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Abstract: Energy commodity prices are inherently volatile, since they are determined by the volatile
global demand and supply of fossil fuel extractions, which in the long-run will affect the observed
climate patterns. Measuring the risk associated with energy price changes, therefore, ultimately
provides us with an important tool to study the economic drivers of climate changes. This study
examines the potential use of long-memory estimation methods in capturing such risk. In particular,
we are interested in investigating the energy markets’ efficiency at the aggregated level, using a novel
wavelet-based maximum likelihood estimator (waveMLE). We first compare the performance of
various conventional estimators with this new method. Our simulated results show that waveMLE
in general outperforms these previously well-established estimators. Additionally, we document
that while energy returns realizations follow a white-noise and are generally independent, volatility
processes exhibits a certain degree of long-range dependence.

Keywords: wavelet methodology; long-range dependence; risk measurement; fossil fuels; climate
change

1. Introduction

The price quoted for an asset reflects the present value of a future stream of expected earnings.
In an efficient market, any re-evaluation of the asset price must therefore immediately reflect unforeseen
changes in those earnings. Conventional asset pricing theories show that the magnitude and frequency
of such changes, whenever they appear, can be used as a measure of risk. Market imperfections cause
prices to reflect information slowly, and sometimes the response to new information is dragged over a
long period. This well-established empirical regularity, known as the long-range dependence of price
observations, serves as the main theme of this paper.

Evidence of this phenomenon is most often illustrated by the slow hyperbolic decay rate of
the autocorrelation function of empirical time series in the physical sciences. Similarly, it is widely
documented that the evolution of the risk of financial assets’ returns constitutes a long-memory
stochastic process. To be specific, this type of process is defined with a real number H and a constant C
such that the process’s autocorrelation is ρ(l) = Cl2H−2 as the lag parameter l→∞ . We show later
that the parameter H is known as the Hurst exponent, named after the hydrologist Hurst who first
analyzed the presence and measurement of long-memory behavior in stochastic processes [1]. In the
following Section, we provide a theoretical background for studying the long-memory of volatility
processes. Section 3 then demonstrates a plethora of well-established and robust methodologies
aimed to detect and estimate the degree of long-memory characterized by the level of the Hurst
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exponent H. In Section 4, we demonstrate the performance of these methods using simulated data and
show that the wavelet-based maximum likelihood estimator, originally formulated by [2], generally
outperforms several other methods in most of the simulated experiments and is arguably inferior
to none. The application of the wavelet estimator on actual energy price time series is the topic of
Section 5, where we find support for long-memory in the spot returns of major global fossil fuels.
Section 6 provides concluding remarks, the implications of our study, and qualifications for our results.

2. Related Literature

2.1. Long-Memory and Market Efficiency

In financial markets, analyses of long-range dependence of returns are known to yield mixed
evidence and the implications of these studies create a focal point for intensive debate. This is
because the existence of long-memory generally indicates predictability of future returns based on
past returns, which violates the basic assumption of one of the most widely supported ideas in the
history of economics, the efficient market hypothesis (EMH). The EMH, which was independently
developed by [3,4], in its strongest form, assumes that the changes of stock price follow a random
walk. The intuition (or seemingly counter-intuition) is that when all available information and/or
all expectation is fully reflected in prices, one cannot forecast the price changes by simply looking
at past prices. This implies that any informational advantage, even the smallest, is instantaneously
exposed and incorporated into market prices when the investors possessing it try to make profit from
it. In this “ideal” scenario, prices follow a martingale, which is the cornerstone of traditional asset
pricing and derivative pricing models. Therefore, violation of this condition would undermine the
foundation of these models. For example, conventional linear models of returns such as the classic
capital asset pricing model (CAPM) will encounter numerous problems should price changes not be
random. Furthermore, if long-range dependence exists, implications from economics disciplines that
are sensitive to investment horizons such as optimal consumption decision and portfolio management
would be affected [5]. The seminal paper by [4], as well as the earlier work by [6,7], are among the
first to document the stylized fact of low or insignificant serial correlation in returns of stocks and
commodities. Other studies, however, suggest a substantial negative serial correlation, indicating
markets tend to reverse themselves over long periods (see, e.g., [8]).)

In contrast to the mixed evidence for long-memory returns, such behavior is widely observed to
be a “stylized fact” of the risk of financial volatility. Among the early advocates of this vein of thought
are [9,10], while [5] opposed it. Long-memory is also related to theories of trade and business cycles.
Widely documented long-range dependence displayed by time series from multiple economics contexts
has inspired [11] to relate this phenomenon to the prophecy made by Joseph (a biblical reference from
the Old Testament), who predicted that Egypt was to have seven years of prosperity followed by seven
years of famine. Hence the fanciful yet perhaps aptly termed “Joseph effect” often accompanies the
more popularly known “Hurst effect” in the long-memory modelling literature.

A number of academics consider the Hurst exponent, or the “index of dependence”, as a component
of the so-called chaos theory (see, e.g., [12]). Based on this theory, an alternative to the EMH, the fractal
market hypothesis (FMH), is proposed. This hypothesis casts doubt on the “ideally” uniform and
simultaneous interpretation of information reflected in prices (which is embraced by EMH); instead,
it assumes that traders may decipher information in different ways and at different times. If investors
are influenced by events from the past, price changes are not entirely unpredictable. The FMH also
assumes non-normal, leptokurtic distribution of price changes, and price decreasing faster than it
increases, all of which are empirically true. Intuitively, if stock prices follow a random walk/Brownian
motion under the general assumption of the EMH, then its logarithmic difference (or the financial
returns) should be normally distributed. Yet in practice, the overwhelming evidence of heavy tailed
returns distribution suggests stock prices do exhibit dependence to some extent, thus invalidating the
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EMH. Perhaps one of the strongest criticisms to date against the classic EMH is presented in the work
of [13].

Additionally, it should be noted that modern financial economists generally reject the notion of a
“static” sense of market efficiency and adopt an adaptive, evolutionary perspective instead. Indeed,
it would be unreasonable to assume that efficiency can be maintained consistently, as evident by
numerous incidents related to inefficiencies such as value stocks and small firms yielding returns
higher than market average or the various crashes over the years implying severely mispriced assets.
More relevant to our study, it is the stylized clustering behavior of stock returns and the predictability
of the financial data generating process due to its inherent long-memory that may have shaken the
universal foundation of market efficiency.

These observations have led to a new consensus that relates efficiency to economic development.
In particular, as economies gradually evolve from an under-developed to a sophisticated state, we
would expect to see a corresponding movement towards efficiency of financial markets in the form
of correctly priced assets. Obviously, this is not a static process, nor is it a short-term one. Adopting
this approach, [14] use Hurst index estimates to show that different stages of emerging economies
correspond to increasing levels of efficiency and exhibit different degrees of long-memory. The principle
of this idea is consistent with [15], who support a “self-correction” viewpoint in which arbitrageurs
attracted by mispriced assets would eventually enforce efficiency. Thus, in a way, inefficiency takes
an indispensable role in maintaining efficiency itself. Along the same line, in his seminal article, [16]
attempted to reconcile the assumption of market rationality with the various psychological aspects of
the documented irrationality among investors and introduced another alternative to the EMH, the
adaptive market hypothesis (AMH). In essence, the AMH is a synthetic compromise between two
seemingly conflicting schools of thinking: the EMH and behavioral finance. The latter advocates
ubiquitous behavioral biases (e.g., over-confidence, over-reaction, or herding) that could lead to
distortions of utility optimizing decisions that form the basis of the former. In a sense, this means that
to the AMH, extreme market movements such as crashes are nothing more than conditions facilitating
a ‘natural selection’ process that casts out investors that could not adapt to the ever-changing market
environment. As such, compared to the EMH, the AMH allows for “[ . . . ] considerably more complex
market dynamics, with cycles as well as trends, and panics, manias, bubbles, crashes, and other
phenomena that are routinely witnessed in natural market ecologies” [16] (p. 24).

Compared with the extensive literature on long-memory of conventional economic and financial
time series and commodities markets, investigation of long-memory models with respect to fossil
fuel markets is only newly developed. Ref. [17] is the first to document evidence of long-memory in
absolute return, squared return, and conditional volatility of spot and futures returns for oil and refined
products even in the presence of structural breaks. Subsequently, [18–20], among many others, confirm
the existence of long-memory with GARCH-type models, and that models that account for structural
breaks, parameter instability, and long-memory provide the best conditional volatility forecasts. Using
modified rescaled range analysis and three local Whittle methods, [21] find that long-range dependence
is only weakly exhibited by returns but strongly exhibited in volatilities of energy futures prices with
different maturities. Recently, [22,23] incorporated Markov switching dynamics and semi-parametric
approaches to GARCH frameworks to deliver improved out-of-sample oil prices and returns forecast
performance. Our paper adds to this growing literature with the introduction of a wavelet-based
estimator of long-memory, which will be discussed in Section 3.

2.2. The Hurst Index

The so-called ‘self-similarity parameter’ that is associated with long-memory process has a rich
history. A British hydrologist named Edwin Hurst (1880–1978) was credited with the formation of
this concept. A more formal definition is provided by [24] for both discrete-time and continuous-time
stochastic processes. Here we only restate the definition in the continuous context: consider a stochastic
process

{
X(t)

}
(0 ≤ t < ∞). It is said to be self-similar if the two processes,

{
X(at)

}
and

{
aHX (t)

}
,
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have identical finite-dimensional distribution for all a > 0. The parameter a can be thought of as a
“scaling” parameter so that the latter process is actually a scaled version of the former. Analogous to
the notion of time series stationarity, there exists a weaker form of self-similarity when these processes
have equal mean and covariance structure, which we refer to as second-order self-similar [25]. What
does the Hurst exponent H imply? To be more specific, provided that the above condition holds when
0 < H < 1, we have a self-similar process. In the special case of 1/2 < H < 1, for a (weakly)
stationary process, the second-order self-similarity also implies long-range dependence among present
and distant past values of that process, a feature commonly referred to as “long-memory”.

Another definition of a broad long-memory class can be found in [26], which states that such
process is well-defined if its autocorrelation function

ρ(l) = Cov(Xi, Xi+l)/Var(Xi) (1)

is not summable and satisfies
∑
∞

l=0 ρ(l) = ∞. In this context, we assume that {Xt} is a weakly
stationary discrete time series. This implies a slowly decaying autocorrelation function, i.e.,
ρ(l) ∼ C|l|α when |l| → ∞ . This is the basic property of all processes belonging to the long-memory
class, where C is a constant and 0 < α < 1 is a parameter representing the decay rate. (We will show
later that in general α = 2 − 2H.) In this case the decay is said to follow a “power law”. Larger
H implies stronger long-range dependence or more persistent impact of past events on present
events. Conventional statistical inferences of processes exhibiting this feature can be dramatically
altered. As [24] pointed out, for a process with finite variance and/or summable covariance such as
an AR(1) process, the standard deviation of its mean is asymptotically proportional to n1/2. This is
a crucial condition for traditional statistical inferences to be meaningful. However, with long-range
dependence introduced by a slow decaying ρ(l), the same standard deviation is proportional to
n−α/2, thus affecting all test statistics, as well as the confidence intervals for the estimate of the
sample mean. The long-memory processes are contrasted with the short-memory class, which exhibits
summable and exponential decaying co-variances (which was also termed short-range dependence
or weak dependence). Ref. [5] made a clear distinction between these two classes, asserting that the
short-memory behavior is characterized by the fact that “[ . . . ] the maximal dependence between
events at any two dates becomes trivially small as the time span between those two dates increases”
(p. 1281). In other words, the rate at which dependence decays is very high for processes exhibiting
short-run dependence. Here we are only interested in what this means in an empirical financial context.

As discussed earlier, [1] was the first to propose a method to detect and estimate the widely
observed and naturally occurring empirical long-term dependence in the form of the “rescaled range”
statistic, denoted as R/S(n) (where n represents the sample size). Assuming that the process generating
the empirical data is long-range dependent, this method aims to infer the Hurst exponent H as implied
by the relationship E[R/S(n)] ∼ CnH when n → ∞ and the finite positive constant C is independent
of n. This empirical law is referred to as the “Hurst effect”.

The parameter H typically takes on a value in the interval [0, 1] and if observations are generated
from a short-range dependent process then H = 0.5. In this case the process is said to be
“self-determining”. As there is no long-range dependence, the time series generated by such a
process cannot be forecast from past information. This is analogous to the case when stock prices follow
a Brownian motion, with discrete realizations following a random walk model. When 0 < H < 0.5
we have an anti-persistent process, where past and present observations are negatively correlated. This
means the behavior of subsequent observations contradicts that of previous observations, resulting
in a tendency to revert towards the mean value. Such time series exhibit the phenomenon known as
“mean-reversion” in financial literature. The tendency becomes stronger as H approaches zero. When
0.5 < H < 1, which was the case of the annual Nile river flow time series in Hurst’s original paper,
we have a long-memory process. Variations of this type of time series are too large to be explained
by a pure random walk. Such processes exhibit a trending behavior, which could be interrupted by
discontinuities. As shown above, one typical time series generated by such a process is known as
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a fractionally integrated series, with the ‘fractional’ degree of integration d = H − 0.5. Generally,
the interpretation of H and d with regards to the nature of long-memory is summarized in Table 1.

Table 1. Categorizing stochastic processes based on their long-memory property.

Hurst Exponent Fractional Difference Parameter Behavior of the Process

H ≤ 0 d ≤ −1/2 Non stationary
0 < H < 1/2 −1/2 < d < 0 Anti-persistent, mean-reversing

H = 1/2 d = 0 Random, Brownian motion
1/2 < H < 1 0 < d < 1/2 Long-range dependence

H ≥ 1 d ≥ 1/2 Non stationary

When tasked with estimating the optimal water storage level for the construction of reservoirs
along the Nile, the rescaled range statistic indicated a high degree of persistence of the annual Nile
river’s overflow, with a Hurst index of 0.91. Application and generalization of this method were
popularized by [27], who were also among the first to study long-range dependence in financial time
series. Equity risk exhibits a Hurst exponent estimated to be greater than 0.5, typically being 0.7 [13].
It would be interesting then to reconcile the trending behavior of stock returns implied by Hurst
exponent estimates and the trend-detecting techniques which form the basis of so-called “technical
analysis”. As it turns out, using a trading rule designed for capitalizing on the trending behavior of
stock price during certain periods, [28] documented greater trading profit associated with a higher
long-memory parameter at all the periods studied. On the other hand, this author also observed
lower profits at times when the market exhibits mean-reversion behavior. Intuitively, technical trading
strategies seeking to follow possible market ‘trends’ is expected to have some sort of correlation with
the Hurst index, which is a measure of such trending behavior.

3. Methods for Estimating Long-Memory in Financial Time Series

3.1. Conventional Methods

A well-established technique for estimating the Hurst exponent is based on a statistic known as
the “rescaled range over standard deviation” or “R/S” statistic. This statistic was first introduced in
1951 by the hydrologist H. E. Hurst who observed long range dependence in the dynamics of the Nile
river’s annual water level to determine the long-term storage capacity crucial for the construction of
irrigation reservoirs. Since then, robust empirical evidence of long-range dependence in time series has
been extensively documented in various disciplines, particularly from physical science studies, where
studied time series exhibit some kind of trending behavior (e.g., the circumferences of tree trunks,
levels of rainfall, fluctuations in air temperature, oceanic movements, and volcanic activities, etc.).
Among the first to use re-scaled range analysis to examine this behavior in common stock returns is
the renowned econometrician B. Mandelbrot, who also coined the term Hurst exponent in recognition
of Hurst. Refs [12,29] radically refined the R/S statistic. In particular, they advocate its robustness in
detecting as well as estimating long-range dependence even for non-Gaussian processes with extreme
degrees of skewness and kurtosis. Furthermore, this method’s superiority over traditional approaches
such as spectral analysis or variance ratios in detecting long-memory was also presented in this body
of research.

However, as [5] pointed out, the refinements were not able to distinguish the effects of short-range
and long-range dependence. To compensate for this weakness, he proposed a new modified R/S
framework. His findings indicate that the dependence structure documented in previous studies are
mostly short-ranged, corresponding to high frequency autocorrelation or heteroskedasticity. There
are two important implications for us from [5]: (i) empirical inferences of long-range behavior must
be carefully drawn, preferably by accounting for dependence at higher frequencies, and (ii) in such
cases, conventional models of short-range dependence model (such as AR(1) or random walk models)
might be adequate. On the other hand, as implied in a counterargument raised by [30], we should also
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be cautious of the implication of [5]’s modified method because of its tendency to reject long-range
dependence even when evidence of such behavior in fact exists (albeit weakly).

Therefore, despite the enormous praise the R/S statistic has enjoyed over the years, we follow
these authors’ advice of not relying solely on this technique, but on a diverse range of well-established
alternatives in the literature for estimating long-range dependence. In the following paragraphs we
provide descriptions for the methods we used to estimate the long-range dependence parameter H.
Furthermore, to suit our empirical analysis, we focus on the case of discrete-time stochastic processes.
Additional estimation techniques we utilize in this study include the aggregated variance method as
analyzed in [25,31], the Higuchi method [32], the residuals of regression [33], and the periodogram
method [34]. Detailed discussions of these methods, as well as their strength and weaknesses, are
available upon request.

3.2. Wavelet-Based Maximum Likelihood Estimator

Most recent studies adopt the approach from a ‘time domain’ perspective, that is, the data are
analyzed as time series which are commonly recorded at a pre-determined frequency(s) (i.e., daily,
weekly, monthly etc.). This approach, no matter how effective, implicitly imposes that the recorded
frequency is the sole frequency to be considered when studying realizations of a time varying variable.
Problems emerge when this assumption turns out to be insufficient. Specifically, what will the situation
be when there are many, not one, frequencies that dictate the underlying generating process of the
variable of interest? This issue is particularly relevant in the context of financial assets, of which prices
are determined by the activities of agents with multiple trading frequencies.

To address this concern, a different approach taking into account the frequency aspect is called for.
A well-established methodology representing this branch of ‘frequency-domain’ analysis is the Fourier
transform/spectral analysis. In general, this method is a very powerful tool specifically designed to
study cyclical behavior of stationary variables. Based on this fundamental idea, an advanced technique
was developed to simultaneously incorporate both aspects of a data sequence. This relatively novel
methodology is known as the wavelet transform. It is worth noting that though wavelet analysis has
been used for a long time in the field(s) of engineering, in particular signal processing, its application
in finance is only recently becoming more popular thanks to the work of pioneers such as [2,35].

To apply the wavelet-based estimation method for long-memory processes, we begin by examining
the popular case of the fractional ARIMA process class: the FARIMA (0, d, 0) [also known as a “fractional
difference process” (hereafter, FDP)] which is described as Xt = ∆−dzt with zt ∼ i.i.d N

(
0, σ2

)
.

or, equivalently,
(1 − L)dXt = zt (2)

with d the fractional difference parameter. This expression means that the d-th order difference of {Xt}
equals a (stationary) white noise process. A zero-mean FDP (with −0.5 < d < 0.5), denoted as {Xt}, is
stationary and invertible (see e.g., [2,36]). Recall that we define its slowly decaying auto-covariance
function as:

γ(l) = E[Xt, Xt+l] ∼ Cd|l|
2d−1 when l → ∞. (3)

Correspondingly, for frequency f satisfying − 1
2 < f < 1

2 the spectral density function (SDF) of
{Xt} satisfies:

S( f ) =
σ2

z∣∣∣2 sin(π f )
∣∣∣2d
∝ f−2d when f → 0. (4)

The SDFs of the process with different values of d (and standard normal innovations, i.e., σ2 = 1)
are plotted in Figure 1. When 0 < d < 0.5 (i.e., long memory exists), the slope of the SDF on a
log-log scale increases as d increases. In this case, the SDF has an asymptote at frequency zero, or
it is “unbounded at the origin”, in [36]’s terminology. In other words, S( f ) → ∞ when f → 0 .
Correspondingly, the auto-correlation function (hereafter, ACF) decays more slowly as d increases.
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While the ACF of a process with d ≈ 0 quickly dissipates after a small number of lags, the ACF of a
process at the ‘high-end’ of the long-memory family, with d = 0.5, effectively persists at long lags.
The former was commonly interpreted as exhibiting “short-memory” behavior.
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Figure 1. Spectral density function and ACF of a fractional difference process with various values of d.
Notes: The higher the fractional difference parameter, the stronger the long-run dependence and the
higher the slope of the spectrum. The rate of decay of the corresponding ACF decreases as d increases:
from very quickly (when d ≈ 0, i.e., “short-memory”) to effectively infinite persistence (when d = 0.5).
Note how the asymptote at very low frequencies (in the SDF plot) is associated to the persistence at
very big lags (in the ACF plot). Because of scaling factor, the plot of the SDFs seemingly indicates
that the SDFs with d > 0 ‘cut’ the x-axis, although in fact this is not the case. All SDFs exhibit an
exponential decaying pattern when plotted on separate scale. The higher the value of d, the higher the
asymptote near frequency zero and the faster the SDF decays.

We can see the relationship between auto-covariance and the spectrum: the ACF decreasing
towards very long lags, which correspond to very low frequencies (as the observations are separated by
a great time distance, i.e., the wavelength of the periodic signal becomes very high). This reminds us
that the spectrum is simply a “representation” of the autocorrelation function in the frequency domain.
In addition, Figure 1 shows that the higher the degree of long-memory (the higher the d parameter),
the larger the spectrum will be when f → 0 . It was well-established that both slowly decaying
auto-correlation and unbounded spectrum at the origin independently characterize long-memory
behavior (see, e.g., [37,38]). In line with these authors, [39] agrees that the pattern of power concentrates
at low frequencies and exponentially declines as frequency increases, such as the ones in the top plot
of Figure 1, which is the “typical shape” of an economic variable. An important remark that should
be made from this observation is that since the periodogram is very high at low frequencies, it is the
low frequencies components of a long-memory process that contribute the most to the dynamics of
the whole process. For our purposes, we show that to understand the underlying mechanism of risk
process, emphasis needs to be placed in the activities of investors with long trading horizons rather
than the day-to-day, noisy activities of, for example, market makers.

To avoid the burden of computing the exact likelihood, [2] utilize an approximation to the
covariance matrix obtained via the discrete wavelet transformation (hereafter, the DWT): let {Xt} be
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a fractional difference process with dyadic length N = 2 j and covariance matrix
∑
X

, the likelihood

function is defined as:
L
(
d, σ2

z

∣∣∣X)
= 2πN/2

|ΣX|
−1/2 exp

[
−

1
2

XTΣ−1
X X

]
, (5)

where |ΣX| denotes the determinant of ΣX. Furthermore, we have the approximate covariance matrix
given by ΣX ≈ Σ̂X = W′ΩNW, where W is the orthonormal matrix representing the DWT. ΩN is
a diagonal matrix which contains the variances of DWT coefficients. The approximate likelihood
function and its logarithm are:

L̂
(
d, σ2

z

∣∣∣X)
= (2π)−

N
2
∣∣∣Σ̂X

∣∣∣− 1
2 exp

[
−

1
2

XTΣ̂X
−1X

]
(6)

log L̂
(
d, σ2

z

∣∣∣X)
= −2 log L̂

(
d, σ2

z

∣∣∣X)
−N log(2π) = log

(∣∣∣ Σ̂X
∣∣∣)+ XTΣ̂X

−1X. (7)

As noted earlier, [1] introduced the wavelet variance S j for scale λ j which satisfies S j(d, σ2
z) =

σ2
zS′j (d). The properties of diagonal and orthonormal matrices allow us to rewrite the approximate

log-likelihood function in Equation (1) as:

L̂
(
d, σ2

z

∣∣∣X)
= N log

(
σ2

z

)
+ log

[
S′J+1(d)

]
+ ΣJ

j=1N j log
[
S′j(d)

]
+

1
σ2

z

 vT
J vJ

S′J+1(d)
+

∑J

j=1

wT
j w j

S′j(d)

. (8)

The maximum likelihood procedure requires us to find the values of d and σ2
z to minimize the

log-likelihood function. To do this, we set the differentiated Equation (2) (with respect to σ2
z) to zero

and then find the MLE of σ2
z :

σ̂2
z =

1
N

 vT
J vJ

S′J+1(d)
+

∑J

j=1

wT
j w j

S′j(d)

. (9)

Finally, we put this value into Equation (2) to get the reduced log-likelihood, which is a function
of the parameter d:

L̂
(
d, σ2

z

∣∣∣X)
= N log

(
σ2

z

)
+ log

[
S′J+1(d)

]
+ ΣJ

j=1N j log
[
S′j(d)

]
. (10)

As an illustration, we apply the wavelet MLE to our simulated fGn dataset with H = 0.7 and the
volatility series of S&P500 index (proxied by daily absolute returns). Because a dyadic length signal is
crucial for this experiment, we obtain daily data ranges from 6 February 1981 to 31 July 2013 (from
http://finance.yahoo.com), for a total of 8192 = 213 working days. In addition, we set the number
of simulated fGn observations equals to 8192 for comparison. We chose an LA8 wavelet with the
decomposition depth set to 13 levels. Figure 2 summarizes our results. Because the actual values of the
SDF are very small, we substitute them with their base-10 logarithmic transformation to make the plot
visually clear. Estimates of d are 0.2435 and 0.2444 (corresponding to H = 0.7435 and H = 0.7444) for
the simulated fGn and S&P500 daily risk processes, respectively. Corresponding values of σ̂2 (or the
residuals’ variance) are 0.8359 and 6.2236 × 10−5. Subsequently, we have the corresponding time
series models:

(1 − L)0.2435Xt = zt with zt ∼ i.i.d N(0, 0.8359) (11)

(1 − L)0.2444
|rt| = ut with ut ∼ i.i.d N

(
0, 6.2236 × 10−5

)
. (12)

To further demonstrate the ability of our estimator in capturing long-memory behavior, for each
case we plot the theoretical SDF of a fractional difference process with a parameter d set to equal
that of the estimated value. Then, we fit this SDF (indicated by a green line) with the corresponding
periodogram/spectral density function obtained from the data. In line with [1]’s findings, for both
cases the two spectra are in good agreement in terms of overall shape, save for some random variation.

http://finance.yahoo.com
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However, we obtain a much smaller value of σ̂2
z for the S&P500 series, thus random variation is less

severe in its case. In other words, the green line approximates the spectrum of the risk series better
than in the case of the fGn. In summary, it can be concluded that this method is effective regarding
detecting long-range dependence. The result also indicates that the daily S&P500 volatility series can
be reasonably modelled as an fGn process since the two have very similar long-memory parameter.
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values of d estimated using the waveMLE method.

4. Estimators’ Performance Comparison

In Sections 2 and 3, we introduced a plethora of estimating methods for long-memory
parameter. In this section, we compare their performance, especially against the wavelet-based
MLE. We follow [34]’s framework for comparing the performance of described methodologies: first,
we simulate N = 500 realizations of the long-memory processes [i.e., fBm, fGn, FARIMA (0, d, 0) and
ARFIMA (1, d, 1)], each realization will have a length of 10,000 (which makes it a dyadic length time
series) and is generated with the Hurst exponent set to H = 0.7. Then we applied all 9 estimators to
each realization, to obtain a sample of 500 estimates of H for each of the methods.

Next, we compute the sample mean, standard deviation and the square root of the mean squared
error (MSE) for each sample as follows:

H =
1
N

(∑N

n=1
Hn

)
, (13)

σ̂ =

√
1

N − 1

[∑N

n=1
H2

n −
1
N

(∑N

n=1
Hn

)2
]
, (14)

√

MSE =

√
1
N

∑N

n=1
(Hn −H)2, (15)
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where Hn is the estimate of Hurst index obtained from the n-th (simulated) realization of each process
in each sample. Similar to conventional estimating techniques, here the standard error indicates the
significance of the estimator while the mean squared error measures its performance by comparing
it with the nominal value. We repeat this procedure with H = 0.5 and H = 0.9 (approximately
representing the lower and upper bounds of the Hurst exponent for the stationary long-memory
class). For comparative purpose, we also estimate H for a sample of 50 realizations (N = 50) as done
by [34]. We noted that the MSE incorporate an indicator of bias within our simulated samples that

can be expressed as: MSE = Sample variance + Bias2 = σ2 +
(
H −H

)2
so that the estimator yielding the

smallest value of
√

MSE is considered to have the best performance.
The results for the simulation experiment with the fGn and FARIMA (0, d, 0) (for which Ĥ = d̂+ 0.5)

are reported in Table 2. There are several observations that can be made from this table:

• All of the proposed methods seem to estimate parameter H effectively, in that they can detect the
dependence structure of the simulated time series, with relatively small standard errors.

• The values of H, σ̂ and
√

MSE do not differ significantly between the cases of N = 50 and N = 500.
• The rescaled range method yields the least desirable performance in all simulated experiments.

This is in contrast to many previous studies supporting the use of this method, yet it is in line
with skeptics such as [34].
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Table 2. Performance comparison for different long-memory estimators.

Fractional Gaussian Noise FARIMA (0, d, 0)

H = 0.5 H = 0.7 H = 0.9 H = 0.5 H = 0.7 H = 0.9
Method Measurement N = 50 N = 500 N = 50 N = 500 N = 50 N = 500 N = 50 N = 500 N = 50 N = 500 N = 50 N = 500

R/S H 0.564 0.563 0.717 0.713 0.823 0.830 0.560 0.571 0.682 0.703 0.846 0.828
σ̂ 0.068 0.084 0.094 0.088 0.089 0.094 0.083 0.085 0.079 0.089 0.110 0.090

√
MSE 0.093 0.105 0.095 0.089 0.117 0.117 0.101 0.111 0.081 0.089 0.121 0.115

aggVar H 0.493 0.498 0.685 0.684 0.847 0.843 0.495 0.496 0.690 0.686 0.844 0.843
σ̂ 0.025 0.027 0.030 0.029 0.034 0.030 0.030 0.028 0.028 0.030 0.032 0.029

√
MSE 0.025 0.027 0.033 0.033 0.063 0.064 0.031 0.028 0.030 0.033 0.064 0.063

diffaggVar H 0.508 0.518 0.715 0.710 0.899 0.902 0.515 0.511 0.719 0.706 0.901 0.900
σ̂ 0.064 0.061 0.054 0.055 0.059 0.057 0.050 0.055 0.057 0.055 0.059 0.056

√
MSE 0.064 0.064 0.056 0.056 0.058 0.057 0.052 0.056 0.060 0.055 0.059 0.056

AbaggVar H 0.498 0.502 0.691 0.690 0.853 0.849 0.497 0.501 0.695 0.692 0.850 0.849
σ̂ 0.026 0.028 0.030 0.031 0.034 0.032 0.031 0.029 0.031 0.031 0.033 0.032

√
MSE 0.026 0.028 0.031 0.032 0.057 0.060 0.031 0.029 0.031 0.032 0.060 0.060

Per H 0.497 0.501 0.705 0.706 0.912 0.912 0.498 0.499 0.705 0.704 0.908 0.909
σ̂ 0.019 0.022 0.020 0.020 0.021 0.021 0.019 0.022 0.019 0.022 0.021 0.021

√
MSE 0.019 0.022 0.020 0.021 0.024 0.024 0.019 0.022 0.020 0.022 0.023 0.023

modPer H 0.451 0.456 0.662 0.664 0.869 0.870 0.452 0.454 0.660 0.658 0.863 0.860
σ̂ 0.023 0.022 0.024 0.022 0.024 0.022 0.020 0.023 0.023 0.022 0.023 0.022

√
MSE 0.054 0.049 0.045 0.042 0.039 0.037 0.052 0.052 0.046 0.047 0.044 0.045

Peng H 0.489 0.491 0.688 0.688 0.886 0.885 0.487 0.489 0.676 0.677 0.873 0.874
σ̂ 0.015 0.012 0.015 0.015 0.018 0.016 0.013 0.012 0.015 0.016 0.017 0.017

√
MSE 0.018 0.015 0.019 0.019 0.022 0.022 0.019 0.016 0.028 0.028 0.032 0.031

Higuchi H 0.474 0.478 0.670 0.670 0.860 0.857 0.473 0.476 0.675 0.670 0.865 0.859
σ̂ 0.017 0.019 0.025 0.025 0.036 0.042 0.023 0.020 0.029 0.026 0.044 0.041

√
MSE 0.031 0.029 0.039 0.039 0.053 0.060 0.035 0.031 0.039 0.040 0.056 0.058

waveMLE H 0.497 0.501 0.725 0.726 0.915 0.915 0.500 0.500 0.694 0.694 0.895 0.891
σ̂ 0.008 0.008 0.008 0.008 0.017 0.017 0.009 0.008 0.009 0.008 0.024 0.021

√
MSE 0.008 0.008 0.027 0.027 0.023 0.022 0.009 0.008 0.011 0.010 0.024 0.023

Notes: Nomenclatures of the methods are as follows: (1) R/S: rescaled range [10]; (2) aggVar: aggregated variance [24]; (3) diffaggVar: differenced variance [31]; (4) AbaggVar: absolute
moments [31]; (5) Per: periodogram [34]; (6) modPer: modified periodogram [34]; (7) Peng: regression of residuals [33]; (8) Higuchi: Higuchi’s method [32]; (9) waveMLE: wavelet-based
maximum likelihood [2]. To preserve space, we do not present the results for fBm and ARFIMA (p, d, q), which are qualitatively similar to those reported and are available upon request.
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When examining Table 2, we can see that the wavelet-based MLE performs relatively robustly
compared to several other methods. In particular, in the case of the simulated fGn, when H = 0.5
(i.e., when the process becomes a Brownian motion) waveMLE is superior. For a “typical” long-memory
process (H = 0.7) waveMLE ranks third, and for process exhibiting extreme long-range dependence
behaviour (H = 0.9) this estimator ranks second. When it comes to the FARIMA (0, d, 0) process,
waveMLE performs best in all cases. We illustrate these arguments by presenting the rankings based
on the MSE (with N = 500) in Table 3.

Table 3. Performance of long-memory estimators.

Fractional Gaussian Noise

Method H = 0.5 Method H = 0.7 Method H = 0.9

waveMLE 0.00809 Peng 0.01948 Peng 0.0217846
Peng 0.015141 Per 0.021326 waveMLE 0.0223977
Per 0.021721 waveMLE 0.027468 Per 0.0237573

aggVar 0.0267 AbaggVar 0.032387 modPer 0.0372976
AbaggVar 0.027645 aggVar 0.033436 diffaggVar 0.0567174
Higuchi 0.029087 Higuchi 0.039072 Higuchi 0.0598122
modPer 0.049141 modPer 0.042152 AbaggVar 0.0602138

diffaggVar 0.063601 diffaggVar 0.055628 aggVar 0.0641194
R/S 0.105121 R/S 0.089366 R/S 0.1170989

FARIMA (0, d, 0)

Method H = 0.5 Method H = 0.7 Method H = 0.9

waveMLE 0.008196 waveMLE 0.010249 waveMLE 0.0227378
Peng 0.016386 Per 0.021878 Per 0.0228976
Per 0.021512 Peng 0.028202 Peng 0.0314989

aggVar 0.028119 AbaggVar 0.032151 modPer 0.0452348
AbaggVar 0.029126 aggVar 0.033022 diffaggVar 0.0557743
Higuchi 0.031394 Higuchi 0.039716 Higuchi 0.0581878
modPer 0.051638 modPer 0.047401 AbaggVar 0.0602195

diffaggVar 0.055694 diffaggVar 0.055482 aggVar 0.0634601
R/S 0.110746 R/S 0.08907 R/S 0.1150482

Notes: The methods are ordered based on increasing MSE. The statistic is calculated from a sample of 500 estimates
for each method. Nomenclatures are similar to those specified in Table 2.

Additionally, when H = 0.5 and H = 0.7 (corresponding to the value generally expected to
be observed in financial returns and financial risk time series, respectively) wave MLE provides the
smallest value of MSE on average, which is also smaller than those obtained when estimating H = 0.9
(which is unlikely to be observed). Furthermore, in cases where waveMLE is not the best estimator,
the difference between its performance and that of the best estimator is not significant. For example,
in the case of fGn with H = 0.7 and H = 0.9 this difference is only measured by units of 0.1%. To see
how important this is, consider the performance of the Peng method (which outperforms waveMLE in
these cases): when the Peng method is not the best, the difference between its performance and the
best estimator (waveMLE) is in units of 1%.

It can be concluded that waveMLE is rarely seen being beaten by another estimator, and when it
is, it does not get beaten by a large margin. Nevertheless, with all evidence in clear favor of waveMLE,
in practice we still need to take into account the main limitation of this seemingly superior estimator,
that is, it can only be applied on a dyadic length time series.

5. Application to Fossil Fuel Prices

In this section, we apply the methodology discussed in Section 3 to examine the characteristics of
fuel price time series. Our data are the spot prices of six commodities: crude oil [West Texas Intermediate
(WTI)], crude oil (Brent – Europe), diesel fuel (Los Angeles Ultra-Low-Sulfur No. 2), gasoline (New York
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Harbor conventional), heating oil (New York Harbor No. 2), and liquid natural gas (LNG) (Henry
Hub). The data are provided by [40] and range from 9 January 1997 to 22 April 2019. We compute daily
spot returns as rit = log pit − log pi,t−1 (t = 1, . . . , T), where pit denotes the spot price of commodity i
and T = 5535 denotes the number of observations. The corresponding volatility series are computed as

30-day rolling standard deviations of returns, i.e., σit =

√
(1/30)

∑31
j=2

[(
log pi,t+ j − log pi,t+ j−1

)
− rit

]2

where rit = (1/30)
∑31

j=2

(
log pi,t+ j − log pi,t+ j−1

)
is the rolling average return. As can be seen in Figure 3,

of the six commodity returns examined, natural gas seems to yield the most volatile returns, at times
exceeding 40%. This is also shown in the corresponding volatility plot presented in the bottom-right
panel of Figure 4. Visual inspection of Figure 3 reveals that returns time series exhibit characteristics of
white-noise processes.
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Figure 3. Daily returns of energy commodities, 1997–2019. Notes: Returns of commodity i are computed
as the percentage change of the corresponding daily spot price: 100×

[
exp

(
log pit − log pi,t−1

)
− 1

]
=

100×
[(

pit − pi,t−1
)
/pi,t−1

]
, where pit denotes the spot price of commodity i. To facilitate visualization,

the vertical range is concatenated at [−40, 40] (%).
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defined as the 30-day rolling standard deviation of the log-change in prices, i.e., σit =√
(1/30)
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[(
log pi,t+ j − log pi,t+ j−1

)
− rit

]2
, where rit = (1/30)

∑31
j=2

(
log pi,t+ j − log pi,t+ j−1

)
is the

rolling average return. pit denotes the spot price of commodity i.

The summary statistics for return and volatility time series are reported in Table 4. We can see that
all returns series have a zero mean and a symmetric, leptokurtic distribution (as the Jarque-Bera statistics
indicate that the null of normal distribution are strongly rejected). Volatilities have non-zero mean and
yield even stronger evidence of serial correlations. Additionally, they also exhibit serial correlation, as
the null of independent observations is also strongly rejected as shown by the portmanteau Ljung-Box
statistics. These dependence patterns over time imply that the energy spot markets may not be efficient.

In Table 5, we provide the results of the test for stationarity of returns and volatilities. As can
be seen from panel A, all returns series exhibit stationarity, since the null of unit root can be rejected
strongly at the 1% significance level (using the Augmented Dickey-Fuller (ADF) [41] and Phillips-Perron
(PP) [42] tests) while the null of stationary cannot be rejected at conventional significance levels (using
the Kwiatkowski et al. (KPSS) [43] test). Results for volatilities, on the other hand, are mixed: while the
ADF and PP tests rule out the existence of unit roots, the KPSS test show evidence of non-stationarity.
A possible explanation for the contrasting results is that long-memory of volatilities lower the power of
these tests. For example, time series with long-range dependence, as opposed to infinite dependence
and following the random walk, may still be stationary.



Sustainability 2019, 11, 2843 15 of 19

Table 4. Summary statistics of returns and volatilities.

Crude Oil (WTI) Crude Oil (Brent) Diesel Gasoline Heating Oil LNG

A. Returns

Mean 0.00 0.00 0.00 0.00 0.00 0.00
Median 0.00 0.00 0.00 0.00 0.00 0.00
Variance 0.00 0.00 0.00 0.00 0.00 0.00
Skewness −0.11 −0.07 0.09 −0.02 −1.30 0.53
Kurtosis 4.48 4.85 10.96 5.75 36.58 23.36
JB 4,636.39 5,425.09 27,726.50 7,626.17 31,0451.74 12,6236.23

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
LB(21) 49.22 52.96 58.48 59.98 63.28 269.94

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

B. Volatilities

Mean 0.02 0.02 0.02 0.03 0.02 0.04
Median 0.02 0.02 0.02 0.02 0.02 0.03
Variance 0.00 0.00 0.00 0.00 0.00 0.00
Skewness 1.78 1.43 2.21 2.02 5.69 2.94
Kurtosis 4.35 3.59 8.77 7.93 52.33 11.73
JB 7,253.17 4,820.13 22,147.27 18,174.67 65,8570.09 39,502.69

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
LB(21) 87,932.64 87,228.02 75,212.60 77,604.79 76,836.39 72,836.22

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Notes: Returns of commodity i are computed as the log-change of the corresponding daily spot price:
rit = log pit − log pi,t−1 (t = 1, . . . , T), where pit denotes the spot price of commodity i. T denotes the number
of observations (5535 trading days, from 9 January 1997, to 22 April 2019 ). Volatilities are defined as the 30-day

rolling standard deviation of the log-change in prices, i.e., σit =

√
(1/30)

∑31
j=2

[(
log pi,t+ j − log pi,t+ j−1

)
− rit

]2
, where

rit = (1/30)
∑31

j=2

(
log pi,t+ j − log pi,t+ j−1

)
is the rolling average return. JB and LB (21) denote the Jarque-Bera (which

tests the null of normal distribution) and the Ljung-Box statistics (which tests for the null of no serial autocorrelation
up to lag 21), respectively. p-values of these tests are in parentheses.

Table 5. Stationarity tests for returns and volatilities.

Crude Oil (WTI) Crude Oil (Brent) Diesel Gasoline Heating Oil LNG

A. Returns

ADF −16.90 −16.88 −17.43 −16.28 −18.76 −19.78
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

PP −5402.46 −5459.67 −6006.09 −5192.76 −5566.76 −4420.88
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

KPSS 0.08 0.08 0.05 0.05 0.07 0.03
(0.10) (0.10) (0.10) (0.10) (0.10) (0.10)

B. Volatilities

ADF −6.32 −6.59 −8.29 −8.89 −9.36 −10.14
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

PP −60.94 −65.79 −99.93 −97.12 −94.14 −101.89
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

KPSS 1.90 3.44 1.94 4.04 2.95 0.39
(0.01) (0.01) (0.01) (0.01) (0.01) (0.08)

Notes: See notes to Table 4. ADF, PP, and KPSS refer to the augmented Dickey-Fuller [41] and Phillips-Perron [42]
tests for the null of unit root, and the Kwiatkowski et al. [43] test for the null of stationarity, respectively. p-values of
these tests are in parentheses.

Figure 5 sheds light on this issue by presenting the auto-correlation functions (ACF) of the volatility
series. The auto-correlation coefficients are all highly significant even at the 200-day lag (i.e., close to a
full trading year). Based on these observations, in Table 6 we present the estimated Hurst exponents
for the 6 returns and volatilities series. All returns yield values are in the proximity of 0.4–0.5, while
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volatilities’ values are in the range of 0.7–0.8. According to the implications of Hurst index on the
statistical property of time series (see Table 1), these results support our observation that energy price
returns exhibit behavior of white-noise processes while volatilities show evidence of long-memory,
which is in agreement with observations previously made in the literature (see, e.g., [18,23]).
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Figure 5. Auto-correlograms of volatility of energy commodities, 1997–2019. Notes: Returns of
commodity i are computed as the log-change of the corresponding daily spot price: rit = log pit −

log pi,t−1. Volatility is computed as 30-day rolling standard deviations of rit.

Table 6. Estimates of Hurst exponents with waveMLE.

Crude Oil (WTI) Crude Oil (Brent) Diesel Gasoline Heating Oil LNG

Returns 0.5 0.48 0.51 0.54 0.52 0.38
Volatilities 0.79 0.8 0.77 0.79 0.79 0.78

6. Conclusions, Implications and Qualifications

Burning fossil fuels, the main source of man-made carbon dioxide, is the most important cause
of climate change. Contributing to this issue is the recently lower energy prices and quickly rising
share of middle-class population in developing economies, which significantly lifts the global energy
consumption rate via the use of personal transportation vehicles [44,45]. Given the importance of
prices in determining the supply and demand of energy commodities, it is crucial to develop tools to
measure the risk associated with markets for these commodities, to better understand what ultimately
affects progress on reducing the adverse effects of climate fluctuations.

This paper contributes to the existing literature by examining various estimation methods for
long-memory in price returns and volatilities to assess energy market efficiency. We first investigate the
performance of the various conventional methods reviewed by [34] and the wavelet-based maximum
likelihood estimator (waveMLE) proposed by [2]. Our simulations indicate that waveMLE is superior
to the majority of other methods. Applications of waveMLE support white-noise behavior for returns
and long-range dependence for volatility. Our findings offer market participants an interesting
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opportunity to exploit potential inefficiency in the energy markets. For example, policy makers can
prepare to provide stricter price regulation when there are volatility spikes that tend to be prolonged,
while traders can design optimal hedging strategies based on forecasts of future volatilities that
incorporate long-memory.

Our findings are subject to two qualifications. First, potential structural breaks in fossil fuel prices
are not covered in our analyses. However, given the robust evidence of long-memory detected for
volatilities in previous studies even in the presence of such breaks (see, e.g., [16–18]), we conjecture that
these breaks are not a major source of bias for our primary findings. Second, we have not investigated
the forecasting value of our estimators, which could potentially offer further important implications
for the understanding of energy market dynamics. This will be an interesting future research direction.
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