather
model, show, in some cases, better monthly simulations than the Guo-5p. However, although the
driest regions registered “unsatisfactory” performance for the lumped models used and alternative
methods (such as machine-learning modelling and semi-distributed models, such as SWAT [161]) will
be assessed in future studies, the estimated run-off volumes with the Guo-5p are very similar to the
observed ones, with differences below 12%, which is even lower than in some dry sub-humid regions.

The GR2M model gave the best fit in peninsular Spain. The performance indices proved satisfactory
in both calibration and validation periods for most humid and sub-humid watersheds, so this model
can be used for future water management in climate change scenarios and similar regions as the one
studied, within an aridity index framework of around 1. When the catchment is more humid, any
water model fits better. It is the opposite in the driest regions, thus, corroborating previous findings.
The Témez model, widely used in Spain, only performed well in humid regions, as many of the other
water balance models did, but it had the worst results in the dry sub-humid region. It only gave the
best fit in the LEM and CUE, but the former showed a high C.V. in AIC and BIC, probably due to a 20%
variation of cover land use in the studied period, and the latter had an unsatisfactory result for most of
the tests applied.

It is clear that the use of a single comparison method is inaccurate, confusing, and in some cases,
useless. When AIU is higher than 1.5, minor differences in AIC and BIC are found in the model
performance; although they are also the basis for the hydrological model selection in the dry and
semi-arid regions, these criteria must be used in conjunction with other methods to achieve the best
model, especially in humid catchments. We used a grading method based on R2, NSE, and PBIAS
that is complementary to AIC and BIC. Furthermore, the assessment of the margin of error in the total
run-off volume using REV is also a key index. However, contrary to that observed in previous tests,
the REV results do not highlight specific hydrological models, as well as the criteria above, if they are
separately accounted for. These results indicate that it is not adequate to rely on a single hydrological
model; also, the choice depends on the purpose of the studies. The uncertainty analysis carried out
using the Fiteval software shows that the GR2M model is the best compared to the rest of the models
selected; therefore, more than 90% of the confidence intervals are above 0.75 NSE, which shows that
the model is very good in humid watersheds. On the contrary, Témez and Thornthwaite-Mather do
not reach 0.75 NSE, even in humid catchments

FDCs and their metrics confirm previous results, as the humid and sub-humid region models
show good performance in probabilities of exceedance lower than 80% (i.e., in high and medium
volumes) but the results worsen the lower the streamflow is. Deviations in humid watersheds range
from 0–25% in both high volumes and the mid-segment slope but reach values higher than 80% in low
streamflows. Nonetheless, low volumes in most humid watersheds account for less than 5% of the
total streamflow in the watersheds, so inaccuracy is admissible to the assessment of interannual water
volume purposes. On the contrary, semi-arid regions show good performance in high volumes, which
account for only 25% of the total streamflows in the studied period, thus disabling the models selected.

The methodology used can be applied in regions with similar case studies to more accurately
assess the resources within a system and provide more sustainable management in a watershed.
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Appendix A. Témez Model

This model considers the system to be divided into the upper or non-saturated zone (S), and the
lower or saturated zone (G). Some of the precipitation (P) drains directly into the river or through the
aquifer, whereas the remainder is converted into ET (real evapotranspiration). Excess (Ex) is divided
into run-off (Qs) through river networks at the present time, and infiltration to aquifers, draining one
part (Qg) at the present time (month 0), with the rest remaining in the groundwater storage tank (G)
for draining at a later date (month i).

Water balance is formed by input flow (P), which is divided into outflow (ET, Qs, and Qg),
infiltration in month i (Ii), which is similar to aquifer recharge (Ri), and water storages in soil moisture
(Si) and aquifer volume (Vi).

Total excess (Ex) in month i is obtained by Equations (A1)–(A3).

Exi = 0 if Pi ≤ P0

Exi =
(Pi − P0)

2

Pi + δ− 2∗P0
if Pi > P0 (A1)

δ = Smax − Si−1 + ETi (A2)

P0 = C∗(Smax − Si−1) (A3)

where Smax is the soil maximum moisture (mm), Si-1, is the soil moisture (mm) at the beginning of the
period i, ETPi is the potential evapotranspiration in the period I, and C is the beginning exceeding
coefficient whose range is between 0.2 and 1. Soil moisture at the end of month i is obtained with
Equation (A4).

Si = max(0; Si−1 + Pi − Exi − ETPi) (A4)

Moreover, ETi is obtained by Equation (A5) and Ii by Equation (A6).

ETi = min(Si−1 + Pi − Exi; ETPi) (A5)

Ii = Imax ∗
Exi

Exi + Imax
(A6)

Run-off will be calculated as the excess that is not infiltrated, as in Equation (A7).

Qsi = Exi − Ii (A7)

With respect to the aquifer, two hypotheses are made: (1) It behaves as a lineal water storage
(Equation (A8)); and (2) the recharge by infiltration occurs in the middle of the period.

Qi = Qi−l·e
−∝·t (A8)

where Qi is the outflow in time i, α is the aquifer discharge coefficient and t is the time period between
i-l and i (Equation (A9)). The hypothesis of lineal water storage implies a relationship between Qi and
stored volume in aquifer (Gi) given by Equation (A10).

Qi = (Qi−l·e
−∝·t/2+ ∝ ·Ri)e−∝t/2 (A9)
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Qi = α·Gi (A10)

When applying mass balance equation (Equation (A11)) and combining with previous expressions,
Equation (A12) is obtained.

Ii −Qi =
dGi

dEx
(A11)

Ri −α·Gi =
dGi

dExi
(A12)

Aquifer recharge can be expressed as Equation (A13).

Ri = Sur ∗ Ii (A13)

where Sur is the basin area.
Finally, Equation (A14) is used to calculate the stored water in the aquifer in month t,

Equation (A15) provides aquifer drainage outflow, and total run-off in the monitoring point is
obtained by Equation (A16).

Gi = Gi−1∗e−αt/2 +
Sur ∗ Ii

α

(
1− e−αt/2

)
(A14)

Qgi = Vi−1 −Vi + Ri (A15)

Qi = Qsi + Qgi (A16)

Appendix B. ABCD Model

This model (A, B, C, and D parameters) also considers two storage tanks, namely the upper
storage (S) or soil tank, and the groundwater storage tank (G). The upper storage tank (S) has two
outputs: run-off (Qs) and infiltration. Thus, the model has two inputs, precipitation (P) and ET, and
their outputs are soil moisture content at the end of the month (S), monthly available water (W), ET,
run-off (Qs), infiltration (I), groundwater run-off (Qb), monthly groundwater storage (G), and total
run-off (Q).

The first step in the model consists of assessing the soil moisture at the end of the month (Si),
using Equations (A17)–(A20).

WI = Pi + Si−1 (A17)

Yi =
Wi + b

2∗a
−

√(Wi + b
2∗a

)2
−

Wi ∗ b
a

(A18)

I = Yi∗e
−ETP

b (A19)

EIi = Yi − Si (A20)

The second step is obtaining run-off (Qs) using Equation (A21).

Qs = (1− c) ∗ (Wi −Yi) (A21)

Groundwater run-off is obtained using Equations (A22)–(A24).

I = c∗(Wi −Yi) (A22)

Gi =
(Ii + Gi−1)

(1 + d)
(A23)

I = d ∗Gi (A24)
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Finally, total run-off is calculated by adding the surface run-off and groundwater run-off

(Equation (A25)).
Qi = Qsi + Qgi (A25)

Appendix C. GR2M

GR2M transforms precipitation into run-off through the implementation of two equations:
production and transfer functions. Initially, P and ET are balanced and precipitation is distributed
between the upper storage tank (S), with a limited capacity and groundwater storage tank (G).

Monthly P and ET are fitted using Equations (A26)–(A30).

U =
P·ET(

R0.5 + E0.5
)2 (A26)

Pn = P−U (A27)

ETn = ET−U (A28)

Pnp = x1·Pn (A29)

ETnp = x1·ETn (A30)

where X1 is one parameter of the model.
Stored moisture in S tank is obtained when using Equation (A31).

S1 =
S + A·V

1 + S∗V
A

(A31)

where V = tan h
(

Pnp
A

)
and A are the maximum storage capacity of tank S.

Likewise, ET causes S1 to become S2 when using Equation (A32).

S2 =
S1 ∗ (1−W)

1 + W ∗
(
1− S1

A

) (A32)

Rainfall excess is calculated by Equation (A33).

Ex = Pnp + S− S1 (A33)

Then, run-off (Qs) is obtained by Equation (A34).

Qs = α ∗ Pe (A34)

where α is a parameter of the model.
Stored mositure in the second tank G (G1 y G2) receives a recharge of (1−α)∗Pe where G (initial

stored in the tank) becomes G1, according to Equation (A35).

G1 = G + (1−α)∗Pe (A35)

Groundwater run-off (Qg) is obtained by Equation (A36).

Qg = x2 ∗ G1 (A36)

where X2 is another parameter of the model.
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Finally, stored moisture in the second tank goes from G1 to G2 according to Equation (A37), and
monthly total run-off is obtained by Equation (A38).

G2 = G1 −Qs (A37)

Q = Qs + Qg (A38)

Appendix D. AWBM

This model has three surface water-storage tanks (S1, S2, and S3). The water balance of each is
estimated independently, resulting in three surpluses. One part of these surpluses is transformed into
run-off (Qs), and the other part percolates to a groundwater storage tank or aquifer (G), which in turn
goes to groundwater run-off (Qg). Total flow (Q) is obtained by adding both run-offs.

The maximum capacity of each storage is obtained by Equation (A39).

S1 =
Cave ∗ 0.01

A1
S2 =

Cave ∗ 0.33
A2

S3 =
Cave ∗ 0.66

A3
(A39)

where Cave is the average soil water capacity and A1, A2, and A3 are the area of each tank.
For each tank P, ET, Ex, I, and total run-off (Q) are calculated according to Equations (A40)–(A43).

Pk = Ak ∗ P (A40)

ETk = min(Sk + Pk; Ak ∗ ETP) (A41)

Exk = max
(
0; Sk + Pk − ETk −Capk

)
(A42)

Sk = Sok + Pk − ETRk − Exk (A43)

where k = 1, 2, and 3, Sok is the initial volume in each tank, and Ak the area of each tank. Run-off (Qs) is
obtained using the fraction of total run-off corresponding to the base flow (BFI), using Equations (A44)
and (A45).

Qs = (1− BFI)·(Ex1 + Ex2 + Ex3) (A44)

Ex = (Ex1 + Ex2 + Ex3)·BFI (A45)

Then, groundwater run-off is obtained by Equations (A46) and (A47).

Qg = Go ∗Kb (A46)

Qgaqui f er = G0 + Ex−Qg (A47)

where Kb is the recession constant.
Finally, total flow is obtained by adding both run-off from surface (Esup) and groundwater (Eaquifer)

tanks (Equation (A48)).
Qtotal = QS + Qgaquifer (A48)

Appendix E. Guo-5P

This model has a similar performance to the two-parameter Guo model, and its use is particularly
recommended in humid and semi-humid regions. Precipitation and evapotranspiration (P and ET) are
the input data, on the basis of which the remaining parameters are estimated: ET, soil water storage (S),
water surpluses, surface run-off (Qs), subsurface run-off (Qb), aquifer recharge, groundwater storage
(G), groundwater run-off (Qg), and total flow (Q).



Sustainability 2019, 11, 2872 28 of 36

Real ET is calculated by Equation (A49).

ETRi = ETi ∗ K0 (A49)

where K0 is a parameter of the model.
Soil water storage (Si) is limited by soil maximum moisture (SMAX), which is obtained when

using Equations (A50) and (A51)

If Pi > ETRi then Si = Si−1 + Pi − ETRi (A50)

If Pi < ETRi then Si = Si−1 ∗ e
−(ETR−Pi)

SMAX (A51)

When P is higher than ET and soil moisture reaches its maximum (SMAX), water excess (Exi) is
obtained by Equation (A52).

Exi = Si − SMAX (A52)

Part of the water excess becomes run-off (QSi), whereas the rest of the water excess (WSi) is
divided between subsurface run-off (Qsi) and infiltration (Ii) according to Equations (A53)–(A56).

Qsi = C·(Si − SMAX) = C·Ex (A53)

WSi = (1−C)·(Si − SMAX) = (1−C)·Ex (A54)

QIi = K1·WSi (A55)

Ii = (1−K1)·WSi (A56)

where C and K1 are parameters of the model and QIi is the sub-superficial run-off.
The model considers that aquifer balance is obtained when using Equation (A57).

Gi = Gi−1 + Ii −K2 ∗ Gi−1 (A57)

where K2 is a parameter of the model.
The underground run-off (Qg) is calculated by Equation (A58).

Qgi = K2 ∗ Gi (A58)

Finally, total run-off (Q) is assessed adding run-off, sub-superficial run-off, and underground
run-off (Equation (A59)).

Q = Qsi + QIi + Qgi−1 (A59)

Appendix F. Thornthwaite-Mather

The model distinguishes two water storage tanks—surface (S) and groundwater (G)—which lead
to the output flow (Q) through different calculations.

A part of P is converted into run-off (Qd) directly (Equation (A60)).

Qd = P ∝ (A60)

The remaining precipitation that comes into the model (Pi) is compared to ET, obtaining soil
moisture capacity (S). If Pi is higher than ET, then there is water excess and real evapotranspiration (ETR),
and final storage (Si) is obtained by Equation (A61), and is otherwise obtained using Equation (A62).

Si = min(Si−1 + Pi − ETP);∅) (A61)

ETi = Si−1 − S + Pi (A62)
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Thus, if surface storage (S) is full, flow to the tank is calculated by Equation (A63), and is otherwise
obtained with ∆Q = 0.

∆Q = Pi − ETPi + Si − 1−∅ (A63)

Finally, only one part of the available water in an underground water tank (G) will be added to
total run-off (Q), which will be obtained by Equation (A64).

Gi = Q(1− λ) (A64)

where λ is a parameter of the model.
Therefore, Q is obtained by adding direct and underground run-off (Equation (A65)).

Qt = Qd + Qg (A65)
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