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Abstract: In recent years, Smart Grids have been developing globally. Since smart meters only
acquire low-frequency data, non-intrusive load monitoring technology using the signature extracted
from high-frequency data needs an additional measurement device to be installed, so it is not
suitable for promotion to the smart grid environment. However, methods using low-frequency
features are poorly-suited when several appliances are switched on at the same time, or devices
with similar power values are used. In response to these problems, this paper proposes a load
disaggregation method based on the power consumption patterns of appliances, combining an
improved mathematical optimization model and optimized bird swarm algorithm (OBSA) for load
disaggregation. Experiments show that the method can effectively identify the operating states of
appliances, and deal with situations in which multiple instruments have similar power characteristics
or are simultaneously switching. The performance comparison proves that the improved model
is more efficient than the traditional active and reactive power (PQ) optimization model in load
disaggregation performance and computation time, and also verifies the robustness of the proposed
method and the convergence of OBSA. As an inexpensive method without extra measurement
hardware installed, the process is suitable for large-scale applications in smart grids.

Keywords: non-intrusive load monitoring; load disaggregation; power consumption pattern;
improved bird swarm algorithm; low-frequency data

1. Introduction

Since the energy crisis and environmental problems caused by greenhouse emissions have
become critical issues [1,2], smart grids have been developing globally. Electrical power utilization
is a significant part of the smart grid [3]. Studies have shown that detailed feedback on electricity
consumption can achieve 20–35% energy savings [4]. From the perspective of energy consumers, load
monitoring can promote the energy efficiency of end users. In the context of smart grids, the energy
consumption details of appliance usage could help to specify demand response strategies, which
would make it possible to reduce peak demands by reducing consumption or by taking advantage
of non-peak times [5]. The details of energy consumption help to achieve short-term and long-term
forecasts of electricity habits, and help to manage energy distribution regarding the integration of
more fluctuating energy, such as renewable energy [6].

Traditional technology, and intrusive load monitoring (ILM), usually require expensive
measurement hardware and simple software. Each appliance is equipped with a sensor to monitor
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the power consumption, which is uploaded to the server over the network. On the other hand,
non-intrusive load monitoring (NILM) technology, also called load disaggregation, derives the electricity
detail of each appliance from the total power consumption measured at the service entry by using
pattern recognition technologies and machine learning algorithms. NILM offers low hardware cost
and can be implemented quickly [7].

NILM, proposed by Hart of MIT in 1992 [8], has been extensively developed in recent years [7].
Technically, NILM load disaggregation requires that the total energy consumption curve can reflect
changes of individual appliances. In previous research, the NILM methods that utilize high-frequency
signatures (frequency higher than 1 kHz) have achieved excellent performance in load identification. In
the literature [9], 1–16th harmonic characteristics are extracted to identify the combinations of different
appliances using the neural network. The steady-state current is analyzed, and filters are designed to
realize the load operation states by using the frequency domain characteristics of current [10]. The
authors of [11] utilized the transient signature curve when appliances were switched on or off to
identify the appliance. Current and voltage waveforms are used to realize load identification [12,13].
However, when the above methods are adopted, extra measurement hardware is necessary to obtain
the high-frequency signatures of appliances, which increases hardware requirements [14].

With the increasing use of detailed information of smart grids, smart meters are becoming an
essential component of smart grids. Since low-frequency signatures are readily available from smart
meters, the load disaggregation methods using low-frequency features are an essential development
trend of NILM. Many studies use low-frequency features and have achieved excellent results [15–20].
In the literature [15,16,20], hidden Markov model-based methods are used to decompose low-frequency
total powers. However, since the computational complexity increases significantly with the increase in
the number of appliances, these methods only identify two-state appliances. In [17], the low-frequency
total powers are clustered. As a consequence, the most significant contribution appliances are
iteratively decomposed, but the previous results will affect the identification of low-power appliances.
In [18], naïve Bayesian estimation is used to classify and identify the combination of the active power
of different appliances; the results show that the method has a limit in identifying the appliances
with similar power, and that the power variation of the appliances during operation is not considered.
In [19], a current with little change during appliance operation is chosen as the load signature, and the
differential evolution algorithm is used for decomposition. However, the decomposition model did
not consider the change of the steady-state characteristics of appliances.

Aiming at the problems existing in the previous research of the NILM methods, this paper
proposed a load disaggregation method based on a power consumption pattern for low sampling
data. The proposed method exploited the power consumption patterns signature of appliances during
operation, and presented an improved load decomposition model. To improve the global optimization
ability of our method, the bird swarm algorithm (BSA) is optimized and applied to calculate the load
decomposition results. Experiments proved the effectiveness of the proposed method.

The remaining sections of the paper are structured as follows: firstly, Section 2 analyzes the load
signature. Section 3 describes the details of the proposed method. Then, the proposed method is tested
and compared with existing methods in Section 4. Finally, Section 5 summarizes the conclusions.

2. Load Signature Analysis

The selection of load signature is the key to NILM technology and will directly affect the accuracy
of load disaggregation. According to previous research, when multiple appliances with similar active
and reactive power are operating, identification errors of NILM load disaggregation occur. Power
fluctuations in appliances usually occur during operation due to the influence of electrical component
characteristics, voltage instability and human activity, which causes inaccurate estimation of the power
of appliances relative to their average power cosumption. The data from AMPds [21] in Figure 1
shows power changes during air conditioning operation. The air conditioner power values change
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from 1450 watts to 1820 watts in one operating cycle. Such power changes make some appliances (the
power lower than 400 watts) challenging to identify.
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Figure 1. Power consumption change in an operating cycle for an air conditioner.

In the literature, extra load signatures such as reactive power and high-frequency characteristics
are used for load disaggregation to solve the above problems. However, there are still errors in
identifying the appliances with similar PQ characteristics when only low-frequency power and active
power are used. In [22], the authors analyzed monitored power data and found that the power
consumption pattern of appliances was useful in identifying them. The power sequences of typical
household appliances from AMPds are extracted, and the power consumption curves in Figure 2 are
provided to illustrate their power consumption pattern. As can be seen from Figure 2, the refrigerator
and the furnace have similar power ranges, but the power curves have significant differences. Although
distortions in the power consumption curve of each appliance are affected by power changes, human
activities and other factors, each appliance has a regular and non-repeating power consumption pattern.
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3. Method

Given the identification problem of appliances with similar power consumptions and the impact of
power variation on load recognition, this paper adopts the power consumption patterns of appliances
as the load signature. Firstly, a power consumption pattern characteristic sequence of each appliance
is extracted, and then the optimization model of the load decomposition is established through the
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similarity calculation between the measured total power sequence and the total power sequence
obtained by accumulating the power sequence of each appliance. Finally, the optimal solution
is calculated.

3.1. Power Consumption Pattern Characteristic Sequence of Each Appliance Extracting

In this paper, multi-state appliances are considered as multiple two-state appliances. The power
consumption pattern characteristics of appliances are obtained as follows: According to the load
signature analysis in Section 2, a typical power consumption pattern characteristic sequence of each
appliance is picked up. Equation (1) shows the power consumption pattern characteristic sequence
φ(i) of appliance i. 

φ(1) =
[

ϕ1
1, ϕ1

2, . . . ϕ1
h, . . . ϕ1

H1

]
φ(2) =

[
ϕ2

1, ϕ2
2, . . . ϕ2

h, . . . ϕ2
H2

]
. . .

φ(i) =
[

ϕi
1, ϕi

2, . . . ϕi
h, . . . ϕi

Hi

]
. . .

φ(N) =
[

ϕN
1 , ϕN

2 , . . . ϕN
h , . . . ϕN

HN

]
(1)

where ϕi
h is the h-th power value of the characteristic sequence of appliance i, and HN is the length

of φ(i).

3.2. Load Disaggregation Model Based on the Signature of Appliance Power Consumption Patterns

NILM load disaggregation is to estimate the power of each appliance utilizing the total power of
the household measured from a smart meter. The problem can be described as:

Pt =
N

∑
i=1

pi
t + et (2)

While Pt is the total power measured at time t, pi
t is the power of appliance i at time t, N

indicates the number of appliances, and et represents measurement noise. Load disaggregation models
are based on the above problem. The traditional model and the model proposed in this paper are
introduced below.

3.2.1. Traditional Load Disaggregation Model

For the problem in Equation (2), if the measurement error can be negligible and all the appliances
are two-state devices, the power consumption of the i-th appliance at time t can be described as:

pi
t = pixi

t i = 1, 2, . . . , N (3)

where pi is the power in operating state, and xi
t represents the state of appliance i at time t with xi

t = 1
when the state is on, and xi

t = 0 when it is off.
Based on the above description, the load disaggregation can be transformed into a

mathematical optimization problem, which searches for the optimum operating state of each appliance
Xt =

[
x1

t , x2
t , . . . , xN

t
]

at time t , thereby minimizing the difference between the sum of the power
of each appliance and the measured total power. Thus, for the measured total power at time t, the
optimization problem is described as:[

x1
t , x2

t , . . . , xN
t

]
= arg min

[∣∣Pt − Pt
∣∣] (4)

This optimization problem is the traditional load disaggregation model used in NILM, and can be
solved by an intelligent algorithm.



Sustainability 2019, 11, 251 5 of 16

3.2.2. Improved Load Disaggregation Model Based on Power Consumption Pattern

Given the measured total power subsequence P = [P1, P2 . . . Plw ] of length lw, the corresponding
total power subsequence P =

[
P1, P2 . . . Plw

]
accumulated by the characteristics sequence of each

appliance is as follows: 

P1 =
N
∑

i=1
ϕi

hi

P2 =
N
∑

i=1
ϕi

hi+1

...

Plw =
N
∑

i=1
ϕi

hi+lw−1

(5)

where hi is time coefficient of appliance i, which represents the number in the characteristics sequence
of appliance i corresponding to P1. Load disaggregation serves to achieve maximum similarity between
sequences P and P, which is measured by the Euclidean distance of the two sequences.

D
(

P, P
)
=

√√√√ lw

∑
m=1

(Pm − Pm)
2 (6)

Then, the load disaggregation problem is transformed into a mathematical optimization problem,
searching for time coefficient sequence [h1, h2, . . . , hN], which makes P and P most similar. The problem
is described in Equation (7).[

h1, h2, . . . , hN
]
= arg min

[
D
(

P, P
)]

1 ≤ hi ≤ Hi − lw + 1 (7)

The load disaggregation result of P is obtained through solving Equation (7). Thus, the traditional
load disaggregation model is improved by searching for the time coefficient of each appliance
to minimize the distance between the measured total power sequence and the calculated total
power sequence.

To achieve the decomposition of all measured total power data, the total power subsequences are
decomposed individually by using a sliding time window of length lw sliding over the measured total
power sequence with the sliding step size of lw. The algorithm implementation process is shown in
Figure 3, where SW represents a sliding window.
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3.3. Calculate the Optimal Solution Using OBSA

In order to achieve load disaggregation, the optimization problem in Section 3.2.2 needs to be
solved. Traditional intelligence algorithms such as differential evolution (DE) [23] and particle swarm
optimization (PSO) [24] readily converge prematurely, and fall into local optimal solutions when
solving multi-extreme optimization problems. As a new bio-heuristic global optimization algorithm,
Bird Swarm Algorithm (BSA) has fewer adjustment parameters, great convergence precision, and good
robust performance. It has been proven that BSA is superior to PSO and DE in optimal solutions [25].

3.3.1. Optimized BSA

In [25], two positive numbers, C and S, the cognitive and social accelerated coefficients
respectively, represent the foraging experience of a bird and the swarms. Bird’s experience and
the swarms’ experience determines how each bird searches for food. The original foraging formula of
BSA is written mathematically in Equation (8).

xt+1
i,j = xt

i,j +
(

pi,j − xt
i,j

)
× C× rand(0, 1) +

(
gj − xt

i,j

)
× S× rand(0, 1) (8)

where xt
i,j represents the ith bird’s position at time step t when it flies in a D-dimensional space j,

rand() denotes independent uniformly distributed number in (0,1) with respect to j, pi,j is the best
previous position of the ith bird and gj the best previous position shared by the swarm.

In order to improve the convergence speed and accuracy of the result of the BSA, this paper uses
linear learning coefficients to improve the BSA, which enhances the global search ability in the early
stage of bird swarm search and improves the local search ability in the later stage. The update formula
for the learning coefficient is as follows:{

C′ = Cs +
Ce−Cs

tmax
× t

S′ = Ss +
Se−Ss
tmax
× t

(9)

where C′ and S′ are improved cognitive and social accelerated coefficients, t and tmax are the current
and maximum number of iterations, and other parameters are set as Ce = Ss = 0.5, and Cs = Se = 2.5.

Inertia weight was proposed by Y. Shi and R. C. Everhant in 1998, and is of great benefit to
algorithm improvements [26]. In this paper, independent, a uniformly-distributed inertia weight is
used to improve BSA to improve global search performance by increasing the inertia weight w in the
early and late iterations.

w =

{
0.4 + 0.5 ∗ rand() pFit == f Min

0.9 ∗ rand() pFit 6= f Min
(10)

where pFit and f Min are the individual’s best fitness value and the global optimum.
The improved foraging formula of OBSA is as follows:

xt+1
i,j = w× xt

i,j +
(

pi,j − xt
i,j

)
× C′ × rand(0, 1) +

(
gj − xt

i,j

)
× S′ × rand(0, 1) (11)

3.3.2. Calculating the Optimal Time Coefficient of Each Appliance Using OBSA

Based on the above improvements, OBSA is used to calculate the problem in Section 3.2.2. The
objective function is:

min
[
D
(

P, P
)]

= min


√√√√ lw

∑
m=1

(Pm − Pm)
2

 (12)
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Figure 4 shows the flow chart of OBSA. Compared with the flow of BSA in the literature [23],
when the objective function converges, the time coefficient of each appliance is closest to the actual
time, and the power values in characteristic sequence corresponding to the time coefficient is closest to
the actual value of the appliance.

Sustainability 2019, 11, x FOR PEER REVIEW 7 of 17 

Figure 4 shows the flow chart of OBSA. Compared with the flow of BSA in the literature [23], 

when the objective function converges, the time coefficient of each appliance is closest to the actual 

time, and the power values in characteristic sequence corresponding to the time coefficient is closest 

to the actual value of the appliance. 

No
Keep 

vigilance

Update solutions

Foraging?Flying

Yes

Adjust inertia 
weight, cognitive and 

social accelerated 
coefficients

Forage for food

Update 
solutions

No

Search for new 
food patch

Scrounger: 
forage by 

following the 
producer

Calculate the 
fitness values

Yes

No

Stop criterion reached?

Post process 
results

No

Yes

Yes

Producer?

Calculate  best fitness 
values of each bird and 
the sum of the swarms

Initialize the 
signature data of 

appliances

Start

Initialize solutions and 
calculate  fitness values

 

Figure 4. The flow chart of OBSA solution for NILM. 

4. Validation and Comparison 

4.1. Validation Data Selection and Parameter Setting 

In this paper, the electrical data in AMPds [21] is selected to verify the performance of the 

proposed method. The AMPds dataset contains two years of meter monitoring data for a family in 

Canada with a data interval of 1 minute. The data from AMPds meets the validation requirements of 

the method proposed in this paper. Typical appliances, i.e., a clothes dryer, heat pump, furnace, and 

refrigerator are selected for performance validation of the method because the furnace and 

refrigerator had similar power values, and the power variations of heat pump or clothes dryer were 

greater, which possibly makes it difficult to identify the operating states of the furnace and 

refrigerator. 

According to the operating cycle time of each appliance, the extracted characteristic sequence is 

112 min for the clothes dryer, 128 min for the heat pump, and 32 min for both the electric furnace and 

the refrigerator. Since appliance consumption patterns are different in different seasons, the sequence 

of features and the total power sequence for verification should be selected in the same season, or the 

power consumption pattern of appliances in four seasons are added to the feature sequence. In our 

paper, we extracted the features from the data of 1 April 2012 and validated our approach from the 

data of the following several days. 

Considering the possibility of the power curve distortion of appliances during operation, the 

length of the time window should be less than the minimum operating cycle of each appliance; 𝑙𝑤 

Figure 4. The flow chart of OBSA solution for NILM.

4. Validation and Comparison

4.1. Validation Data Selection and Parameter Setting

In this paper, the electrical data in AMPds [21] is selected to verify the performance of the
proposed method. The AMPds dataset contains two years of meter monitoring data for a family in
Canada with a data interval of 1 minute. The data from AMPds meets the validation requirements of
the method proposed in this paper. Typical appliances, i.e., a clothes dryer, heat pump, furnace, and
refrigerator are selected for performance validation of the method because the furnace and refrigerator
had similar power values, and the power variations of heat pump or clothes dryer were greater, which
possibly makes it difficult to identify the operating states of the furnace and refrigerator.

According to the operating cycle time of each appliance, the extracted characteristic sequence is
112 min for the clothes dryer, 128 min for the heat pump, and 32 min for both the electric furnace and
the refrigerator. Since appliance consumption patterns are different in different seasons, the sequence
of features and the total power sequence for verification should be selected in the same season, or the
power consumption pattern of appliances in four seasons are added to the feature sequence. In our
paper, we extracted the features from the data of 1 April 2012 and validated our approach from the
data of the following several days.

Considering the possibility of the power curve distortion of appliances during operation, the
length of the time window should be less than the minimum operating cycle of each appliance; lw was
set to 10 min. The other parameters are set as follows: the population size is set to 30, the foraging
parameters of the flock are 1, and the number of iterations is up to 500.
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4.2. Case Validation

In order to verify the performance of the proposed method, the following example is verified.

4.2.1. The Case of Two Appliances with Similar Power Consumption Operating Simultaneously

The furnace and the refrigerator are simultaneously operating, and the heat pump and the clothes
dryer are turned off for 60 min. The total power sequence is extracted, and the curve of the sequence is
shown in Figure 5.
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It can be seen from Table 1 and Figure 6 that the proposed method can correctly disaggregate
the total power of the furnace and the fridge with similar power values. From Figure 6, the proposed
method can accurately identify the states of the furnace and the fridge, which are simultaneously
operating. As a normally-open appliance, the furnace can also be identified. However, since the actual
consumption of each appliance is not completely equal to the extracted feature values, the estimated
power values have a certain deviation from the actual values.

4.2.2. The Case of Power Variation Range of an Appliance During Operation Similar to Other
Appliances’ Power

The heat pump is turned on with the furnace and the refrigerator simultaneously operating, and
the clothes dryer is still turned off. The total power sequence over 60 min is extracted, and the curve of
the sequence is shown in Figure 7.
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Figure 7. The total power curve of an electric furnace, air conditioner, and refrigerator are operating.

According to the characteristic analysis of Section 2, the power of the furnace and the refrigerator
are similar, and the variation range of the air conditioner during operation exceeds the power of
the furnace or the refrigerator. Therefore, it may be that the furnace is incorrectly recognized as the
refrigerator, or the heat pump is recognized as the refrigerator or the furnace in simultaneous operation.
Using the method proposed in this paper to calculate the optimal time coefficient and the best fitness
value of each time window (see Table 2 and Figure 8), the decomposition results are obtained.

Table 2. Optimization result of proposed Model when the electric furnace, air conditiones, and
refrigerator are operating.

SW Number Time Coefficient
[h1,h2,. . . ,hN]

Best Fitness Value/Watt

min[D(P,
¯
P)]

1 [1, 45, 8, 9] 38.98
2 [1, 17, 20, 22] 23.00
3 [1, 58, 6, 1] 20.17
4 [1, 117, 18, 11] 5.29
5 [1, 4, 3, 14] 78.32
6 [1, 94, 13, 19] 16.31

It can be seen from the results of Case 2 that the proposed method can correctly disaggregate the
total power of the three appliances even if the power change of the heat pump affects the identification
of the furnace and the fridge. In the 49th minute, the heat pump and refrigerator are turned on
simultaneously, and the identification is correct.
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4.2.3. The Case of Four Appliances Operating Simultaneously

Extract the monitored data for 60 min when the four appliances are operating simultaneously.
Figure 9 shows the total power curve.

Similarly, in this case, the furnace and the refrigerator consume similar amounts of power, and
the power variation of the clothes dryer or the heat pump affects the state recognition of the furnace
and the heat pump. The optimal time coefficient and the best fitness value of each time window are
shown in Table 3, and the disaggregation result of the four appliances is shown in Figure 10.
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Table 3. Optimization result of proposed model when the clothes dryer, heat pump, electric furnace,
and refrigerator are operating.

SW Number Time Coefficient
[h1,h2,. . . ,hN]

Best Fitness Value/Watt

min[D(P,
¯
P)]

1 [51, 124, 6, 4] 30.61
2 [61, 1, 18, 20] 8.31
3 [71, 86, 7, 1] 79.60
4 [81, 18, 11, 7] 20.81
5 [41, 28, 5, 10] 35.03
6 [10, 1, 15, 1] 19.03
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It can be seen from Table 3 and Figure 10 that the proposed method can correctly identify the
refrigerator and the furnace, even when affected by the power change of the clothes dryer and
heat pump.

It can be concluded from the results of three experiments that the load decomposition method of
this paper can accurately identify similar power and normally-open appliances, and can also achieve
higher identification accuracy when multiple appliances are simultaneously switched on, or in cases
where the power variation of some appliances is similar with that of other appliances. It is proved
that the load disaggregation method based on the power consumption pattern proposed in this paper
is valid.

4.3. Load Disaggregation Performance Analysis of the Proposed Method

4.3.1. Performance Metrics

The performance of the proposed method is evaluated by the identification accuracy of each
appliance, and the root means square error.

The identification accuracy of each appliance acc is obtained by Equation (11).

acc(i) =
ni

ri
ni

to
(13)

where ni
ri is the number of sequence values of appliance i whose operating states are correctly identified,

and ni
tois the total number of sequence values.

The root means square error RMSE is used to measure the deviation between the measured
power values and the estimation power values and can be calculated by the following equation.

RMSE(i) =

√
∑n

t=1
(

pi
t − pi

t
)2

n
(14)

where pi
t denotes the measured power of appliance i at time t, n is the length of the power sequence.

The smaller the root mean square error RMSE, the smaller the deviation between the measured power
values and the estimation power values. Since the average power consumption of different appliances
are quite different, RMSE is normalized by dividing the average power to achieve a comparison of the
decomposition performance for each appliance.

4.3.2. Load Disaggregation Performance Analysis

Four appliances are randomly operating, and the following statistical results were obtained by
calculating 20 times.

It can be seen from Table 4 that the clothes dryer and the heat pump with high power consumption
are accurately identified, and the identification accuracy of all appliances exceeds 94%. Also, the
method proposed in this paper can also achieve higher accuracy in estimating the power consumption
of appliances. The appliances with larger average power have higher accuracy of load disaggregation
(see the root mean square error value and the normalized result of each appliance in Table 4), and the
decomposition error of low power appliances mainly comes from the effect of high power appliance
decomposition errors.

Table 4. Performance of load disaggregation for each appliance.

Appliance acc/% RMSE Normalized RMSE/%

Clothes dryer 100 29.46 0.64
Fridge 94 19.75 24.83

Heat pump 100 31.86 1.12
Furnace 98.8 15.51 13.2
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4.4. Performance Comparison with the Method Using PQ Features

The results in this paper were compared with those using PQ features, which are typical
low-frequency features. The model of PQ features is described in Equation (15).[

x1
t , x2

t , . . . , xN
t

]
= arg min

[∣∣Pt − Pt
∣∣+ ∣∣Qt −Qt

∣∣] (15)

where Qt and Qt are the sum of the reactive power of each appliance and the measured total reactive
power, respectively, and xi

t represents operating states of appliance i at time t.
Sixty minutes of monitoring data were randomly extracted for the test, and calculated 20 times

using two methods. Considering that the method using PQ features decomposes only one total
monitored power value each time, and the proposed method decomposes 10 total power values, the
numbers of iteration are set to 50 and 500 respectively. Average accuracy and the calculating time in
the test are shown in Table 5.

Table 5. The result comparison of different load disaggregation models.

Method Average Accuracy/% Calculating Time/s

PQ signature 85.5 2.227
Power consumption pattern signature 98.2 1.945

It can be seen from Table 5 that the method utilizing the characteristics based on power
consumption patterns can obtain higher identification rates compared with the method using active
and reactive power characteristics, which means that the power consumption pattern of the appliance
has better distinguishability for different appliances. Also, the proposed method in this paper can
effectively realize load decompositions, and has a slightly lower computational time than the traditional
PQ features model.

4.5. Performance Comparison with the Method in Literature

As load disaggregation algorithms using low-frequency signatures, HMM-based methods have
been widely used and discussed in NILM literature [27,28]. Our method was compared with the HSID
method based on HMM in the literature [16]. In the literature, the data of five appliances from AMPds
are selected for validation. We extracted 250 min of data from the five appliances and calculated
20 times. For quantitative comparisons, the F-score, defined in Equation (14), was used to evaluate the
identification performance.

Fsi =
2× PCi × RCi

PCi + RCi
(16)

where PCi and RCi are the precision and recall for appliance i, PCi and RCi are described as
PCi =

TPi
TPi+FPi

and RCi =
TPi

TPi+FNi
. TPi, FNi, and FPi are respectively the number of power values

correctly identified, identified as off when the appliance i is on and the number of power values
identified as on when the appliance i is off.

A comparison of the results is shown in Table 6. The F-score comparison shows that the proposed
method can correctly identify the operating states of five appliances. The F-score of the proposed
method is significantly higher than HSID’s on a clothes dryer, and those on low power appliances are
slightly lower than HSID’s, which proves the performance of the proposed method. The proposed
method in this paper considers multi-state appliances as multiple two-state appliances, so the number
of operating states of the appliances did not affect the decomposition performance. However, according
to a discussion in literature [16], the computational complexity of HSID is in the order of O

(
TM2N).

The higher the number of states, the lower the HSID disaggregation performance.



Sustainability 2019, 11, 251 14 of 16

Table 6. Average F-score comparison with the literature [16].

Appliance Proposed Method HSID in Literature

Clothes dryer 1 0.76
Fridge 0.943 0.98

Heat pump 1 0.96
Furnace 0.986 1

Security/network equipment 0.925 1

4.6. Algorithm Robustness to Different Sampling Intervals

In this section, we assess the robustness of the proposed method’s performance when tested
against a different sampling interval. Since the identification of the fridge and furnace are vulnerable,
the average identification accuracy at different sampling intervals is calculated, as shown in Figure 11.

Figure 11 shows that the average recognition accuracy exceeded 90% when the sampling interval
is less than 3 min, and is greater than 80% when it is less than 6 min. As the data sampling interval
increases, the power consumption pattern characteristics are gradually weakened. When the sampling
interval is greater than 15 min, the accuracy rate drops rapidly. Based on the above analysis, the
proposed method in this paper has good robustness at the sampling interval.Sustainability 2019, 11, x FOR PEER REVIEW 15 of 17 
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4.7. Convergence Analysis of OBSA

BSA and OBSA were used to calculate the optimal solution in this paper 20 times, and the average
fitness values were calculated. The convergence curve of the average fitness is shown in Figure 12.
Figure 12 shows that the convergence speed of OBSA is faster than BSA in the initial iteration and
slower in the late iteration, which leads to higher convergence precision.
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5. Conclusions

In this paper, with the problem of load disaggregation of using high-frequency features in
non-intrusive load monitoring, a power consumption pattern-based method for low sampling data is
proposed, which applied time coefficients to a traditional load disaggregation model and OBSA to
optimization calculation. Experiments show that the method has a load decomposition accuracy of
more than 94% for typical appliances, which can be used for the identification of similar power and
normally-open appliances. The model achieved good performance in cases of multiple appliances
simultaneously switching on and off.

As a load decomposition method using low-frequency features, it has better performance than
the traditional mathematical optimization model using PQ features and saves computation time.
Furthermore, a comparison of results with those reported in the literature proved the performance of
the proposed method. Furthermore, the proposed method has better robustness at different sampling
intervals, the convergence speed of the method is faster, and the convergence precision is better.
The proposed method has the advantages of small hardware and software requirements for feature
extraction, low sampling frequency requirements, high accuracy of load disaggregation, and suitability
for use in smart grid scenarios.

Although the proposed method in this paper has the advantages mentioned above, it still has
a limitation. It will misidentify the appliances whose power consumption pattern characteristic
sequences are not obtained in the feature extraction stage. In order to identify unknown appliances,
a feature library with as many appliances as possible can be built, but this will require a lot
of work. Thus, further study will concentrate on improving the identification performance of
unknown appliances.
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