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Abstract: This article applies matrix forecasting methods to the investigation of residential
relocation and commuting patterns that are highly interconnected, but often analyzed separately.
More specifically, using recent inter-county migration and commuting pattern data for the three
largest metropolitan areas in California, it examines how residential relocation and commuting
are associated in the regions and whether a unified framework—in which household relocation
and commuting flow matrices are jointly determined—can improve the forecasting performance.
The relocation–commuting association is found to differ substantially by region, suggesting the
importance of region-specific factors in shaping the interrelationship. Joint forecasting, however,
can attain a higher accuracy compared to the two separate projections, although the forecasting
performance varies based on the method employed.
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1. Introduction

Sustainable land use and transportation planning often requires a close investigation of human
flow dynamics, including how people move in daily life and change their locations of residence and,
more importantly, how (and why) the movement patterns change over time. Given their importance in
understanding the growth, decline, and transformation of our cities/regions, the dynamics of human
flows have drawn growing attention in various strands of academic literature. For instance, numerous
studies in the field of urban planning, geography, and other social and behavioral sciences have
been devoted to revealing the dynamics of migration and to understanding how our cities/regions
have been reshaped by in- and out-flows of population (see, e.g., [1–6]). There are a similarly large
number of theoretical and empirical studies on commuting and other types of urban travels, including
recent research on emerging travel patterns in contemporary cities in which advanced information
and communication technologies play critical roles and various mode choice options are increasingly
available (see, e.g., [7–13]).

In the literature concerning such human flow dynamics, increasing efforts have been made to
better understand the complex, reciprocal interactions between residential relocation and commuting
patterns. Recent studies have challenged the conventional, unidirectional view of the linkage
that commuting patterns are determined by residential relocation, which redistributes the origins
of commuting flows over space, and have suggested that the potential influence of commuting
on household relocation (i.e., the reverse linkage) would be equally important. For instance,
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van Ommeren et al. [14,15] provided a theoretic framework that enables researchers to better
characterize and analyze relocation dynamics with careful consideration of the importance of
commuting in individuals’ search processes. Kan’s [16,17] examination of the job and residential
location choice also put emphasis on the critical role of commuting in the interplay between job and
residential choices as well as the intrinsic uncertainties involved in the decision making.

However, our knowledge base regarding the residential relocation–commuting nexus is still
limited. (This does not mean that there has been no effort to develop analytical frameworks, in which
the two critical human flow dynamics are examined together. Integrated urban system models shed
light on the causal connections between residential relocation and commuting dynamics with a focus
on land use-transportation interactions [18–20].) In particular, much remains to be learned about how
these two critical human flow dynamics are actually interrelated with each other in reality and how
this relationship has been evolving over time, given that rapid advancements in various technologies
have reshaped the way our cities/regions are functioning. Furthermore, there has been little effort
to ascertain under what circumstances the reciprocal interactions between residential relocation and
commuting tend to be more apparent.

This study attempts to fill this gap and advance our knowledge about the critical interrelationship
between residential relocation and commuting through an empirical investigation of the three largest
metropolitan areas in the state of California: the San Francisco, Sacramento, and Southern California
(covering Los Angeles and San Diego) regions. More specifically, we present a matrix forecasting
experiment designed to test some alternative approaches, in which the interrelationship is taken into
account to capture their influences on one another, and compare them with the conventional, separate
flow matrix forecasting. Through the experiment, we expect to reveal how residential relocation and
commuting patterns are interconnected with each other in the regions and examine whether explicit
consideration of the interrelationship can help us improve forecasting performance and accomplish a
more effective analysis of complex human flow dynamics.

2. Residential Relocation and Commuting: Interlinkages

In the field of urban planning and associated literature, it has long been suggested that residential
relocation and commuting are interconnected with each other. However, traditional research
(and planning practice) has often focused on how residential relocation (or migration) can shape
commuting, but not the other way around. For instance, in conventional four-step travel demand
modeling and analysis, household relocation flows have been regarded as an exogenous factor that
should be taken into account in the very first stage of the analysis of commuting (e.g., trip generation).
By contrast, commuting has typically been assumed as an outcome of dynamic redistribution of people
and jobs over space rather than as a determinant that can influence relocation dynamics simultaneously.

Such a unidirectional characterization of the relation between residential relocation and
commuting has increasingly been challenged by recent studies that recognize the importance of
commuting in making various household decisions, including where to live, having significant
implications for sustainable development. As urban economists have suggested, in making their
residential location choice, individual households confront a trade-off between two costs associated
with commuting and housing, which are likely to be considered simultaneously. Given the tradeoff,
the decision would be made with the aim to maximize utility—considering resistance against both
traveling (commuting) and moving (residential relocation). Geographers have also recognized the
important role of commuting in determining the geographic scope of residential and job locations in
urban spaces [21,22]. However, by mainly focusing on the time-invariant geographic distance, earlier
studies tended to pay little attention to the dynamics of urban spatial structure with mobile labor and
mobile businesses.

Zax’s [23] research on moving and quitting, two possible reactions of workers to the relocation
of their employer, suggested that a change in commuting (caused by the employer’s relocation) can
influence residential moves. In a later empirical study, Zax and Kain [24] analyzed how the probabilities
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of workers’ residential moves differed between two groups who had to travel longer (i.e., losers) and
shorter (i.e., gainers) distances due to the relocation of their employer. The authors found that the
losers were more likely to move than their counterparts, suggesting that an increase in commuting
time can elevate the probability of residential relocation. A similar point was reported by Levinson
and Kumar [25], who contended that during rapid suburbanization, rational decision makers may
relocate both residence and workplace locations with the aim to optimize commuting time.

van Ommeren et al. [14,15,26] investigated the interrelationships between residential mobility
and labor market mobility in a search theoretic framework and found an interrelated forward-looking
decision making process, in which commuting plays a critical role. According to the authors,
commuting is undoubtedly determined by residential and job location choice, but at the same time
has an effect on location choices. More specifically, commuting can alter the probability of accepting
an offer in the process of a new job or residence search; for instance, when the commuting distance is
long, there can be a larger degree of desire to reduce it, and this can increase residential or job mobility.

The critical role of commuting in shaping the location choices has also been recognized
by Kan’s [16,17] research on the dynamics of residential location changes. Similar to van
Ommeren et al. [14,15,26], commuting cost is viewed as a significant factor that can motivate or
discourage both residential moves and job changes in his analyses. Clark et al. [27] analyzed the Puget
Sound Transportation Panel survey dataset and reported a systematic linkage between commuting
distance/time and residential location change, indicating “rational behavior of reducing the commute
distance and time with greater separation, . . . [and] the importance of a critical isochrone, in this
case about 8 miles, beyond which the likelihood of decreasing the distance to work grows rapidly”
(p. 218). More recently, the way people view commuting has been changed with the technological
advancement with which they can accomplish different types of task while on move. For instance,
Bissell investigated the complexity of urban mobility with a focus on how the changing nature of
commuting can transform our cities [28]. Additionally, empirical studies among European countries
demonstrated a shift in commuting patterns due to the changing nature of jobs and shed some light on
how urban planners can deal with the ongoing change [29,30].

The above studies have suggested that it is not desirable to characterize the residential
relocation–commuting nexus as a unidirectional relation or to analyze them separately. Commuting
can have a sizable influence on the residential location choices of households in the sense that
rational households may seek to avoid a long-distance commute, which generates substantial costs
or disamenities that can exceed the benefits they can enjoy while living in a location far from their
workplace. This mechanism may have contributed to preventing commuting distance/time from
increasing dramatically in a rapidly growing metropolitan region, while more efforts (or interventions)
are needed to create a sustainable metropolitan spatial structure.

However, in reality, the way commuting actually affects residential relocation would not be
that straightforward. Local land use control, uneven distribution of housing and employment
opportunities, and other contextual factors can alter the visible pattern of the relation between
commuting and residential relocation dynamics (see, e.g., [31,32]). Furthermore, in a metropolitan area,
in which numerous relocation flows are systematically interconnected with each other through housing
and job vacancy chains, the impact of commuting on household relocation is hardly determinate.
Rapid advancements in information and transportation technologies can also reshape the relation by
alleviating the costs of commuting a certain distance (see, e.g., [33,34]). The smart city movement and
new work/life styles emerging in contemporary metropolises based on cutting-edge communication
technologies can also defy the traditional patterns of residential relocation–commuting interactions
(see, e.g., [10,35])

3. Study Areas and Data

How are residential relocation and commuting dynamics associated with each other in reality,
particularly in large metropolitan areas? Are there any systematic patterns in the interrelationship?
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Additionally, can we understand relocation and commuting dynamics more effectively by reflecting
the interrelation in our investigation of the dynamics? As noted earlier, in this study, we investigate
the following three regions anchored by the largest metropolitan areas in the state of California to
address these questions: (1) San Francisco Region, (2) Sacramento Region, and (3) Southern California
Region (Figure 1).
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The San Francisco region comprises the following twelve counties around the Bay Area: Alameda,
Contra Costa, Marin, Napa, San Benito, San Francisco, San Joaquin, San Mateo, Santa Clara, Santa Cruz,
Solano, and Sonoma counties. The Sacramento region represents a seven-county area, surrounding
the state capital—Sacramento, CA—and consists of El Dorado, Nevada, Placer, Sacramento, Sutter,
Yolo, and Yuba counties. Finally, in this study, Southern California refers to a seven-county region
encompassing multiple metropolitan statistical areas (including both Los Angeles and San Diego):
Imperial, Los Angeles, Orange, Riverside, San Bernardino, San Diego, and Ventura counties. As shown
in the figure, densely populated counties are along the coastal line for the San Francisco and Southern
California regions, whereas Sacramento County, the home of the state capital that shares borders with
the San Francisco region, is the most densely populated county in the Sacramento metropolitan area.
Jobs tend to be concentrated in these counties, while variation exists.

For US states and counties, the Internal Revenue Service’s (IRS) Statistics of Income (SOI) division
provides annual migration data that describe place-to-place residential relocation flows. The IRS
migration data date back to 1983, and in the absence of alternative annual datasets, the IRS is known
to be the best available source to facilitate various analyses of dynamic intercounty migration patterns
over a reasonably extensive timespan [36]. Although the dataset tracks county-level spatial flows of
individuals and households in a comprehensive manner, it is still far from perfect in a few respects.
First, there is a temporal mismatch between migration year and tax year. The actual period of the
annual migration data collection is between the tax filing date (15th April of a year) in a previous year
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and that in a current year, and this does not necessarily match with other datasets provided on the
basis of a calendar year. Second, the IRS migration data do not cover all population and household
flows, because not all individuals file a tax report every year. While the coverage rate is known to be
approximately 90% of the population, three groups—the poor, the very wealthy and the retired—tend
to have lower tax filing rates [37]. Accordingly, the data tend to underrepresent the migration flows
of these groups. Even with these shortcomings, the IRS migration dataset has been widely used by a
broad range of applied research (see, e.g., [38–40]) and employed in this study, as it is known to be the
most reliable data source to capture residential relocation flows of households on an annual basis.

The data for commuting, the other important type of human flows, are from the U.S. Census,
specifically the Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Employment
Statistics. The US Census’ Center for Economic Studies operates the LEHD program, which releases
data on employers and employees through its partnerships with other agencies. The program utilizes
information related to unemployment insurance earnings as well as quarterly employment and wage
data provided by state organizations to construct data files concerning the spatial distribution of
population, employment, and their interactions. The Origin-Destination statistics present detailed
patterns of commuting flows considering job locations and residential locations. Using the LEHD
data, previous studies mainly focused on analyzing job-to-job flows taking into account business
cycles [41] and estimating the rates of job-to-job and job-to-employment status flows for missing
states [42]. Others studied the workers’ transition patterns among employers—and more broadly
among industries—with consideration of workers’ demographic characteristics (see, e.g., [43,44]).
Our study utilizes the information about the annual commuting flows of employees that can be
extracted from the LEHD database.

Using the two data sources (i.e., IRS and LEHD datasets), county-level household relocation and
commuting flow information can be compiled for each study area and organized in a matrix form.
Tables 1 and 2 show the San Francisco region’s matrices (year 2010), in which each value indicates
the size of residential relocation or commuting flow from an origin (O) to a destination (D) county.
Regarding the residential relocation pattern, while the majority of people do not move across the
county boundaries within a given one-year time window (and thus falling in the diagonals of the
matrix), many off-diagonal origin-destination (OD) pairs also have more than a thousand households,
such as from Alameda County to Contra Costa, San Francisco, and Santa Clara counties, suggesting
that the size of relocation flows between these counties is considerable. The inter-county flows are
even more substantial in terms of the commuting pattern, involving a few OD pairs with more than
50,000 commuters.

A more important point to be stressed is the association between residential relocation and
commuting. On the surface, the magnitude of residential relocation and that of commuting are highly
correlated, as demonstrated in Figure 2 in which each OD pair’s household relocation and commuting
flow shares (obtained by excluding the diagonal elements and then performing row-normalization)
are plotted. Although the correlation does not necessarily imply any causality, the revealed pattern
appears to suggest that a connection may exist between residential relocation and commuting and that
the nexus between the two types of human flows deserves empirical investigation.
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Table 1. Residential relocation patterns in the San Francisco region (Year 2010).

O
D Alameda Contra Costa Marin Napa San Benito San Francisco San Joaquin San Mateo Santa Clara Santa Cruz Solano Sonoma

Alameda 511.9 7.2 0.4 0.1 0.0 3.7 2.5 1.9 3.8 0.2 0.8 0.4
Contra Costa 5.3 353.0 0.3 0.2 0.0 1.7 0.5 0.8 0.8 0.1 1.6 0.3

Marin 0.4 0.4 84.2 0.1 0.0 0.9 0.0 0.2 0.1 0.0 0.2 1.0
Napa 0.1 0.1 0.1 46.4 0.0 0.1 0.0 0.1 0.1 0.0 0.8 0.3

San Benito 0.0 0.0 0.0 0.0 17.2 0.0 0.0 0.0 0.4 0.1 0.0 0.0
San Francisco 4.8 2.2 1.4 0.1 0.0 314.1 0.2 5.2 1.8 0.2 0.4 0.5
San Joaquin 1.5 0.5 0.0 0.0 0.0 0.2 204.2 0.2 0.9 0.1 0.2 0.1
San Mateo 2.4 1.2 0.2 0.1 0.0 4.2 0.3 257.8 3.6 0.2 0.3 0.2
Santa Clara 4.5 1.1 0.1 0.1 0.5 2.5 1.1 3.3 624.4 0.9 0.2 0.2
Santa Cruz 0.3 0.1 0.0 0.0 0.1 0.3 0.1 0.1 0.9 89.2 0.0 0.1

Solano 0.7 1.4 0.1 0.8 0.0 0.3 0.2 0.2 0.2 0.0 137.3 0.2
Sonoma 0.3 0.2 0.6 0.2 0.0 0.5 0.1 0.1 0.2 0.1 0.2 169.5

Unit: Thousand households; Data Source: Internal Revenue Service’s (IRS) migration dataset; Notes: O indicates the origin county, while D represents that of the destination county.
The diagonal part of the matrix represents the number of households reporting to live in the same county in 2010, including non-movers.

Table 2. Commuting patterns in the San Francisco region (Year 2010).

O
D Alameda Contra Costa Marin Napa San Benito San Francisco San Joaquin San Mateo Santa Clara Santa Cruz Solano Sonoma

Alameda 311.0 45.3 6.3 1.2 0.2 72.3 6.0 40.0 77.8 1.8 5.2 3.6
Contra Costa 91.3 165.3 8.7 1.9 0.1 48.2 5.3 14.9 23.8 1.2 10.1 3.7
Marin 6.9 4.2 40.5 0.8 0.0 23.5 0.6 3.5 3.0 0.2 1.2 4.4
Napa 2.3 2.9 2.0 32.8 0.0 2.2 0.5 0.9 1.5 0.1 4.6 4.2
San Benito 0.5 0.2 0.0 0.0 7.1 0.3 0.2 0.3 4.4 1.3 0.1 0.1
San Francisco 30.0 9.1 8.9 0.8 0.1 230.8 1.3 38.3 25.1 0.8 2.1 2.0
San Joaquin 25.1 8.5 0.9 0.5 0.1 4.8 118.5 4.2 13.1 0.7 2.9 1.2
San Mateo 24.9 7.1 3.3 0.5 0.1 73.3 1.7 127.0 52.0 1.2 2.0 1.6
Santa Clara 54.7 12.1 2.5 0.9 1.3 23.2 4.6 41.8 523.0 6.6 3.1 3.0
Santa Cruz 3.2 1.0 0.3 0.1 0.7 2.0 0.7 2.7 18.9 58.6 0.2 0.4
Solano 14.1 21.2 4.3 9.6 0.1 10.5 2.3 4.8 5.4 0.4 59.8 3.9
Sonoma 6.9 4.8 14.3 5.6 0.0 9.3 1.0 3.3 4.8 0.5 3.3 119.4

Unit: Thousand commuters; Data Source: LEHD dataset; Notes: O indicates the origin county, while D represents that of the destination county. The diagonal part of the matrix represents
the number of commuters living and working in the same county.
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4. Methodology

As noted earlier, we conduct a matrix forecasting experiment to explore the linkages between
residential relocation and commuting flows in the three study regions and to take the linkages into
account to better describe and forecast the evolution of the two interrelated human flow dynamics.
Matrix forecasting has become an integral part of a wide range of analyses that lead to a more
complete understanding of complex system behaviors, including dynamic relationships among
multiple sectors (e.g., input-output matrix, representing inter-industry linkages through supply
chains) and the transformation of a system from one state to another (e.g., Markov chain matrix,
showing land use conversion over a period of time). Our experiment employs and compares two
sets of matrix forecasting approaches: (i) traditional matrix forecasting methods and (ii) alternative
models in which the interrelationship between migration (residential relocation) and commuting
are taken into account. More specifically, the following ten (five traditional and five alternative)
approaches have been tested to determine how the consideration of the interrelationship can improve
the forecasting performance and/or analytical capabilities of the models. Table 3 summarizes the ten
matrix forecasting approaches tested.

• Approach 1. Most recent matrix: According to Rogerson and Plane [45], “a common method
of modeling temporal change in spatial system is to ignore it. This is clearly evident in the
widespread use of Markov models” (p. 148). For many socio-economic analyses in which
migration and/or commuting are involved (especially when just a single set of historical
observations are available), it is typically assumed that future migration or commuting pattern
will be constant over time and the same as the most recently observed pattern.

• Approach 2. Historical average: Another simple traditional method, which also ignores temporal
changes (similar to the first method but not completely), is to take the average of available
historical matrices.

• Approach 3. First-order lag model: The third approach tested is a simple lag model discussed by
Plane ([46], pp. 452–455). Here, the future flow matrix pattern is formulated using two sets of
previous observations, as below.

F(t + 1) = F(t) + β·{F(t)− F(t− 1)}+ ε



Sustainability 2019, 11, 182 8 of 24

where, F(t) = flow matrix in year t
β = first-order trend coefficient
First-order trend coefficient (β) captures the flow pattern change over time, to be estimated.
If β = 0, this model is identical to the first method, using the most recent observation for future
flow matrices.

• Approach 4. Causative change matrix approach: This method introduces one or more n × n causative
matrices, describing the transition of a flow matrix (see, e.g., [45,47,48]). Either a right-side or
left-side causative change matrix with destination- and origin-based implications, respectively,
can be adopted. Alternatively, to avoid the arbitrary choice, both right-side and left-side causative
change matrices can be used at the same time, although this increases the computational burden.
Simply, the left-side causative change matrix can be formulated as follows.

F(t + 1) = ĈL·F(t) + ε

where, F(t) = flow matrix in year t
ĈL = n × n left-side causative change matrix, explaining the transition
It should be noted that we have also tested the right-side causative change matrix; however,
we have not quite identified a distinct forecasting result, although differences in terms of
estimation outcomes and forecasting performance do exist. Therefore, in this paper, we do not
present the right-side causative change matrix as a separate traditional approach. Furthermore,
we found that a double causative change matrix could generate a relatively poorer forecasting
outcome in this experimental setting, perhaps due to the short time span with the available data
for the estimation. For this reason, we also decided not to include the approach separately.

• Approach 5. Bi-causative matrices approach: The last traditional approach included in our experiment
is the use of two bi-causative matrices to explain the temporal change of a flow pattern.
This method, presented by de Mesnard [49], uses diagonal matrices to measure and project
the structural changes, as follows.

F(t + 1) = L̂·F(t)·R̂ + ε

where, F(t) = flow matrix in year t
L̂ and R̂ are bi-causative n × n diagonal matrices where all non-diagonal cells are assumed to be
equal to zero.
The main advantage of this approach, compared to the traditional causative approaches, is a
reduced number of parameters to be estimated. In other words, while each causative matrix
(e.g., ĈL in our approach 4) bears n2 unknown parameters, each bi-causative matrix (i.e., L̂ and
R̂) just has n parameters (only on the diagonal), so the computation and interpretation can
be more straightforward and convenient. For more detailed explanations, please refer to de
Mesnard [49,50] or Wan et al. [51].

• Approach 6: The first alternative approach assumes one of the simplest forms of the joint
determination of migration and commuting patterns: both migration and commuting at t are
influenced by their own state and the counterpart at t − 1 in a linear fashion, as follows.

FM(t + 1) = αM + βM·FM(t) + γM·FC(t) + εM
FC(t + 1) = αC + βC·FC(t) + γC·FM(t) + εC

where, FM(t) = migration flow matrix in year t
FC(t) = commuting flow matrix in year t
α, β, and γ represent scalar coefficients to be estimated.
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• Approach 7: As discussed in the previous section, migration from area i to j can be associated with
commuting j to i, and vice versa. The second alternative approach (i.e., approach 7) takes this
possibility into account by slightly modifying the approach 6 model, as shown below.

FM(t + 1) = αM + βM·FM(t) + γM·FT
C (t) + εM

FC(t + 1) = αC + βC·FC(t) + γC·FT
M(t) + εC

where, FM(t) = migration flow matrix in year t
FT

M(t) = transposed migration flow matrix in year t
FC(t) = commuting flow matrix in year t
FT

C (t) = transposed commuting flow matrix in year t
α, β, and γ represent scalar coefficients to be estimated.

• Approach 8: This approach simply combines the above two alternative approaches by considering
both normal and transposed forms of the counterpart in each model as follows.

FM(t + 1) = αM + βM·FM(t) + γM·FC(t) + δM·FT
C (t) + εM

FC(t + 1) = αC + βC·FC(t) + γC·FM(t) + δC·FT
M(t) + εC

where, FM(t) = migration flow matrix in year t
FT

M(t) = transposed migration flow matrix in year t
FC(t) = commuting flow matrix in year t
FT

C (t) = transposed commuting flow matrix in year t
α, β, and γ represent scalar coefficients to be estimated.

• Approach 9: The ninth approach utilizes the bi-causative approach and then considers the
relationship between migration and commuting as in approach 8. The following formulas present
the approach where the bi-causative method is embedded along with a parameter β.

FM(t + 1) = αM + βM·L̂M·FM(t)·R̂M + γM·FC(t) + δM·FT
C (t) + εM

FC(t + 1) = αC + βC·L̂C·FC(t)·R̂C + γC·FM(t) + δC·FT
M(t) + εC

where, FM(t) = migration flow matrix in year t
FT

M(t) = transposed migration flow matrix in year t
FC(t) = commuting flow matrix in year t
FT

C (t) = transposed commuting flow matrix in year t
L̂M or R̂M = bi-causative matrices for migration
L̂C or R̂C = bi-causative matrices for commuting
α, β, and γ represent scalar coefficients to be estimated.

• Approach 10: Similar to approach 9, the final approach also adopts the logic of a bi-causative
approach. Here, four bi-causative matrices (i.e., L̂M, R̂M, L̂C, and R̂C) are used in each model
to describe the migration and commuting change dynamics, respectively. FM(t + 1) = αM +

βM·L̂M·FM(t)·R̂M + γM·L̂C·FC(t)·R̂C + εM

FC(t + 1) = αC + βC·L̂C·FC(t)·R̂C + γC·L̂M·FM(t)·R̂M + εC

where, FM(t) = migration flow matrix in year t
FC(t) = commuting flow matrix in year t
L̂M or R̂M = bi-causative matrices for migration
L̂C or R̂C = bi-causative matrices for commuting
α, β, and γ represent scalar coefficients to be estimated.
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Table 3. Ten matrix forecasting approaches.

Method Type Description Joint Forecasting

Approach 1 Traditional Most Recent Matrix No
Approach 2 Traditional Historic Average No
Approach 3 Traditional First-order Lag Model No
Approach 4 Traditional Causative Change Matrix Approach No
Approach 5 Traditional Bi-causative Matrices Approach No
Approach 6 Alternative Simple Linear Joint Forecasting with Flow Patterns in t − 1 Yes
Approach 7 Alternative Simple Linear Joint Forecasting with Transposed Flow Patterns in t − 1 Yes
Approach 8 Alternative Combination of Approaches 6 and 7 Yes
Approach 9 Alternative Bi-causative Extension of Approach 8 Yes

Approach 10 Alternative Joint Bi-causative Matrices Approach Yes

The above ten frameworks are calibrated based upon the four annual (i.e., 2002, 2003, 2004,
and 2005) residential relocation and commuting matrices for three regions: Southern California,
Sacramento, and the San Francisco regions. In calibration (and our forecasting, explained in the
following section), we exclude the diagonal cells of the flow matrices (to avoid the large influence
of these elements) and make the matrices row-normalized. In other words, the matrices used in the
present experiment have the proportion values that represent the share distribution over destinations
from the perspective of each origin county. To accomplish the calibration, we employ a quasi-Newton
method of optimization—more specifically, the BFGS approach [52–55]—available as an option of the
optim function in R’s Stats package.

After calibration, we compared the forecasting performance of each of the ten approaches
(i.e., five traditional and five alternative methods). In detail, we generated the forecasts of residential
relocation and commuting matrices for the subsequent five years (i.e., 2006 through 2010) using the
models calibrated with 2002~2005 data, and we evaluated the performance of each approach based
on the following five error metrics that have been discussed and/or used by many studies in the
forecasting literature, such as Armstrong and Collopy [56], Hyndman and Koehler [57], and Hierro [58]:
(1) root mean square error (RMSE), (2) mean absolute error (MAE), (3) median absolute error (MdAE),
(4) Theil’s U2, as explained in Bliemel [59] and Armstrong and Collopy [56], and (5) percent better (PB)
as defined in Armstrong and Collopy [56] (Since this study deals with proportions (i.e., row-normalized
elements of migration and commuting matrices) and thus involves a large number of zeros or almost
zero values, it would not be reasonable to use percentage-based metrics. Therefore, we used MAE and
MdAE, instead of the mean absolute percentage error or median absolute percentage error, discussed in
Armstrong and Collopy [56]). Lower values for the first four error measures indicate better forecasting
performance of an approach, while a higher value for PB indicates better performance.

5. Results

5.1. Forecasting Model Calibration Outcomes

Table 4 presents the calibrated coefficients in the five alternative approaches, where consideration
is given to the association between residential relocation and commuting changes. Among others,
the calibrated values of βM and βC clearly demonstrate that both residential relocation and commuting
can largely be explained by their patterns in the previous year. More specifically, under approaches 6, 7,
and 8, the coefficients for all three regions fall in the range between 0.96 and 1.03, suggesting that subtle
and gradual temporal variation does exist. When the bi-causative matrix method is combined as in
approaches 9 and 10, the magnitudes of the coefficients differ more substantially, but these coefficients
are still found to play the largest role in most cases.

However, despite the large explanatory power of the previous year’s patterns, it appears that
residential relocation and commuting influence each other as well. For instance, in the case of the San
Francisco region, commuting in year t (non-transposed) seems to have a positive effect on residential
relocation in year t + 1 (γM = 0.01527 in approach 6 and γM = 0.01585 in approach 8, respectively).
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Table 4. Calibrated coefficients.

Approaches
Migration (Residential Relocation) Part Commuting Part

Coefficient San Francisco Sacramento Southern California Coefficient San Francisco Sacramento Southern California

Approach 6

αM −0.00039 0.00116 0.00054 αC 0.00076 0.00073 0.00059

βM 1.00168 0.98014 1.01643 βC 0.96556 1.00716 0.97648

γM 0.01527 0.00003 −0.02527 γC 0.02526 −0.01512 0.02107

Approach 7

αM −0.00030 0.00078 0.00020 αC 0.00064 0.00072 −0.00008

βM 1.02659 0.97733 0.96926 βC 0.97392 0.99753 0.98174

γM 0.00110 0.00570 0.00238 γC 0.01217 −0.00076 0.01960

Approach 8

αM −0.00049 0.00066 0.00023 αC 0.00059 0.00061 −0.00021

βM 0.99865 0.96685 1.01486 βC 0.96551 1.00936 0.97780

γM 0.01585 0.00727 −0.02561 γC 0.02086 −0.01959 0.01121

δM 0.00236 0.00669 0.00329 δC 0.00887 0.00295 0.01740

Approach 9

αM −0.00072 0.00084 0.00011 αC 0.00032 0.00048 0.00104

βM 0.95745 0.71990 0.98248 βC 0.99436 0.95787 0.96558

γM 0.05543 0.19276 −0.00100 γC 0.01546 0.06601 0.07330

δM 0.00211 0.01529 −0.00169 δC −0.00326 −0.00507 −0.01004

Approach 10

αM −0.00054 0.00151 0.00020 αC 0.00039 −0.00019 0.00074

βM 0.85468 0.48017 0.83229 βC 0.96153 0.96955 0.81697

γM 0.10095 0.59554 −0.13911 γC 0.04727 0.11301 0.55288
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These positive relationships may indicate that a large flow of commuting often induces residential
relocation, perhaps to optimize the commuting costs, as suggested by Levinson and Kumar [25],
Clark et al. [27] and others. A similar positive relationship is also found in San Francisco area for the
commuting part of the model (γC = 0.02526 in approach 6 and γC = 0.02086 in approach 8, respectively).
The commuting flow tends to be larger between two counties with a greater volume of household
relocation in the previous year.

A more important thing to be noted is that the other regions tested in this study show dissimilar
patterns in terms of the interrelationships between residential relocation and commuting. In the
case of the Sacramento metropolitan area, γC exhibits negative estimates in both approaches 6 and 8.
Although the sign of γM turns out to be positive as in San Francisco, its magnitude is much smaller
than that for the San Francisco region. Estimation results for Southern California also differ from those
for San Francisco in the sense that commuting (again, non-transposed one) shows a negative impact on
residential relocation, whereas the impact of residential relocation on commuting is positive, consistent
with the finding from San Francisco (Note that the coefficients for the transposed matrices (i.e., γM
and γC in approach 7 and δM and δC in approach 8) show more consistent patterns of signs, but these
estimates are relatively smaller.). These results may be attributable in part to the uneven distribution
of new housing within the region. In fact, during this period of urban expansion, a large number of
households continued to move to Riverside and San Bernardino counties, where housing supply was
more elastic, rather than being relocated into job-rich Los Angeles and Orange counties to shorten
their commuting distances.

The variation in the coefficients across study regions may suggest that the way residential
relocation and commuting are associated is not always determinate. Rather, their interrelationship can
be influenced by many indigenous factors that are unique to each metropolitan area, such as its history,
culture, and institutional arrangements. Depending on urban growth patterns, each metropolitan area
might be in a different stage of urbanization, suburbanization or densification. For instance, a typical
trend of suburbanization with increasing residential relocation from core counties to surrounding
counties can result in increased commuting from suburbs to core counties. Other metropolitan areas,
with the return of both jobs and population back to their core counties, do not necessarily present such
a pattern.

It would also be probable that the spatial structure and transportation systems in each metropolis
can shape the relationship. Rapid advancement in transportation can generally save commuting costs,
and the potential benefit of residential relocation can increase accordingly. This situation can induce
more intra-metro relocation and increased long-distance commuting flows, but possibly with cheaper
costs. However, public transit systems with cost-effective and reliable services within a central part of
the metropolis can shape both residential relocation and commuting patterns differently. Admittedly,
the relocation and commuting dynamics in a metropolitan area with poor connectivity are also less
likely to be similar to the above cases.

Furthermore, it should be noted that business relocation dynamics that would be critical in
determining the nexus between household relocation and commuting—but not taken into account
here due to the data deficiency—would be able to elucidate distinct relational patterns found in the
three different study areas. Among the relocation decision-making criteria, ‘when to move’ decision is
closely related to the potential relocation of businesses. For instance, if a current employer relocates
to a county where its employees mainly reside, the employees can reduce commuting cost even
without residential relocation. This is the case where jobs follow people in an intra-metropolitan
setting. Although generally workers are more mobile than employers, in certain metro areas where
suburbanization is evident employers often move toward the places with their labor force (see,
e.g., [31]). Such critical business relocation patterns may also vary by urban development history,
technological environments, and many other factors. The variation found in our model estimation
could be attributed to business relocation as well as other region-specific characteristics in urban
development, including transportation and land use regulation.
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5.2. Forecasting Performance

Another important issue we explored in this study is whether the consideration of the
relocation–commuting relationship can lead to a more effective analysis and/or forecasting of the
two important human flow dynamics. As noted in the previous section, this was accomplished by
using five well-known error metrics. Tables 5–10 show the outcomes of this forecasting performance
evaluation for each study area’s residential relocation and commuting. First of all, in the case of
San Francisco’s residential relocation, the variation of the short-run forecasting performance is small
(e.g., all approaches show RMSE between 0.00373 and 0.00497), but the gap widens as the forecast time
horizon extends (see Table 5). One notable point is that alternative approaches generally show better
performance than traditional approaches, while the judgment outcome could differ by the evaluation
metric (For instance, in terms of MdAE, the first three traditional approaches can be evaluated more
favorably than alternative approaches.). Approaches 6, 7, and 8 show RMSE values range from
0.00728 to 0.00787 for the forecasting year 2010, whereas those of the five traditional approaches range
from 0.01112 to 0.01733. This finding is clearly demonstrated in Figure 3, where each approach’s
performance in terms of RMSE over the forecasting time horizon is illustrated. As shown in the figure
and table, the causative change matrix approach (i.e., approach 4), which is one of the most widely used
traditional methods, turns out to be less accurate than all alternative approaches tested in this study.
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Table 5. Forecasting performance: San Francisco (residential relocation).

Forecasting Year Performance Measure
Traditional Alternative

Approach 1 Approach 2 Approach 3 Approach 4 Approach 5 Approach 6 Approach 7 Approach 8 Approach 9 Approach 10

2006

RMSE 0.00376 0.00392 0.00381 0.00497 0.00450 0.00373 0.00391 0.00377 0.00437 0.00424

MAE 0.00214 0.00228 0.00216 0.00295 0.00254 0.00228 0.00230 0.00232 0.00265 0.00248

MdAE 0.00097 0.00098 0.00095 0.00141 0.00097 0.00128 0.00103 0.00131 0.00123 0.00122

Theil’s U2 - 1.04285 1.01289 1.32093 1.19634 0.99177 1.04003 1.00214 1.16304 1.12780

PB - 0.49306 0.32639 0.27083 0.36111 0.36111 0.34028 0.35417 0.32639 0.34028

2007

RMSE 0.00526 0.00542 0.00525 0.00870 0.00757 0.00573 0.00642 0.00573 0.00701 0.00640

MAE 0.00303 0.00313 0.00304 0.00506 0.00406 0.00319 0.00348 0.00324 0.00417 0.00376

MdAE 0.00129 0.00172 0.00127 0.00230 0.00166 0.00129 0.00141 0.00135 0.00217 0.00194

Theil’s U2 - 1.03087 0.99904 1.65399 1.43874 1.08874 1.22042 1.08913 1.33353 1.21631

PB - 0.43750 0.36806 0.25000 0.36806 0.38194 0.37500 0.40972 0.32639 0.34028

2008

RMSE 0.00725 0.00773 0.00724 0.01174 0.00995 0.00706 0.00813 0.00711 0.00926 0.00858

MAE 0.00410 0.00416 0.00411 0.00694 0.00522 0.00398 0.00442 0.00405 0.00559 0.00527

MdAE 0.00133 0.00179 0.00137 0.00348 0.00168 0.00141 0.00126 0.00150 0.00233 0.00257

Theil’s U2 - 1.06696 0.99896 1.61974 1.37232 0.97394 1.12105 0.98052 1.27727 1.18420

PB - 0.44444 0.43056 0.27083 0.36806 0.40278 0.41667 0.39583 0.27778 0.29167

2009

RMSE 0.01050 0.01082 0.01054 0.01492 0.01249 0.00795 0.00872 0.00816 0.01169 0.01189

MAE 0.00544 0.00545 0.00546 0.00876 0.00641 0.00449 0.00496 0.00463 0.00709 0.00682

MdAE 0.00155 0.00110 0.00157 0.00436 0.00202 0.00188 0.00167 0.00206 0.00321 0.00340

Theil’s U2 - 1.03019 1.00330 1.42072 1.18954 0.75646 0.82993 0.77657 1.11263 1.13167

PB - 0.45139 0.36111 0.27778 0.42361 0.43056 0.47222 0.43750 0.29861 0.32639

2010

RMSE 0.01112 0.01142 0.01117 0.01733 0.01379 0.00728 0.00787 0.00752 0.01253 0.01376

MAE 0.00579 0.00588 0.00581 0.01017 0.00683 0.00414 0.00462 0.00430 0.00755 0.00732

MdAE 0.00186 0.00146 0.00187 0.00471 0.00218 0.00207 0.00196 0.00227 0.00355 0.00320

Theil’s U2 - 1.02648 1.00390 1.55838 1.24013 0.65465 0.70755 0.67628 1.12643 1.23736

PB - 0.50000 0.33333 0.25694 0.45833 0.45833 0.41667 0.44444 0.33333 0.28472
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Table 6. Forecasting performance: San Francisco (commuting).

Forecasting Year Performance Measure
Traditional Alternative

Approach 1 Approach 2 Approach 3 Approach 4 Approach 5 Approach 6 Approach 7 Approach 8 Approach 9 Approach 10

2006

RMSE 0.00335 0.00593 0.00350 0.00403 0.00384 0.00356 0.00342 0.00356 0.00378 0.00364

MAE 0.00194 0.00298 0.00207 0.00274 0.00225 0.00218 0.00218 0.00222 0.00226 0.00221

MdAE 0.00098 0.00108 0.00109 0.00182 0.00131 0.00119 0.00127 0.00128 0.00137 0.00139

Theil’s U2 - 1.77256 1.04430 1.20451 1.14676 1.06303 1.02183 1.06509 1.12798 1.08708

PB - 0.40972 0.31944 0.27083 0.36111 0.29861 0.29167 0.27778 0.31250 0.34722

2007

RMSE 0.00685 0.00964 0.00680 0.00699 0.00580 0.00672 0.00635 0.00661 0.00578 0.00621

MAE 0.00327 0.00417 0.00331 0.00483 0.00352 0.00395 0.00392 0.00398 0.00357 0.00389

MdAE 0.00143 0.00123 0.00146 0.00293 0.00199 0.00210 0.00211 0.00219 0.00190 0.00230

Theil’s U2 - 1.40812 0.99343 1.02115 0.84705 0.98183 0.92772 0.96585 0.84390 0.90734

PB - 0.43056 0.36806 0.24306 0.33333 0.28472 0.25694 0.25694 0.26389 0.25000

2008

RMSE 0.00763 0.01050 0.00756 0.00845 0.00729 0.00718 0.00667 0.00713 0.00720 0.00728

MAE 0.00394 0.00481 0.00395 0.00597 0.00455 0.00455 0.00447 0.00460 0.00456 0.00485

MdAE 0.00207 0.00146 0.00195 0.00344 0.00255 0.00271 0.00295 0.00285 0.00293 0.00316

Theil’s U2 - 1.37723 0.99158 1.10856 0.95571 0.94103 0.87517 0.93543 0.94401 0.95410

PB - 0.48611 0.42361 0.25694 0.26389 0.27083 0.29861 0.27778 0.25000 0.22917

2009

RMSE 0.01104 0.01387 0.01095 0.01062 0.00935 0.00938 0.00873 0.00930 0.00922 0.00953

MAE 0.00502 0.00583 0.00503 0.00740 0.00574 0.00555 0.00554 0.00568 0.00583 0.00608

MdAE 0.00188 0.00154 0.00181 0.00461 0.00313 0.00334 0.00333 0.00327 0.00362 0.00379

Theil’s U2 - 1.25626 0.99189 0.96163 0.84701 0.84994 0.79062 0.84198 0.83543 0.86282

PB - 0.50694 0.44444 0.26389 0.25694 0.29167 0.29167 0.29167 0.23611 0.23611

2010

RMSE 0.01198 0.01448 0.01198 0.01312 0.01212 0.01109 0.01052 0.01105 0.01184 0.01214

MAE 0.00602 0.00660 0.00611 0.00899 0.00702 0.00652 0.00657 0.00664 0.00713 0.00755

MdAE 0.00285 0.00269 0.00283 0.00547 0.00389 0.00401 0.00393 0.00386 0.00417 0.00405

Theil’s U2 - 1.20842 1.00008 1.09478 1.01120 0.92564 0.87756 0.92225 0.98779 1.01337

PB - 0.52778 0.44444 0.26389 0.29167 0.30556 0.31944 0.31944 0.26389 0.27083



Sustainability 2019, 11, 182 16 of 24

Table 7. Forecasting performance: Sacramento (residential relocation).

Forecasting Year Performance Measure
Traditional Alternative

Approach 1 Approach 2 Approach 3 Approach 4 Approach 5 Approach 6 Approach 7 Approach 8 Approach 9 Approach 10

2006

RMSE 0.00550 0.00680 0.00548 0.00679 0.00613 0.00579 0.00594 0.00592 0.00554 0.00736

MAE 0.00362 0.00431 0.00359 0.00486 0.00403 0.00390 0.00400 0.00396 0.00372 0.00497

MdAE 0.00256 0.00192 0.00255 0.00289 0.00243 0.00209 0.00264 0.00238 0.00247 0.00284

Theil’s U2 - 1.23472 0.99597 1.23350 1.11367 1.05162 1.07966 1.07645 1.00726 1.33807

PB - 0.36735 0.63265 0.26531 0.34694 0.34694 0.26531 0.32653 0.34694 0.32653

2007

RMSE 0.01127 0.01129 0.01125 0.01426 0.01376 0.01123 0.01176 0.01154 0.01235 0.01255

MAE 0.00665 0.00614 0.00662 0.00954 0.00812 0.00722 0.00748 0.00729 0.00804 0.00789

MdAE 0.00374 0.00192 0.00385 0.00502 0.00354 0.00444 0.00412 0.00404 0.00456 0.00421

Theil’s U2 - 1.00191 0.99850 1.26535 1.22142 0.99705 1.04420 1.02432 1.09581 1.11380

PB - 0.42857 0.53061 0.26531 0.32653 0.30612 0.22449 0.28571 0.28571 0.32653

2008

RMSE 0.01297 0.01287 0.01294 0.01686 0.01592 0.01365 0.01429 0.01403 0.01347 0.01568

MAE 0.00716 0.00628 0.00712 0.01147 0.00909 0.00835 0.00877 0.00856 0.00847 0.00926

MdAE 0.00280 0.00240 0.00285 0.00672 0.00414 0.00553 0.00477 0.00502 0.00394 0.00561

Theil’s U2 - 0.99180 0.99780 1.29954 1.22699 1.05200 1.10144 1.08149 1.03823 1.20891

PB - 0.46939 0.59184 0.28571 0.30612 0.28571 0.20408 0.26531 0.30612 0.28571

2009

RMSE 0.01885 0.01728 0.01882 0.02589 0.02535 0.02204 0.02279 0.02241 0.02259 0.02500

MAE 0.01002 0.00836 0.00998 0.01552 0.01250 0.01247 0.01298 0.01244 0.01294 0.01330

MdAE 0.00353 0.00190 0.00349 0.00781 0.00395 0.00575 0.00546 0.00485 0.00536 0.00547

Theil’s U2 - 0.91649 0.99852 1.37357 1.34460 1.16927 1.20871 1.18854 1.19849 1.32623

PB - 0.48980 0.59184 0.24490 0.30612 0.20408 0.14286 0.18367 0.24490 0.36735

2010

RMSE 0.01865 0.01662 0.01861 0.02762 0.02609 0.02384 0.02461 0.02436 0.02492 0.02920

MAE 0.01012 0.00861 0.01008 0.01670 0.01272 0.01339 0.01371 0.01307 0.01444 0.01531

MdAE 0.00270 0.00286 0.00268 0.00898 0.00395 0.00647 0.00542 0.00424 0.00599 0.00476

Theil’s U2 - 0.89088 0.99770 1.48073 1.39871 1.27799 1.31945 1.30615 1.33611 1.56563

PB - 0.48980 0.55102 0.26531 0.38776 0.18367 0.12245 0.16327 0.26531 0.30612
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Table 8. Forecasting performance: Sacramento (commuting).

Forecasting Year Performance Measure
Traditional Alternative

Approach 1 Approach 2 Approach 3 Approach 4 Approach 5 Approach 6 Approach 7 Approach 8 Approach 9 Approach 10

2006

RMSE 0.00444 0.00530 0.00438 0.00532 0.00538 0.00450 0.00433 0.00453 0.00503 0.00519

MAE 0.00236 0.00298 0.00233 0.00309 0.00298 0.00253 0.00243 0.00253 0.00297 0.00298

MdAE 0.00086 0.00113 0.00097 0.00130 0.00085 0.00099 0.00093 0.00092 0.00133 0.00131

Theil’s U2 - 1.19417 0.98684 1.19860 1.21197 1.01398 0.97617 1.02020 1.13431 1.16871

PB - 0.24490 0.46939 0.30612 0.28571 0.30612 0.34694 0.34694 0.22449 0.28571

2007

RMSE 0.01796 0.01908 0.01799 0.01791 0.01758 0.01753 0.01770 0.01760 0.01715 0.01699

MAE 0.00900 0.00950 0.00901 0.00980 0.00909 0.00890 0.00899 0.00899 0.00909 0.00911

MdAE 0.00165 0.00229 0.00148 0.00207 0.00176 0.00186 0.00185 0.00200 0.00254 0.00246

Theil’s U2 - 1.06231 1.00170 0.99724 0.97854 0.97602 0.98518 0.97968 0.95494 0.94594

PB - 0.30612 0.44898 0.30612 0.38776 0.42857 0.46939 0.42857 0.36735 0.30612

2008

RMSE 0.02248 0.02279 0.02248 0.02366 0.02325 0.02226 0.02220 0.02241 0.02236 0.02272

MAE 0.01065 0.01057 0.01065 0.01260 0.01143 0.01103 0.01107 0.01111 0.01140 0.01182

MdAE 0.00135 0.00189 0.00139 0.00409 0.00167 0.00257 0.00271 0.00271 0.00244 0.00263

Theil’s U2 - 1.01347 0.99975 1.05220 1.03434 0.99022 0.98745 0.99659 0.99445 1.01050

PB - 0.42857 0.51020 0.18367 0.34694 0.32653 0.32653 0.30612 0.30612 0.32653

2009

RMSE 0.02624 0.02637 0.02623 0.02815 0.02790 0.02609 0.02586 0.02629 0.02660 0.02724

MAE 0.01209 0.01177 0.01209 0.01472 0.01335 0.01289 0.01287 0.01296 0.01305 0.01375

MdAE 0.00166 0.00147 0.00161 0.00543 0.00185 0.00419 0.00388 0.00394 0.00298 0.00266

Theil’s U2 - 1.00489 0.99949 1.07271 1.06328 0.99398 0.98520 1.00158 1.01364 1.03795

PB - 0.46939 0.46939 0.18367 0.32653 0.28571 0.30612 0.26531 0.26531 0.26531

2010

RMSE 0.02884 0.02887 0.02883 0.03169 0.03087 0.02887 0.02861 0.02927 0.02954 0.03122

MAE 0.01333 0.01291 0.01331 0.01653 0.01547 0.01443 0.01416 0.01460 0.01507 0.01553

MdAE 0.00235 0.00271 0.00260 0.00560 0.00205 0.00492 0.00468 0.00496 0.00411 0.00274

Theil’s U2 - 1.00102 0.99965 1.09867 1.07017 1.00085 0.99178 1.01464 1.02400 1.08242

PB - 0.46939 0.51020 0.20408 0.36735 0.28571 0.30612 0.26531 0.26531 0.38776
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Table 9. Forecasting performance: Southern California (residential relocation).

Forecasting Year Performance Measure
Traditional Alternative

Approach 1 Approach 2 Approach 3 Approach 4 Approach 5 Approach 6 Approach 7 Approach 8 Approach 9 Approach 10

2006

RMSE 0.00607 0.01216 0.00596 0.00567 0.00533 0.00556 0.00556 0.00556 0.00533 0.00659

MAE 0.00368 0.00724 0.00368 0.00394 0.00331 0.00328 0.00325 0.00323 0.00330 0.00388

MdAE 0.00110 0.00419 0.00197 0.00237 0.00163 0.00107 0.00198 0.00096 0.00164 0.00186

Theil’s U2 - 2.00262 0.98215 0.93371 0.87748 0.91640 0.91634 0.91504 0.87813 1.08598

PB - 0.18367 0.28571 0.40816 0.32653 0.51020 0.51020 0.57143 0.32653 0.36735

2007

RMSE 0.00880 0.01281 0.00889 0.01248 0.01058 0.01024 0.00832 0.01043 0.01063 0.01414

MAE 0.00546 0.00731 0.00589 0.00774 0.00655 0.00657 0.00516 0.00671 0.00655 0.00820

MdAE 0.00226 0.00228 0.00286 0.00401 0.00256 0.00182 0.00195 0.00206 0.00241 0.00349

Theil’s U2 - 1.45619 1.00977 1.41779 1.20263 1.16367 0.94584 1.18523 1.20789 1.60640

PB - 0.32653 0.28571 0.28571 0.20408 0.42857 0.46939 0.38776 0.24490 0.26531

2008

RMSE 0.01505 0.01532 0.01573 0.02305 0.02134 0.02087 0.01595 0.02119 0.02144 0.02307

MAE 0.00812 0.00828 0.00896 0.01395 0.01263 0.01227 0.00963 0.01263 0.01270 0.01390

MdAE 0.00220 0.00303 0.00168 0.00585 0.00329 0.00235 0.00207 0.00311 0.00355 0.00543

Theil’s U2 - 1.01762 1.04489 1.53161 1.41768 1.38644 1.05985 1.40804 1.42454 1.53264

PB - 0.48980 0.36735 0.18367 0.20408 0.30612 0.30612 0.26531 0.18367 0.12245

2009

RMSE 0.01589 0.01220 0.01897 0.02758 0.02688 0.02765 0.02159 0.02789 0.02706 0.02862

MAE 0.00920 0.00697 0.01108 0.01640 0.01501 0.01593 0.01223 0.01603 0.01515 0.01685

MdAE 0.00197 0.00206 0.00398 0.00760 0.00476 0.00560 0.00325 0.00364 0.00444 0.00632

Theil’s U2 - 0.76793 1.19437 1.73636 1.69230 1.74053 1.35905 1.75561 1.70335 1.80170

PB - 0.44898 0.22449 0.16327 0.18367 0.18367 0.26531 0.20408 0.20408 0.14286

2010

RMSE 0.01747 0.01185 0.02170 0.03150 0.03167 0.03392 0.02741 0.03409 0.03190 0.03409

MAE 0.00975 0.00679 0.01213 0.01845 0.01687 0.01876 0.01512 0.01852 0.01703 0.01908

MdAE 0.00234 0.00200 0.00341 0.00794 0.00308 0.00635 0.00229 0.00475 0.00369 0.00736

Theil’s U2 - 0.67848 1.24226 1.80337 1.81304 1.94150 1.56918 1.95160 1.82621 1.95128

PB - 0.59184 0.12245 0.14286 0.16327 0.12245 0.20408 0.26531 0.18367 0.08163
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Table 10. Forecasting performance: Southern California (commuting).

Forecasting Year Performance Measure
Traditional Alternative

Approach 1 Approach 2 Approach 3 Approach 4 Approach 5 Approach 6 Approach 7 Approach 8 Approach 9 Approach 10

2006

RMSE 0.00491 0.00918 0.00587 0.00669 0.00571 0.00461 0.00490 0.00475 0.00561 0.00491

MAE 0.00296 0.00525 0.00322 0.00357 0.00263 0.00266 0.00279 0.00269 0.00274 0.00313

MdAE 0.00167 0.00196 0.00159 0.00141 0.00149 0.00115 0.00189 0.00169 0.00130 0.00133

Theil’s U2 - 1.87136 1.19604 1.36289 1.16313 0.93887 0.99865 0.96877 1.14372 1.00059

PB - 0.24490 0.32653 0.32653 0.48980 0.46939 0.40816 0.44898 0.44898 0.42857

2007

RMSE 0.01119 0.01384 0.01099 0.01127 0.01156 0.00960 0.00980 0.00992 0.01104 0.01164

MAE 0.00658 0.00778 0.00659 0.00725 0.00612 0.00559 0.00608 0.00627 0.00604 0.00676

MdAE 0.00234 0.00379 0.00276 0.00392 0.00175 0.00211 0.00314 0.00360 0.00242 0.00285

Theil’s U2 - 1.23684 0.98271 1.00715 1.03290 0.85775 0.87625 0.88673 0.98682 1.04036

PB - 0.22449 0.30612 0.40816 0.53061 0.51020 0.40816 0.40816 0.44898 0.40816

2008

RMSE 0.01882 0.01985 0.01856 0.01961 0.02075 0.01685 0.01745 0.01756 0.01992 0.02071

MAE 0.01108 0.01126 0.01098 0.01300 0.01155 0.00985 0.01066 0.01079 0.01116 0.01250

MdAE 0.00455 0.00511 0.00513 0.00811 0.00558 0.00464 0.00591 0.00566 0.00374 0.00708

Theil’s U2 - 1.05438 0.98632 1.04187 1.10242 0.89519 0.92735 0.93292 1.05847 1.10030

PB - 0.34694 0.38776 0.34694 0.44898 0.53061 0.40816 0.40816 0.38776 0.40816

2009

RMSE 0.02049 0.02123 0.02023 0.02515 0.02419 0.01875 0.01993 0.01998 0.02288 0.02506

MAE 0.01214 0.01190 0.01190 0.01746 0.01454 0.01205 0.01322 0.01328 0.01380 0.01601

MdAE 0.00643 0.00587 0.00566 0.01204 0.00789 0.00612 0.00833 0.00706 0.00522 0.00922

Theil’s U2 - 1.03618 0.98744 1.22745 1.18061 0.91510 0.97267 0.97521 1.11684 1.22279

PB - 0.34694 0.42857 0.28571 0.40816 0.44898 0.34694 0.34694 0.36735 0.28571

2010

RMSE 0.01824 0.01941 0.01815 0.02609 0.02435 0.01661 0.01860 0.01845 0.02246 0.02220

MAE 0.01082 0.01087 0.01067 0.01810 0.01498 0.01057 0.01222 0.01213 0.01394 0.01441

MdAE 0.00463 0.00613 0.00457 0.00898 0.00654 0.00569 0.00593 0.00485 0.00432 0.00586

Theil’s U2 - 1.06393 0.99519 1.43044 1.33499 0.91085 1.01978 1.01133 1.23120 1.21703

PB - 0.32653 0.36735 0.26531 0.42857 0.51020 0.38776 0.38776 0.32653 0.32653
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The finding from the commuting models in the San Francisco region is not quite different
(see Table 6). Approach 7 shows the best performance in terms of RMSE for the forecasting year
2010, followed by approaches 8 and 6 (see Figure 4). An evaluation based on Theil’s U2 can yield the
same conclusion, while the traditional approaches 1, 2, and 3 can be considered better if the judgment
is made based on other error metrics, such as MAE and MdAE.
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Unlike in the San Francisco area, the performance of alternative approaches is not found to be
superior in the case of residential relocation modeling for the Sacramento and the Southern California
regions. For the relocation matrix forecasting for these two study regions, the first three traditional
approaches show a higher degree of forecasting accuracy. In other words, alternative approaches
are not better than the simple methods, using the most recent matrix or the historical average value,
in forecasting how residential relocation dynamics will change over time in these areas.

A close look at the error patterns reveals that the relative performance of alternative approaches
tends to get worse after 2008. This poor performance may indicate that the way in which commuting
influences residential relocation dynamics may have changed substantially over time. As mentioned
earlier, before the recession, the number of households who moved from job-rich Los Angeles and
Orange counties to the Inland Empire area (Riverside and San Bernardino counties) was much larger
than the magnitude of the reverse flow in Southern California. In later years, the gap has been reduced
significantly with changes in housing market conditions.

However, in our commuting matrix forecasting, alternative approaches seem to show their
competitiveness across all the study areas. In the case of the Sacramento area’s commuting (see Table 8),
approach 7 provides the lowest RMSE and Theil’s U2; and most alternative approaches (particularly
approaches 6, 7, and 8) perform better than both causative and bi-causative change matrix approaches
(i.e., approaches 4 and 5). For the Southern California area (see Table 10), approach 6 shows the best
long-term commuting forecasting performance based on RMSE, MAE, Theil’s U2, and PB. The best
approach in terms of MdAE (for Southern California with the forecasting year 2010) is approach 9,
another alternative method in which the association between residential relocation and commuting
is reflected.
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In summary, the alternative approaches seem to present some potential benefits as a framework
dealing with complex human flow dynamics, although their forecasting performance does not always
outpace that of traditional approaches. When used to forecast commuting patterns, the new, integrated
approaches generally produce more accurate forecasts than traditional ones, while the result is
somewhat sensitive to the evaluation metrics. They also perform better for residential relocation
modeling in the case of San Francisco. This finding may suggest that even the simple linear form
used in this study for comparison can contribute to capturing the connection between the two matrix
evolutions to some extent and to leading to a more complete analysis of the human flow dynamics in
metropolitan areas.

6. Summary and Discussion

Although the interconnection between residential relocation and commuting has been widely
acknowledged, traditional research and planning practices have often failed to reflect this connection
in the examination of human flow dynamics. The present study attempts to address this limitation
by exploring how the two dynamic patterns are interrelated in reality and presenting an integrated
framework in which the inter-linkages between residential relocation and commuting are taken into
account. This is accomplished through an experiment testing a wide range of matrix forecasting models
with the use of county-level migration and commuting data for three broadly defined metropolitan
regions in California.

Our experiment indicates that there are bi-directional connections between the two critical human
flows—i.e., household relocation can shape the commuting patterns within the metropolitan areas
and vice versa—and, more importantly, shows that the way they are associated with each other is not
always determinate or straightforward. While the San Francisco region exhibits positive, reciprocal
interrelationships between residential relocation and commuting, this pattern does not always hold
for other study areas. The variation detected in this study seems to imply that the traditional, simple
view of the relationship is not precise enough. Rather, it suggests that the nexus between residential
relocation and commuting can be influenced by many region-specific factors, such as the region’s
unique development stage, land use regulation, transportation systems, institutional settings, and
technological environments.

Even though the residential relocation–commuting relationship does vary by region, it appears
that joint forecasting can enable us to attain a higher accuracy and thus provide meaningful value
to urban planners and other policy makers. For instance, approach 6 showed great performance
in forecasting San Francisco’s residential relocation and Southern California’s commuting matrices,
suggesting that these human flow dynamics can be better analyzed when consideration is given to
their interactions even in a simple fashion. Furthermore, in the other cases, its performance was not
worse than that of many other approaches, although it should be acknowledged that the judgment
outcome inevitably depends on the target year and the evaluation metric used.

This, however, does not mean that joint forecasting approaches are always better than traditional
ones, and a one-size-fits-all method is not supported. In some cases, using historical averages
(i.e., approach 2) can better minimize forecasting errors than relatively more sophisticated methods.
Approaches that work well for some regions (or time periods) may not necessarily show the same level
of performance in other settings. This is particularly true when circumstances change dramatically.
In fact, some of the tested approaches showed a noticeable shift in their error trajectories around 2008
when the recession hit the study regions.

Nevertheless, it is hard to deny that joint forecasting has potential as a new means of analyzing
human flow dynamics, and it can be more useful when various region-specific (and/or time-specific)
factors are carefully incorporated into the framework. As acknowledged previously, a lack of data
on business relocation dynamics and other variables limits the development of a comprehensive
forecasting model in the present study. Future research may present a more advanced analytical
framework that can help us examine real-world human flow dynamics more effectively for sustainable
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land use and transportation planning. Such a framework can be used to better assess planning/policy
interventions and thus support more informed decision making by taking into account the changing
nature of commuting and residential relocation in urban spaces. Directions for future research may
also include the development of a more generalizable taxonomy of matrix forecasting models with
consideration of each region’s unique circumstances as well as the ongoing transformation of residential
relocation–commuting interactions and the application of joint forecasting to flow dynamics at a more
disaggregated geographical level.
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