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Abstract: China aims to reduce carbon dioxide (CO2) intensity by 40–45% compared to its level in
2005 by 2020. The underground economy accounts for a significant proportion of China’s economy,
but is not included in official statistics. Therefore, the nexus of CO2 and the underground economy in
China is worthy of exploration. To this end, this paper identifies the extent to which the underground
economy affects CO2 emissions through the panel data of 30 provinces in China from 1998 to 2016.
Many studies have focused on the quantification of the relationship between CO2 emissions and
economic development. However, the insights provided by those studies have generally ignored
the underground economy. With full consideration of the scale of the underground economy, this
research concludes that similar to previous studies, the inversely N-shaped environmental Kuznets
curve (EKC) still holds for the income-CO2 nexus in China. Furthermore, a threshold regression
analysis shows that the structural and technological effects are environment-beneficial and drive
the EKC downward by their threshold effects. The empirical techniques in this paper can also be
applied for similar research on other emerging economies that are confronted with the difficulties of
achieving sustainable development.
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1. Introduction

During the past few decades, climate change has been a challenging problem all over the world [1].
As the primary greenhouse gas, carbon dioxide (CO2) has been extensively recognized to be a common
cause of global environmental issues [2]. China started to promote its industrialization and urbanization
since 1978. The rapid industrialization and urbanization, however, have dramatically increased the
CO2 emissions in China [3]. Meanwhile, multiple developed countries have put pressures on China
in climate change conferences [4]. Under such circumstances, at the Copenhagen climate agreement,
the Chinese government set an ambitious target of reducing carbon intensity by 40–45% by 2020
compared to the level at 2005.

In some emerging and developing countries, considerable underground economies have fostered
lots of environmental and climate problems to a rather large extent [5]. The underground economy,
also called informal/black/shadow/non-observable economy, is commonly defined in the existing
literature (e.g., Edgar [6] and Schneider [7]) as ‘all economic activities that contribute to the officially
calculated/observed gross national product but are currently unregistered [5]’. Because the informal
economy’s scale is not accounted for in official economic statistics, it tends to be higher than expected
in China [8].

The hidden income of the urban household in China is not less than 4 trillion and 800 billion yuan [9]
and the overall unobserved economy scale accounts for as much as 25%–49% of the gross domestic product
(GDP) [10]. Therefore, if there exist pollution and energy-intensive industries among the underground
economy, then, the underground economy can lead to nontrivial environmental issues (e.g., the increase of
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CO2 and air pollution emissions) due to the comparatively loose environmental regulations in China [11].
Since China’s irrational industrial structure heavily relies on the secondary industry (mainly consisting of
manufacturing and heavy industry) which is usually pollution- and energy-intensive, the underground
economy may cause a surge in CO2 emissions [12]. Besides, the underground economy can hinder
environmental regulations and weaken the regulatory effects of developing countries [5]. Knowing these
issues is helpful for policymakers to better coordinate CO2 mitigation and the underground economic
regulations. In this context, it is necessary to account for the underground economy when studying
the relationship between the economic development and CO2 emissions in China [13]. Additionally,
the marginal effects of underground economic scale on carbon emissions level is worthy of estimation.
Surprisingly, there is still a lack of empirical research on the underground economy–CO2 nexus of China.

This study particularly contributes to the literature by overcoming the gaps of prior researches.
This study’s main contribution is threefold. First, the study re-examines the EKC of China’s provincial-level
CO2 emissions by incorporating the underground economy into the analyzing framework through
the random coefficients approach. To the best of the author’s knowledge, this is the first research
work that has incorporated the underground economy into the analysis of CO2 Kuznets curve, and
found province-specific evidence supporting the income-CO2 nexus. Second, the study empirically
estimates the marginal effects of the underground economic scale on CO2 emissions level by the threshold
regression technique for the first time. This study clearly reveals a linear positive correlation between
underground economic scale and CO2 emissions in China. Third, through the threshold regression
approach, the industrial structure and technical progress are verified as two of the driving factors for
the ECK of CO2 emissions in China. It is found that these two factors are nonlinearly related to the
CO2 emissions level depending on the personal income level. This is consistent with the theoretical
expectation of EKC.

The remainder of the paper is organized as follows: Section 2 reviews past research on EKC and
the underground economy. Section 3 introduces the theoretical foundation for this study. Section 4
describes the details of the variable, source of the data, empirical methodology and statistical inference
strategies used in the paper. Section 5 illustrates and analyzes the model estimation results, then
Section 6 further discusses the results. Section 7 concludes the whole research and presents suggestions.

2. Literature Review

2.1. EKC Hypothesis

Grossman and Krueger [14] introduced the EKC hypothesis, suggesting the existence of an inverse
U-shaped relationship between pollutants and economy growth/income. Stern [15] and Holtz-Eakin
and Selden [16] then testified the EKC hypothesis by CO2 emissions data. Zhang and Lin [17] explored
the EKC and evaluate the urbanization’s effectiveness on CO2 emissions in the eastern, western, and
central parts of China. Moreover, Kaika and Zervas [18,19] argued that other than increasing income,
technical progress and international trade are also driving factors for the CO2 EKC. Yin et al. [20]
verified the beneficial effects of technological advancement and environmental regulations on CO2

emission reduction. They concluded an inverse U-shape CO2 EKC in China. In recent years, advance
methods were also adopted for EKC studies. Taskin and Zaim [21] examined CO2 emissions in 52
countries from 1975 to 1990 through nonparametric regression. They claimed an inverted N-shape
relationship between personal income and CO2 emissions with double turning points: $5000 and
$12,000 per capita. Maddison [22] explored the EKCs for carbon, sulfur and nitrogen dioxide as well
as volatile organic compounds in 135 countries. He detected the spatial interactions between the
emissions of local and adjacent countries with spatial statistic tools. By the spatial panel data method,
Zheng et al. [23] and Kang et al. [24] verified an inversely N-shaped EKC for CO2 emissions in China.
Similarly, Zhou et al. [25] and Ge et al. [26] testified inverse N-shape EKCs for sulfur dioxide and
nitrogen oxide emissions in China using spatial panel data techniques. Xu et al. [27] investigated the
correlations among income, household fuel consumption, and CO2 emissions through the EKC model
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at both the regional and national level and validate the EKC assumption in China. Haseeb et al. [28]
estimated the impact of economic growth, financial development and other socio-economic factors on
CO2 emissions in the presence of the EKC framework for BRICS economies, new evidence was found
to support the EKC hypothesis in BRICS economies.

Like any other theory, the EKC hypothesis has raised critiques and doubts among academia.
Different opinions and critiques mainly focus on the shape, the sample and the adopted methods of
EKC studies.

Some scholars argued against the EKC of the classical inverse U-shape, they believed that the
inverse U-shape does not hold when a longer time interval is evaluated for the curve [29]. For instance,
Millimet et al. [30] claimed that the inverse U-shaped EKC was essentially derived from an N-shaped
EKC. They further elaborated their idea: Environmental deterioration increases in the early stage of the
development in a country. After reaching the threshold level of income, the deterioration decreases and
then increases with income. Taskin and Zaim [21] found an inverted N-shaped nexus between CO2

emissions and economic growth for 52 countries from 1975 to 1990 by the nonparametric regression
approach. In addition, Zheng et al. [23] and Kang et al. [24] applied the spatial panel data approach and
concluded an inverted N-shaped relationship between CO2 emissions and economic growth in China.

Many of the early EKC research works made the conclusion of a unique EKC existing among
different countries/regions merely based on the investigation of cross-sectional data, however,
cross-sectional data has been criticized for its invalidity on EKC hypothesis verification [31–33]. Because
as the economy keeps growing, a group of regions may go through environmental improvement, while
other regions (in the same sample population) experience environmental degeneration. An inverted-U
shape EKC can be derived from the cross-sectional regression on the sample that mixed these two
different groups. Nevertheless, such an inverse U-shape curve does not depict the path of any group
of this sample [34].

Bradford et al. [35] hold the view that personal income and per capita pollution emissions,
as well as the logarithmic transformations of them, are usually non-stationary unit root processes.
Therefore, nonstationary econometric techniques (i.e., panel unit root and panel co-integration tests)
were adopted for the verification of EKC with panel data [36–39]. However, the pre-assumption for the
validity of panel unit root tests (i.e., independent and identically distributed sampling) is usually not
practical in most empirical research. Nonlinear transformations would change the stochastic characters
of a unit root process, therefore, the commonly applied logarithmic transformations of the dependent
and independent variable in the unit root process are problematic [40]. Prior studies generally ignored
these issues when empirically using panel unit root tests [34].

2.2. The Underground Economy and Its Environmental Impacts

Kostakis [41] examined the underground economy and corruption’s impacts on private consumption
and conclude that the underground economy and corruption could be substitutes concerning its effect
on real consumption growth of individuals. Hajilee et al. [42] analyzed the impact of the underground
economy on the financial market in the short- and long-run by using the annual data (1980–2013) for 18
merging economies. They argue that the underground economy has significant asymmetric impacts on
the financial market in the short-run and no effects in the long-run.

There is only a limited number of works in the literature that have studied the relationship
between the underground economy and environmental quality, and the previous work mainly
focused on theoretical construction. Scholars generally believe that the underground economy can
worsen environmental pollution. After analyzing the issues of polluting informal sectors of Mexico,
Blackman et al. [43] argued that owing to the wide application of low technology, the informal sectors
are major sources of pollution and the size of pollution emissions in these underground economic
sectors is significantly environment-beneficial. Biswas et al. [5] developed a theoretical model that
incorporates the environmental pollution, corruption and underground economy into an integrated
framework to reveal the mechanism of how the underground economy aggravates environmental
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deterioration under a certain level of corruption. They found that the control of corruption can
mitigate the impact of the underground economy on environmental pollution. After scrutinizing the
informal economy’s effectiveness on multiple pollution indices by the annual data of Turkey, Elgin and
Oztunali [13] argued that the small-scale informal economy always has a relatively higher pollution
level and vice versa.

Other extant works of literature also explored and verified that pollutant emissions are closely
related to the underground economy (e.g., Baksi and Bose [44] and Croitoru and Sarraf [45]).

3. Theoretical Framework

This section introduces the theoretical framework on which the research is based.

3.1. EKC Model

Originally, the Environmental Kuznets Curve is an empirical hypothesis that depicts an inverse
U-shape curve for the nexus of environmental quality and economic development. More specifically,
at an early stage of the development, production expansion and wealth accumulation are preferred over
environmental quality, thus, resource consumption, pollution emissions and environment degeneration
emerge as economic growth. After reaching the threshold level of development, the environmental
quality begins to improve [14]. The reason for the environmental improvement might be the pollution
reduction, technological advancement, industrial structural upgrade and the public’s demand for
a better environment to be promoted by economic development [22]. Generally, when the wealth
has reached a specific level, the public tends to trade economic efficiency for environmental quality
through technological, economic and political ways [46].

The following econometric model is commonly applied to empirically verify the existence of EKC
and the shape [47]:

Y = α+ β1X + β2X2 + β3X3 + β4Z + ε (1)

where, Y is the indicator of environmental quality, X is the economic development measured by
per capita GDP (Gross Domestic Product), and Z is the set of control variables that represent other
influential factors of the environment. This polynomial function offers an empirical tool for testing
and estimating EKC: (1) β1 = β2 = β3 = 0: Y and X are not related; (2) β1 > 0, β2 = β3 = 0: a positive
relationship between Y and X; (3) β1 < 0, β2 = β3 = 0: a negative relationship between Y and X; (4) β1 > 0,
β2 < 0 and β3 = 0: an inverse-U shape nexus (i.e., the classical EKC); (5) β1 < 0, β2 > 0 and β3 = 0:
a U-shaped nexus; (6) β1 < 0, β2 > 0 and β3 < 0: an inversely N-shaped curve; (7) β1 > 0, β2 < 0 and
β3 > 0: an N-shape curve.

3.2. STIRPAT Model

Dietz and Rosa [48] developed a stochastic version of the IPAT (Impact, Population, Affluence,
and Technology) concept, which is known as the STIRPAT model. Later on, York et al. [49] refined the
STIRPAT framework and expressed it by the empirical form:

Ii = αiPb
i Ac

i T
d
i εi (2)

In Equation (2), I indicates the environmental impact, and P, A, and T represent the population,
economic development and technology influences, respectively. The subscript i indicates the ith
observation (usually regions) and the value of a variable varies across observations. ε is the random
error term that enables statistical estimation for the coefficients α, b, c and d in the empirical function.

According to the purpose of this study, the total per capita GDP, abbreviated as GDPT (GDPT = per
capita GDP + per capita informal GDP (abbreviated as GDPN)), is defined as the index of the economic
development level; as routine, energy intensity (EI, energy consumption per unit of output) is used to
reflect the technology impacts [46]; the annual resident population size is used as the indicator of the
population effects; Environmental impact is indexed by the amount of CO2 emissions.
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Besides, China has maintained the largest foreign capital scale for many years among developing
countries. The continuous injection of foreign direct investment (FDI) promotes the technical and
management level of local enterprises and stimulates the economic growth as well as export trade of
China [50]. Meanwhile, the impact of FDI on Chinas pollution and environmental quality has been
paid more attention by scholars (e.g., Wang and Jin [51]; Bao et al. [52] and Dean et al. [53]). Since 2015,
the Chinese government started to promote the optimization of the industrial structure for energy-saving
and emission-reduction purpose in the long term. The gradually optimized industrial structure is
believed to be environment-beneficial in China. The transmission of production factors between
industries would take effects on the emissions level [47,54]. Other than that, China has been boosting
the infrastructure construction in urban areas and sprawling its cities for decades, thus urbanization
is another significant influencing factor of environmental quality [36,55,56]. Therefore, the analytical
framework also incorporates the effects of FDI (fdi), industrial structure (str) and urbanization (urb).

The STIRPAT model is highly flexible to various functional forms and permits the addition of other
variables [49] to control for the impacts of factors other than development, population and technology.
Thus, the logarithmic extended STIRPAT model is adopted to satisfy the needs of the study:

ln CO2 = b ln GDPT + β1 ln P + β2 ln EI + β3 f di + β4str + β5urb + ε (3)

ln CO2 = b1 ln GDPT + b2(ln GDPT)2 + β1 ln P + β2 ln EI + β3 f di + β4str + β5urb + ε (4)

ln CO2 = b1 ln GDPT + b2(ln GDPT)2 + b3(ln GDPT)3 + β1 ln P + β2 ln EI + β3 f di + β4str + β5urb + ε (5)

The combined use of quadratic and cubic income terms in the model enables a more thorough
investigation of CO2 EKC. In the STIRPAT framework, linear and higher order terms of lnGDPT,
lnP and lnEI are the pivot variables while other independent variables can be seen as control variables.
In sum, the theoretical framework with its characteristics is shown in Figure 1.
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4. Methodology and Data (Variables)

4.1. Measuring the Underground Economy Scale

Activities of the underground economy are carried out with secretive manners and not recorded
by official statistics, so it is difficult to accurately explore these activities. Despite various difficulties,
different methods have been developed by some scholars to quantitatively evaluate the scale/size
of the underground economy. The main applicable accounting methods are the currency demand
method and production factor method. Although the currency demand method is a comparatively ideal
method to measure the scale of China’s underground economy [57], it is unable to estimate the scale
at the provincial level. Thus, this study adopts the production factor method [58] to measure the
underground economy’s scale in each province.

The informal economy is not strictly isolated from the formal economy. The income from the
formal economic sector can be used to purchase products in the informal economic sector, while gray
income from the informal sector may be legally consumed. Based on this connection, the income
received from the underground economy can be indirectly obtained. Therefore, the total income in the
informal economic sector can be inferred by the difference between the income and expenditure of the
whole society. Further, once the share of informal income in the underground economy scale is known,
the scale of the underground economy can be inferred (it is assumed that the informal economic and
the formal economic sectors are similar in terms of factors of production structure) [57,58].

According to the principle of macroeconomic accounting [58]:

I = C + S (6)

Here, I, C and S refer to income, consumption, and savings in an economy. Further [58],

IU = E + AS− (UI·UP + RI·RP) (7)

In Equation (7), IU indicates the total income in the underground economic sector; E, AS, UI, UP,
RI and RP indicate the total household expenditure, annual increase of residents’ savings, per capita
income of urban residents, urban population, per capita income of rural residents and rural population
respectively [58].

Because the production factor method assumed that the factors of production structures in the
informal economic and the formal economic sectors are similar, the income-GDP ratio of underground
economic sector equals the income-GDP ratio of the formal economic sector [57,58] which can be
expressed by Equation (8):

IU
NGDP

=
IN

GDP
(8)

where NGDP, IN, and GDP are the scale of the underground economy (the unobserved GDP), income
in the formal economic sector and the formal economic scale (the official real GDP) respectively.
The official statistics of residents’ consumption expenditures, saving and income, as well as provincial
GDP, are easily accessible, thus the scale of underground economic scale can be directly estimated
through Equations (7) and (8).

4.2. The Random Coefficients Model

Most of the EKC studies have restricted the coefficients of per capita income to be the same
for every observation (countries, provinces, cities, etc.) because of the application of the traditional
cross-section/penal data model. In the context of the great diversity of political, social, geographical
and economic situations across regions, this restriction hardly makes any sense. The adoption of the
random coefficients model can overcome the heterogeneous issue. As depicted by Equation (9) [59]:

yit = x′itβi + εit = x′it(β+ υi) + εit = x′itβi + (x′itυi + εit) (9)
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where βi = β+ υi and βi = (β0, βi1, . . . , βik) are assumed subjecting to the same distribution. υi is
a random vector that is subject to E(υi

∣∣∣xi) = 0. βis a constant parameter vector that provides the average
CO2-income nexus. Since βi1, . . . , βik can vary across regions, the nexus of CO2-income experienced by
individual regions can be different from the average relationship [59].

4.3. The Threshold Regression

The threshold regression model is designed to capture the structural break in the relationship
between economic variables. The relationship can be described by a nonlinear model of individual
observations which could be divided into different classes based on the value of the observed threshold
variable. Consider a general single-threshold model [60]:

yit = β′1XitI(qit ≤ γ) + β′2XitI(qit > γ) + Zitβ
′

3 + µi + εit (10)

where the I(·) is the indicator function and γ is the threshold parameter that divides the equation into
two ‘regimes’. The regimes are distinguished by different regression slopes, β1 and β2. Xit and Zit
are regime dependent and regime independent variables. An alternative compact way of writing

Equation (10) is yit =

{
β′1Xit + µi + εit, qit ≤ γ
β′2Xit + µi + εit, qit > γ

[60].

The dependent variable yit and the threshold variable qit are scalers, and the independent variable
Xit and Zit are k-dimensional vectors. µi is the individual effect and εit is the error term.

The threshold parameter γ can be estimated by least-squares, which is easy to achieve by
minimizing the residual sum of squares (RSS). One can search through a subset of the threshold
variable qit and the estimator of γ is the value which minimizes the RSS. Given γ, the slope parameter
β can be estimated by ordinary least-squares (OLS) [60]. Specifically, the average of Equation (10) over
time (index of t) is [60]

yi = β′Xi(γ) + β′3Zi + µi + εi (11)

where yi = 1
T
∑T

t=1 yit, εi = 1
T
∑T

t=1 εit, Zi = 1
T
∑T

t=1 Zit and Xi(γ) = 1
T
∑T

t=1 Xit(γ) ={ 1
T
∑T

t=1 XitI, qit ≤ γ
1
T
∑T

t=1 XitI, qit > γ
.

Taking the difference between Equations (10) and (11) produces [60]

y∗it = β′X∗it(γ) + β′3Z∗it + ε∗it (12)

Here, y∗it = yit − yi, X∗it(γ) = Xit(γ) −Xi(γ), Z∗it = Zit −Zi and ε∗it = εit − εi. Then the estimation
of β(γ) can be obtained by OLS and furthermore, the ε̂∗(γ) (estimator of ε∗) can be derived.

It is critical to test if the threshold is statistically significant in the empirical analysis. The null
hypothesis of the test is that no threshold exists, namely, the difference between β1 and β2 is statistically
insignificant (H0: β1 = β2).

The test of H0 is conducted by a likelihood ratio of a Chi-square distribution with the bootstrap
procedure [61]. And so on, one can deal with the double and multiple-threshold regressions in the
same way.

4.4. Measuring CO2 Emissions from Energy Consumption

Fossil fuel combustion and electric power consumption are the main sources of CO2 emissions from
human activities. Due to the lack of direct monitoring and measuring means, a majority of the research
measures the CO2 emissions of China through the method provided by the Intergovernmental Panel on
Climate Change (IPCC) [62]. This method calculates the CO2 emissions through energy consumptions:

CO2 =
44
12

7∑
i=1

EFiConviConsi (13)
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where the values of i (1–7) denote 7 kinds of energy including raw coal, coke, fuel oil, diesel, kerosene,
gasoline, and electricity. The fraction 44/12 is the molar ratio of CO2 to carbon. The Consi indicates the
consumption of i-th energy which needs to be converted to its standard coal equivalent by multiplication
with the conversion coefficient (Convi), while EFi denotes the carbon emission factor of i-th energy.
Table 1 lists all the carbon emission factors and the conversion coefficients for i-th energy.

Table 1. The CO2 emission factors and standard coal equivalent conversion coefficients.

Energy Type Raw Coal Coke Fuel Oil Diesel Kerosene Gasoline Electricity

Emission factor 0.7559 0.8550 0.6185 0.5921 0.5714 0.5538 0.2720
Conversion coefficient (tce/t) 0.7143 0.9714 1.4286 1.4571 1.4714 1.4714 -

Note: The unit of CO2 emission factor of electricity is 10,000 tC/kWh. Resource: IPCC [62].

4.5. Variables and Data Resource

This research estimates the impacts of the underground economic scale on CO2 emissions and
investigates the CO2 EKC with the inclusion of the underground economy in China, via a panel
of 19 years (1998–2016) of provincial data (the data of Tibet autonomous region, Taiwan province,
Hong Kong and Macau special administrative regions are not available). The author takes the indicators
of proportion of urban population, ratio of FDI to GDP, real per capita GDP, and population size to
reflect the urbanization, foreign capital inflow, economic development, and population. The proportion
of the secondary industry [20,63,64] and energy intensity [46] are defined as the indicators of economic
structure and technology impacts.

Every kind of energy consumption and the standard coal consumption (kg of coal equivalent, used
for calculating energy intensity) were obtained from the China Energy Statistical Yearbook. FDI and
the secondary industry output were collected from the China City Statistical Yearbook in the EPS data
bank. Personal income, GDP, urban population and total population were obtained from the China
Statistical Yearbook. The per capita GDP was converted into the 1995 constant price.

As for the data used to calculate the scale of the underground economy, the total income of urban
personnel in 1998–2001, 2015 and 2016 are obtained from the EPS databank, residents’ savings deposit
of 1998–2001, 2015 and 2016 are obtained from the EPS data bank, and these indicators of 2002–2014
are obtained from the National Statistics Bureau of China [65]. The total consumption expenditure
of residents is also obtained from the National Statistics Bureau of China. Per capita income of rural
residents is obtained from the China Labor Statistical Yearbook; the rural population is obtained from the
China City Statistical Yearbook. Definitions and descriptive statistics of the variables are listed in Table 2.

Table 2. The definitions and descriptive statistics of the variables.

Variable Definition (unit) Mean Std. Dev. Min Max

lnGDPT Total (underground + formal) per capita GDP (100 yuan) 5.435 0.845 3.354 7.596
lnGDPN Underground per capita GDP (100 yuan) 4.188 0.981 1.286 6.762

fdi Ratio of FDI to GDP (%) 2.765 2.698 0.001 21.188
str Proportion of secondary industry (%) 45.325 7.853 19.262 59.045

lnPOP Total Population (10 thousand) 8.143 0.763 6.221 9.306
urb Proportion of urban population (%) 47.414 15.621 21.890 89.600
lnEI Energy intensity (tons of coal equivalent/billion yuan) 9.639 0.506 8.669 10.928

lnCO2 Carbon dioxides emissions (10,000 tons) 10.155 0.894 6.904 12.030

Note: lnGDPT, lnGDPN, lnPOP, lnEI and lnCO2 are processed with natural logarithm transformation. GDPN is
calculated through the production factor method introduced in Section 4.1. Per capita CO2 emissions is the other
commonly used indicator. The population is one of the independent variables in all the regression models so there
will be no differences in the estimates of all parameters whether the study uses the per capita or total CO2 emissions
as the indicator.

According to the study purpose, total per capita GDP (including its powers), underground per
capita GDP, energy intensity and secondary industry proportion are the core explanatory variables,
and the remaining variables are control variables in all empirical models.
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5. Results

5.1. The EKC Estimation

In the EKC studies, if the per capita GDP and its’ quadratic and cubic terms are included as the
independent variables of the traditional panel data regression model, then each region (province/city)
will have the same shaped EKC, while the intercept (fixed effects) will enable the EKC to shift up and
down vertically for different regions. However, there is no reason to assume that different regions in
China are experiencing the same CO2-income relationship, given the differences in socio-economics,
culture, geography, climate, etc. that exist across these regions. Therefore, this study adopts an
alternative and less restrictive random coefficients model that shows the cross-provincial heterogeneities
in the shape of the income-CO2 nexus.

All the empirical results in this study are generated through Stata 15. Table 3 presents estimates
of Equations (3)–(5) by the random coefficients approach. The linear, squared and cubic income
coefficients in the cubic model are highly significant, thus the cubic model specification is superior
to the quadratic and linear specifications because the linear and quadratic models are naturally
nested in the cubic model. The χ2-statistics (test of parameter constancy with the null hypothesis:
β1j = β2j = . . . = βmj) overwhelmingly reject that the independent variables are the same for each
province. Hence, in order to know the extent to which such an “average” nonlinear (cubic) nexus is
meaningful/representative, the province-specific estimations were conducted (shown in Appendix
Tables A1 and A2). As one can see, despite the heterogeneities across the provinces, only a small part
of them are not subject to cubic relationships. Therefore, the following analysis of the GDPT-CO2

emissions nexus is based around the cubic specification result.

Table 3. The random coefficients model results.

Dependent Variable: lnCO2 Cubic Model Quadratic Model Linear Model

lnGDPT −9.430 *** 0.249 0.329 ***
(−2.92) (0.76) (4.68)

(lnGDPT)2 1.819 *** 0.008
(2.90) (0.24)

(lnGDPT)3 −0.113 ***
(−2.77)

fdi −0.016 * −0.01 −0.008
(−1.74) (−0.78) (−0.60)

str 0.014 *** 0.018 *** 0.016 ***
(3.43) (4.26) (3.69)

lnPOP 0.631 0.410 0.386
(0.82) (0.42) (0.45)

urb 0.040 *** 0.037 *** 0.037 ***
(3.91) (3.65) (4.27)

lnEI 0.379 *** 0.431 *** 0.466 ***
(3.02) (3.46) (4.39)

Test of parameter constancy (χ2) 17,749.03 *** 15,448.34 *** 14,487.28 ***
Observations 570 570 570

T-statistics in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.010. The linear, quadratic and cubic specifications are
based around Equations (3)–(5) respectively.

Evidence from the cubic model result highlights signs of the three income terms: negative
(−0.113), positive (1.819) and negative (−9.430). This depicts an inversely N-shaped dynamics, which
would imply potential EKC dynamics for the GDPT-CO2 relationship with double turning points
well inside the total per capita income range (see Table 2, the lnGDPT ranges from 3.354 to 7.596
while the corresponding lnGDPT of the N-shape’s lower and higher peak are approximately 4.369
and 6.371). To put this in a practical way, in China, the developed provinces (generally with a GDPT
over 58,470 Yuan, the second turning point) are currently experiencing a monotonic decrease in CO2
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emissions while the developing regions are experiencing an increase and the increasing trend would
be curbed when the total per capita income reaches around 58,470 Yuan (the 1995 constant prices), then
the emissions would start to decrease.

The explanations for the environmental quality improvements after income reaching a threshold
(the transitions from second phase to the third phase in the inverse-N dynamic) includes the following:
people are willing to pay more for environmental quality as their income rises [35]; increasing levels of
income lead to peoples’ environmental awareness which brings higher environmental pressures on the
political agenda [66]; the economic composition alters with an increase of income, while the secondary
industry loses more importance against services [67]; higher levels of wealth are more often associated
with higher levels of technological eco-efficiency, led by changes in material and energy consumption
patterns [68].

5.2. Driving Forces and the Underground Economic Impacts

The EKC can be regarded as a simplified description of multiple socioeconomic factors influencing
environmental quality in general and the CO2 emissions in particular [68]. Rothman [69] and Torras
and Boyce [70] integrate several factors into their analysis framework to show that the relationship
between economic development and environmental quality depends on the effectiveness of the
structure, technology advancement and the scale of the economy. The Scale effects tend to aggravate
environmental degradation but the structural (when the tertiary industry dominates) and technological
effects can offset this effect, so the environmental quality starts to improve at higher income levels,
as suggested by the EKC theory.

In the EKC study, the threshold regression technique makes the examination of the threshold effects
led by endogenous factors (e.g., technology, economic structure, etc.) suitable from an econometric
perspective. Another side benefit of this method is that marginal effects of underground economic
scale on CO2 emissions can be verified and estimated by indicating the lnGDPT term as the threshold
parameter in the indicator function. In this way, the potential interaction and mixed effects between
the underground and total economic scale can be overcome.

Table 4 provides the results from threshold tests (F1, F2, and F3, along with their bootstrapped
p-values) based on statistical inference introduced in Section 4.3. The regression models with the
triple-threshold are overwhelmingly rejected by their F-statistics (with p-values of 0.608 and 0.656).
On the other hand, the F-tests (F1) for a single threshold are strongly significant (with p-values of 0.038
and 0.006), while the F-tests (F2) for a double threshold are also significant (with p-values of 0.048 and
0.018). This provides convincing evidence that there are two thresholds (structural breakpoints) in the
empirical relationship. For the remainder of the analysis, this paper works with the double threshold
models that can be written as the piecewise function.

ln CO2 = β1str·I(ln GDPT ≤ γ1) + β2str·I(γ1 < ln GDPT ≤ γ2) + β3str·I(γ2 < ln GDPT)
+β4 ln GDPN + β5 ln POP + β6 ln EI + β7 f di + β8urb + µi + εit

(14)

ln CO2 = β1 ln EI·I(ln GDPT ≤ γ1) + β2 ln EI·I(γ1 < ln GDPT ≤ γ2) + β3 ln EI·I(γ2 < ln GDPT)
+β4 ln GDPN + β5 ln POP + β6str + β7 f di + β8urb + µi + εit

(15)

It is interesting to note the estimated threshold values are almost the same for both Equations (14)
and (15). Estimated coefficients and their OLS t-statistics are listed in Table 5. Parameter estimates
are similar in two different specifications of the regime-dependent variable, which suggests that the
threshold regression results are robust. The coefficient of primary interest is the one on the underground
economic scale (lnGDPN), and its point estimates in both models are around 0.16, which suggests that
the CO2 emissions are positively related to the scale of the underground economy. Ceteris paribus,
a 10% increase in the per capita underground economy would lead to a 1.6% increase in the CO2

emission level in China. In general, there exist many waste emissions activities in the underground
economic sectors, for example, resource extraction, transportation by scrapped vehicles, as well as the
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production in small-scale and informal factories. These firms are usually beyond the supervision of the
environmental department [5]. Hence, a larger scale of the underground economy implies a higher
level of CO2 emissions.

Table 4. The tests for threshold effects and threshold estimates.

. Economic Structure (str) As the
Regime Dependent Variable

Technology (lnEI) as the Regime
Dependent Variable

Test for single threshold
F1 46.73 66.86
P-value 0.038 0.006
(10%, 5%, 1% critical values) 36.9721, 44.2496, 61.4470 34.212, 40.132, 65.269

Test for double threshold
F2 36.79 45.70
P-value 0.048 0.018
(10%, 5%, 1% critical values) 32.426, 36.044, 49.296 29.862, 37.052, 52.730

Test for triple-threshold
F3 28.56 41.19
P-value 0.608 0.656
(10%, 5%, 1% critical values) 63.668, 73.516, 92.938 93.692, 105.639, 148.572
Threshold estimates (γ1, γ2) 4.782, 5.635 4.796, 5.633

Notes: The threshold estimates (γ1, γ2) are the results from Equations (14) and (15).

Table 5. The regression estimates: the double threshold model.

Economic Structure (str) as the
Regime Dependent Variable

Technology (lnEI) as the Regime
Dependent Variable

lnGDPN 0.168 *** lnPOP 1.302 *** lnGDPN 0.159 *** lnPOP 1.249 ***
(8.47) (11.36) (8.16) (11.13)

fdi –0.016 *** urb 0.036 *** fdi −0.017 *** urb 0.034 ***
(−3.88) (14.45) (−4.07) (14.11)

lnEI 0.350 *** str1(β1) 0.006 *** str 0.010 *** lnEI1(β1) 0.323 ***
(7.56) (2.62) (5.46) (7.15)

str2(β2) 0.010 *** lnEI2(β2) 0.343 ***
Observations 570 (5.23) Observations 570 (7.59)

R2 0.917 str3(β3) 0.013 *** R2 0.921 lnEI3(β3) 0.363 ***
Adjusted-R2 0.911 (7.29) Adjusted-R2 0.915 (7.99)

aic −587.6 aic −612.5
bic −548.5 bic −573.4

Notes: T-statistics in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01. The results are from Equations (14) and (15).

The other interest is on economic structure and technological efficiency. Their parameter estimates
suggest that the CO2 emission level is positively and non-linearly related to the secondary industry ratio
and energy intensity, with low per capita income level provinces (the provinces with an lnGDPT lower
than 4.7, 10,994.72 RMB) having smaller coefficients (str: 0.006 vs. 0.010; lnEI: 0.323 vs. 0.343) than the
typical provinces (the provinces with an lnGDPT between 4.7 and 5.6). Not surprisingly, the provinces
with high-income levels (the provinces with lnGDPT higher than 5.6, 27,042.64 RMB) have the
highest coefficient of 0.013 and 0.363. Since the secondary industry is energy- and pollution-intensive,
the higher the share of secondary industry in GDP is, the higher the level of CO2 emissions would be.
Technological progress (energy intensity, the technological effects index, is negatively related to the
level of technological advancement) has evident impacts on the upgrade of the energy consumption
structure and the energy efficiency of a country. Generally, the more progressive the technology is,
the fewer the resources consumed for producing the same output would be and the lower the energy
intensity would be, and thus, the lower corresponding CO2 emissions would be [20,71].
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In fact, Chinese provinces with a higher level of income are usually associated with a lower
proportion of secondary industry and higher technological eco-efficiency. Overall, the secondary
industry ratio and energy intensity have been decreasing during the sampled period, thus the structural
and technological effects drive a continuous reduction in CO2 emissions. Moreover, with the increase of
total income, the structural and technological effects become more and more obvious. Specifically, after
the income (lnGDPT) reaches 4782 (11,934.28 RMB), the structural effect is roughly 66% greater than
its initial level and 116% greater than the initial level when the income reaches 5635 (28,005.89 RMB).
Similarly, after the income reaches the first threshold, the technical effect is about 6% greater than
its initial level, and 12% greater than its initial level after income reaches the second threshold.
Parenthetically, it is worth noting that the structural breaking points (thresholds) of the structural and
technological effects lie between the inverse-N EKC’s turning points. This indicates that the industrial
structure and technology tend to exert beneficial effects before the CO2 emissions decrease.

5.3. Robustness Check

Statistical results can be sensitive to model specifications and, thus far, the random coefficients and
threshold regression modes are still not widely applied in environmental economics research. Besides,
policy suggestions heavily rely on the robustness of the empirical results. Therefore, this section
conducts the robustness check by different model specifications that incorporate different/no control
variables (str, urb, and fdi), and the results are reported in Tables 6 and 7.

The results in Table 6 suggest that the cubic relationship between income and carbon emissions is
valid under different model specifications. Besides, the province-specific coefficient estimations also
indicate that the cubic relationship holds in the majority provinces of China (see Appendix Table A2,
the province-specific estimations of M1–M3 specifications are omitted due to the page limits and
redundancy). Thus, the “average” inversely N-shaped EKC can conclude the overall income-CO2

nexus in China.
The threshold regression results of different specifications in Table 7 shows that the underground

economy’s positive effects on the CO2 emission level are not sensitive to the model specifications. There
should still be double structural breaking points in the GDPT. The escalation of economy structure’s
and energy intensity’s effects are robust. To conclude, the empirical findings of Sections 5.1 and 5.2
are reliable.

Table 6. The random coefficients model of different specifications.

Variables M1 M2 M3 M4

lnGDPT −15.737 *** −9.912 *** −16.970 *** −16.266 ***
(−5.94) (−3.06) (−6.09) (−6.05)

(lnGDPT)2 3.071 *** 1.953 *** 3.324 *** 3.186 ***
(6.28) (3.16) (6.25) (6.42)

(lnGDPT)3 −0.191 *** −0.120 *** −0.212 *** −0.199 ***
(−6.20) (−3.00) (−6.13) (−6.32)

lnPOP 1.722 * 1.811 0.818 1.908 *
(1.90) (1.52) (0.92) (1.89)

lnEI 0.430 *** 0.308 ** 0.480 *** 0.420 ***
(3.96) (2.38) (5.32) (4.23)

fdi −0.008
(−0.70)

str 0.013 ***
(3.07)

urb 0.039 ***
(4.33)

T-statistics in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.010. M1-M4 are based on the Equation (5) but only
incorporate fdi, str, urb and no control variables respectively.
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Table 7. The threshold model of different specifications.

Variables
Economic Structure (str) as the

Regime Dependent Variable
Technology (lnEI) as the Regime Dependent

Variable

M1 M2 M3 M4 M5 M6 M7

lnGDPN 0.347 *** 0.321 *** 0.175 *** 0.329 *** 0.320 *** 0.179 *** 0.308 ***
(18.02) (16.23) (8.80) (16.80) (16.57) (9.03) (15.58)

lnPOP 1.518 *** 1.295 *** 1.379 *** 1.290 *** 1.068 *** 1.269 *** 1.432 ***
(11.75) (9.57) (12.57) (10.37) (8.16) (11.96) (11.44)

lnEI 0.161 *** 0.103 ** 0.385 ***
(3.06) (2.03) (8.12)

fdi −0.024*** −0.023
***

(−4.83) (−4.70)
urb 0.040 *** 0.036 ***

(16.61) (14.52)
str 0.011 ***

(5.36)
Thresholds (γ1
γ2)

4.954 4.796 5.308 4.796 4.796 4.782 4.769
5.670 5.633 6.048 5.566 5.566 5.651 5.635

str1(β1) 0.005 ** 0.004 0.011 ***
str2(β2) 0.011 *** 0.011 *** 0.014 ***
str3(β3) 0.016 *** 0.016 *** 0.017 ***
lnEI1(β1) 0.176 *** 0.161 *** 0.439 *** 0.098 **
lnEI2(β2) 0.208 *** 0.196 *** 0.461 *** 0.126 **
lnEI3(β3) 0.244 *** 0.232 *** 0.484 *** 0.160 ***
Observations 570 570 570 570 570 570 570
R2 0.879 0.884 0.914 0.882 0.887 0.915 0.887

T-statistics in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.010. M1–M3 are based on Equation (14) but only incorporate
no control variables, fdi, and urb respectively. M4-M7 are based on Equation (15) but only incorporate no control
variables, fdi, str, and urb respectively.

6. Discussion

6.1. Income-Carbon Dioxides Nexus

Although the academia has comprehensively analyzed the socioeconomic factors’ impacts on carbon
emissions from various angles, most of the literature has failed to consider the underground economy
when studying the subject. This study investigates the CO2 emissions and economic development
with full consideration of the underground economy and provincial heterogeneities in China. Overall,
the cubic regression results conclude that an inverted N-shaped EKC holds for the income-CO2 relation
in China, which is similar to the views in Zhou et al. [25] and Kang et al. [24] but different from the points
of Yin et al. [20]. Yin et al. [20] have concluded a classical EKC, namely an inversely U-shaped EKC,
for CO2 emissions in China based on the investigation of provincial panel data for 29 provinces, and this
is because they considered a simpler model in their empirical estimation. By contrast, this research
incorporated the cubic income terms in the regression model to make the specification more general
so that the model specifications can be carried out more thoroughly by statistical inferences. Besides,
the investigation of each specific province provides a more concrete and solid support for China’s cubic
overall income-CO2 nexus. The inverse N-shape dynamic with double turning points shows that China’s
developed provinces are on the third downward phase of China’s CO2 EKC, namely, the carbon emission
pressure alleviates as income increases in the regions.

6.2. Underground Economy’s Impacts on CO2 Emissions

The adverse environmental effects of the underground economy in China is validated by the
empirical results. Blackman and Bannister [72] and Blackman et al. [43] have reached similar results in
their studies by analyzing the data and cases in Mexico. The underlying mechanism of the adverse
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effects is that the underground economic sectors in developing countries are mainly composed of
unlicensed small firms characterized by low-tech and high-emission, which are one of the major
contributors of the environmental pressures in these countries [72]. In terms of China’s reality,
owing to the irrational industrial composition that particularly depends on the energy as well as
pollution-intensive industries, especially the heavy and secondary industries, the informal economy
can drastically decrease the environmental quality [12]. In addition, over the past few decades,
China has been the biggest developing country in the world, and in developing countries, informal
transportation also causes a large number of exhaust emissions because the old and poorly maintained
vehicles in the informal transportation sector often hardly meet environmental standards.

6.3. Structural and Technological Effects

The results also verified the economic structural effects as a driving force of the CO2 EKC in
China. Environmental quality usually improves along with the production factors’ outflow from the
traditional industry (Primary and secondary industry) to service (tertiary) industry that is less energy-
and pollution-intensive. According to China’s National Statistics Bureau, wealthy/developed provinces
have experienced declines in the share of secondary industry, whereas those developing/less wealthy
provinces experienced increases and then declines during the sampled period because China has been
optimizing the industrial structure and promoting the industrial upgrading reform. This conclusion
is in line with the mechanism mentioned by Syrquin and Chenery [73] and Suri and Chapman [74]:
the secondary industry-GDP ratio rises at an early time for pursuing the industrialization owing to
wealth accumulation, then the ratio declines due to the industrial restructuring in an efficient and low
polluting way.

In this study, Technological effects are the other verified driving force of the CO2 EKC dynamics
in China. Similar conclusions can be found in Zhou et al. [25] and Ge et al. [26]. In accordance with the
facts of China, one can explain the effectiveness of technological progress (decline of energy intensity) on
CO2 emission reduction in three aspects: the escalation of energy industrialization, surging investment
and preferential policy toward new energy industries, as well as the technological advancement in
exhaust gas emission reduction (e.g., the end-of-pipe abatement technology) [17,75]. Based on the
REN21 Global Status Report [76], China has developed a considerable amount of new energies like
hydropower, biofuels, solar power, and wind power, which are cleaner and more sustainable. At the
end of the 12th Five-Year Plan (2011–2015), the carbon intensity in 2015 decreased by 10% compared
to 2010.

Compared to previous studies with similar views on economic, structural and technological effects,
the difference lies in how the structural changes and technological progress help the CO2 emissions
abatement. Industrial structural updates and technological advancements have been found to reduce
the atmospheric pollutant emissions at a constant rate (with conventional estimation approach) in past
research [20,25,26,64,73], whereas this study argues that the structural and technological escalations have
gradually enhanced the environment-beneficial effects with income growth. Specifically, the structural
and technological effects become larger than before in magnitude once the income level reaches the
thresholds (the enhancement of the effects happen twice because there are double thresholds during the
sample period). The analysis reveals such a nonlinear structure- and technology-CO2 nexus through the
threshold regression technique that is more adequate to the EKC theory and the underlying mechanism.

It should be noted that the study has only discussed the second turning point and the transition
from the second stage to the third stage in the inverse-N CO2 Kuznets Curve. The author tentatively
put forward that the ‘Industrial restructuring’ proposed by He and Zhang [77] may account for the
first turning point as well as the first downward stage of the inversely-N shaped dynamic curve.
In China, at the low-income level, ‘Industrial restructuring’ consists of an increase in the share of
the heavy industry, the decline of technological progress, and fluctuations of energy price. All these
factors could contribute to the increase of CO2 emissions in China. As for ‘Industrial restructuring’,
macroeconomic fluctuations and loose of environmental regulations can lead to the emergence of such
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restructuring effects [77]. Due to the lack of relevant indices, this research is unable to empirically
verify these explanations.

7. Conclusions

Empirical studies on the underground economy and its environmental effects in developing
countries are scarce. It is necessary to examine the nexus of China’s underground economy and CO2

emissions in order to better coordinate carbon mitigation and underground economic regulations.
This study investigates the income-CO2 emissions relationship in China from a novel perspective by
condensing the underground economy into the EKC framework. From the statistical estimations and
empirical analysis, this paper draws some relevant conclusions and lists them by items:

(1) The underground economic scale has adverse effects on the CO2 emissions abatement in
China, as expected. (2) After incorporating the underground economic factor, the inversely N-shaped
EKC still holds for the income-CO2 emissions relation in China. The carbon emission pressures are
self-alleviating in developed provinces since they are currently in the third (downward) stage of the
inverse ‘N’ dynamic curve. (3) The technological and industrial structure effects are two of the driving
factors of the CO2 EKC in China. The economic scale tends to deteriorate the environment but the
technology and industrial structure counteract the detrimental effect [69,70]. For the first time, China’s
CO2-income nexus is explored in each province and province-specific evidence is found to support the
overall CO2-income relationship; the environment-beneficial effects of technology and structure are
detected to have threshold effects in China: they would reduce the environmental degradation (CO2

emissions in this study) more and more for higher income levels, as expected by the EKC hypothesis.
Based on the previous conclusions, this study put forward some well-targeted policy recommendations:

(1) Take effective measures to control the scale of the informal economy and strengthen the supervision of
activities in informal economic sectors. Because the underground economy exerts negative impacts on the
reduction of CO2 emissions, the central government is encouraged to reduce enterprises’ tax burden so that
the capital outflow to informal economic sectors can shrink. (2) Optimize and promote the upgrading
of the industrial structure. Indeed, the secondary industry has made a great contribution to China’s
economic growth but it has also lead to environmental pressures. The authorities need to get rid of the
idea of ‘first pollute and then govern’. (3) Accelerate the development of green technology and improve
energy efficiency. A low energy efficiency level wastes more resources but generates more CO2 as well as
other pollution emissions. Less developed provinces are expected to expand the technology investment
and take advantage of technological threshold effects. (4) Actively enact policies to reduce pollution
emissions and mitigate environmental degradation instead of favoring the EKC. The Chinese government
needs to imperatively adopt tighter environmental regulations for directing the income-CO2 emissions
nexus toward a downward trend. In this way, the environmental quality will improve with the economic
development eventually.

Although there are novel discoveries revealed by the study, there are also limitations. This paper
has only discussed the second turning point and the transition from the second upward stage to the
third downward stage in the inverse-N CO2 Kuznets Curve. The ‘industrial restructuring’ [77] may
account for the first turning point and the first downward stage of the inverse-N dynamic. In this
regard, further studies with adequate indicators of China’s environmental regulation, heavy industry,
and energy price are expected to empirically examine the ‘industrial restructuring’ effects and to
explore the underlying mechanism behind the first turning point and the downward phase.
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Appendix A

Table A1. The province-specific coefficients (the cubic model of Table 3).

lnGDPT (lnGDPT)2 (lnGDPT)3 lnGDPT (lnGDPT)2 (lnGDPT)3

Beijing −9.211 ** 1.282 * −0.059 Henan −1.066 0.388 −0.037
(−2.27) (1.87) (−1.54) (−0.19) (0.34) (−0.47)

Tianjin −0.127 0.138 −0.012 Hubei −7.089 1.510 −0.100
(−0.04) (0.24) (−0.38) (−1.39) (1.47) (−1.45)

Hebei −16.347 ** 3.232 ** −0.206 ** Hunan −0.761 0.151 −0.006
(−2.41) (2.43) (−2.36) (−0.14) (0.14) (−0.08)

Shanxi −2.352 0.552 −0.041 Guangdong −8.852 ** 1.647 ** −0.099 **
(−0.41) (0.47) (−0.53) (−1.96) (2.14) (−2.27)

Inner Mongolia −9.219 ** 1.836 ** −0.110 ** Guangxi 3.374 −0.591 0.037
(−2.12) (2.17) (−2.04) (0.68) (−0.58) (0.54)

Liaoning −40.051 *** 7.308 *** −0.442 *** Hainan −13.229 ** 2.440 * −0.141 *
(−7.48) (7.74) (−7.94) (−1.95) (1.87) (−1.69)

Jilin −14.965 *** 2.894 *** −0.183 *** Chongqing −20.888 *** 3.913 *** −0.239 ***
(−2.59) (2.62) (−2.62) (−3.16) (3.12) (−2.99)

Heilongjiang −6.408 1.219 −0.071 Sichuan −1.644 0.385 −0.030
(−0.84) (0.85) (−0.79) (−0.31) (0.36) (−0.41)

Shanghai −0.920 0.157 −0.008 Guizhou −6.496 1.605 * −0.115 *
(−0.39) (0.44) (−0.42) (−1.52) (1.73) (−1.78)

Jiangsu −8.606 * 1.460 * −0.076 * Yunnan −7.414 1.779 −0.133
(−1.94) (1.88) (−1.68) (−1.21) (1.45) (−1.64)

Zhejiang −13.700 *** 2.454 *** −0.141 *** Shaanxi −16.758 *** 3.414 *** −0.230 ***
(−3.60) (3.81) (−3.89) (−4.68) (4.61) (−4.54)

Anhui −10.857 ** 2.231 ** −0.148 ** Gansu 11.129 *** −2.469 *** 0.185 ***
(−2.44) (2.45) (−2.45) (3.38) (−3.34) (3.40)

Fujian −14.921 ** 2.670 ** −0.154 ** Qinghai −20.965 *** 4.178 *** −0.267 ***
(−2.48) (2.49) (−2.42) (−3.85) (3.76) (−3.58)

Jiangxi 5.052 −1.151 * 0.085 * Ningxia −2.108 0.711 −0.060
(1.56) (−1.66) (1.73) (−0.35) (0.59) (−0.74)

Shandong −11.244 ** 2.187 *** −0.138 *** Xinjiang −36.255 *** 7.051 *** −0.449 ***
(−2.39) (2.62) (−2.75) (−5.01) (4.98) (−4.85)

T-statistics in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.010. Estimations of other variables (fdi, str, lnPOP, urb, and
lnEI) are omitted.

Table A2. The province-specific coefficients (cubic model with only pivot variables, M4 of Table 6).

lnGDPT (lnGDPT)2 (lnGDPT)3 lnGDPT (lnGDPT)2 (lnGDPT)3

Beijing −21.546 *** 3.648 *** −0.203 *** Henan −12.340 *** 2.821 *** −0.199 ***
(−3.73) (3.85) (−3.92) (−2.71) (3.02) (−3.12)

Tianjin −9.420 ** 1.725 ** −0.099 *** Hubei −22.595 *** 4.496 *** −0.286 ***
(−1.99) (2.33) (−2.57) (−4.52) (4.54) (−4.37)

Hebei −22.232 *** 4.483 *** −0.290 *** Hunan −9.703 ** 2.000 ** −0.125 **
(−4.35) (4.42) (−4.33) (−2.47) (2.50) (−2.31)

Shanxi −10.704 ** 2.234 ** −0.147 ** Guangdong −18.273 *** 3.251 *** −0.185 ***
(−2.38) (2.49) (−2.46) (−3.02) (3.18) (−3.21)

Inner Mongolia −12.738 *** 2.517 *** −0.152 *** Guangxi −9.817 ** 2.107 ** −0.136 **
(−4.45) (4.55) (−4.28) (−2.33) (2.42) (−2.28)

Liaoning −21.762 *** 4.009 *** −0.241 *** Hainan −8.142 1.630 −0.098
(−3.77) (3.99) (−4.11) (−1.27) (1.34) (−1.28)

Jilin −23.774 *** 4.638 *** −0.292 *** Chongqing −21.708 *** 4.213 *** −0.262 ***
(−3.80) (3.90) (−3.87) (−4.22) (4.41) (−4.43)

Heilongjiang −17.118 *** 3.336 *** −0.207 *** Sichuan −9.628 ** 2.164 ** −0.148 **
(−2.73) (2.93) (−2.98) (−2.01) (2.23) (−2.27)

Shanghai −6.193 0.936 −0.046 Guizhou −8.481 *** 2.116 *** −0.157 ***
(−1.55) (1.55) (−1.51) (−2.66) (3.02) (−3.13)

Jiangsu −7.806 1.350 −0.071 Yunnan −17.281*** 3.598 *** −0.240 ***
(−1.58) (1.57) (−1.43) (−3.49) (3.63) (−3.58)

Zhejiang −22.920 *** 4.001 *** −0.226 *** Shaanxi −26.105 *** 5.143 *** −0.323 ***
(−4.32) (4.49) (−4.55) (−5.44) (5.32) (−4.99)
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Table A2. Cont.

lnGDPT (lnGDPT)2 (lnGDPT)3 lnGDPT (lnGDPT)2 (lnGDPT)3

Anhui −22.480 *** 4.618 *** −0.306 *** Gansu −5.924 * 1.403 * −0.097 *
(−8.91) (9.13) (−9.01) (−1.8) (1.95) (−1.85)

Fujian −33.054 *** 5.914 *** −0.342 *** Qinghai −31.678 *** 6.416 *** −0.419 ***
(−5.25) (5.38) (−5.31) (−7.05) (7.14) (−7.02)

Jiangxi −3.271 0.783 −0.053 Ningxia −10.398 * 2.404 ** −0.168 **
(−0.85) (0.97) (−0.96) (−1.93) (2.23) (−2.34)

Shandong −14.839 *** 2.863 −0.170 Xinjiang −26.038 *** 4.764 *** −0.280 ***
(−3.07) (3.35) (−3.38) (−4.14) (3.96) (−3.62)

T-statistics in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.010. Estimations of other variables (lnPOP and lnEI)
are omitted.
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