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Abstract: In this study, five hydrological models of increasing complexity and 12 Potential
Evapotranspiration (PET) estimation methods of different data requirements were applied in order
to assess their effect on model performance, optimized parameters, and robustness. The models
were applied over a set of 10 catchments that are located in South Korea. The Shuffled Complex
Evolution-University of Arizona (SCE-UA) algorithm was implemented to calibrate the hydrological
models for each PET input while considering similar objective functions. The hydrological models’
performance was satisfactory for each PET input in the calibration and validation periods for all of
the tested catchments. The five hydrological models’ performance were found to be insensitive to
the 12 PET inputs because of the SCE-UA algorithm’s efficiency in optimizing model parameters.
However, the five hydrological models’ parameters in charge of transforming the PET to actual
evapotranspiration were sensitive and significantly affected by the PET complexity. The values
of the three statistical indicators also agreed with the computed model evaluation index values.
Similarly, identical behavioral similarities and Dimensionless Bias were observed in all of the tested
catchments. For the five hydrological models, lack of robustness and higher Dimensionless Bias
were seen for high and low flow as well as for the Hamon PET input. The results indicated that the
complexity of the hydrological models’ structure and the PET estimation methods did not necessarily
enhance model performance and robustness. The model performance and robustness were found to
be mainly dependent on extreme hydrological conditions, including high and low flow, rather than
complexity; the simplest hydrological model and PET estimation method could perform better if
reliable hydro-meteorological datasets are applied.

Keywords: hydrological model; potential evapotranspiration; complexity; parsimony

1. Introduction

Hydrological models are used to predict low flows, floods, and groundwater recharge, and to
develop safe and sustainable water resource strategies [1]. As a result, understanding the water
resources systems and reliable information play a vital role to achieve environmentally sound and
sustainable water management [2–4]. Moreover, Horne [5] addressed the importance of upgrading
water information systems (data series) to enhance sustainable water management. Similar findings
were made by Chung et al. [6] in a study of robust water resource vulnerability assessment in a
Korean watershed. However, the model output should be reliable and robust for applications in
an operational context [7]. Perrin et al. [7] defined the term robustness of a model as “the ability
to perform under as varied a set of hydrological conditions as possible”, and the same definition
is used hereafter. The benefits and limitations of using a parsimonious model over an inadequate
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complexity were discussed by Perrin et al. [7], and in a similar study, the authors addressed model
over-parameterization and parameter uncertainty problems of an inadequate complexity. The term
complexity hereafter refers to “the number of parameters optimized during the calibration phase” [7]
for the hydrological models and data requirements for the PET estimation methods. Identifying the
appropriate hydrological model structure and their corresponding climate input is crucial in reducing
hydrological model uncertainty [8]. Several hydrological models have been developed in the past few
decades with different assumptions on the rainfall-runoff process and data requirements. Due to the
complex nature of the hydrological systems, each hydrologist might not necessarily agree with the
rainfall-runoff process, but there exist general themes in common, which agree about the dominant
hydrological processes [9].

Although physically-based and spatially-distributed models have the ability to represent internal
physical processes, parameter estimation can be challenging due to a problem of sub-grid scale
processes [10–13]. In contrast, conceptual rainfall-runoff models are parsimonious and they perform
well when calibrated against measured runoff data [14–16]. Furthermore, several studies have shown
the applicability of conceptual rainfall-runoff models in different spatial and temporal scales using
basic climate datasets and simple Potential Evapotranspiration (PET) estimation methods [17–20].
Evapotranspiration is an essential component of the hydrological cycle, especially in semiarid and
arid regions [21], and it exceeds runoff in 77% of the global land surface [22]. It is often difficult to
decide which PET estimation method to use for a particular purpose because of the differences in
their approach and data requirements. However, understanding the dominant physical processes
and factors affecting PET estimation is crucial for rainfall-runoff modelling, catchment, and reservoir
management applications [23].

A study conducted to test the sensitivity of hydrologic models to random fluctuations and constant
biases in PET inputs leaving other inputs and parameters unaffected showed a significant error in
simulated peak flow and recession characteristics due to the introduced constant bias [24]. However,
other model sensitivity analyses studies that were conducted in diverse catchments indicated that
precipitation data errors produced more uncertainties on model output than PET data errors [25–28].
Although selecting the most relevant PET estimation methods for catchment modelling is challenging,
researchers have often recommended the Penman-Monteith method as the standard for reference
evaporation estimation, which is a physically-based combination equation that is able to describe
the evaporation processes [29,30]. A study conducted to analyze the sensitivity of the Hydrologiska
Byråns Vattenbalansavdelning (HBV) model using seven PET inputs showed that the Penman PET
input had a slightly better model performance than other PET estimation methods [31] and similar
results were also observed in another study [32].

Doubts on selecting complex or simple PET estimation methods for rainfall–runoff modelling were
raised by Morton [33]. Evans [34] showed the potential of using direct precipitation and temperature
input data instead of PET for better streamflow predictions after testing the Catchment Moisture
Deficit-Identification of unit Hydrographs and Component flows from Rainfall, Evaporation and
Streamflow data (CMD-IHACRES) model while considering four regional climate models (RCMs) in
the central United States. Furthermore, the capability of the Génie Rural à 4 paramètres Journalier
(GR4J) and the TOPography based hydrological MODEL (TOPMODEL) to overcome systematic errors
was presented by testing a sample of 62 catchments in the central mountainous region of France [17].
Andréassian et al. [17] applied a simple and a more accurate PET input obtained from regionalization
and the result showed similar model performance due to the ability of the model parameters to adapt
to various PET inputs during the calibration. A similar finding was obtained by applying a similar
model using 27 PET inputs for a sample of 308 catchments that are located in France, the United States,
and Australia [35,36]. Furthermore, two additional lumped rainfall-runoff were tested using similar
datasets and catchments [19,20] and Oudin et al. [20] suggested the use of temperature-based PET
estimation methods after considering its simplicity and efficiency.
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The Nash and Sutcliffe [37] index value is commonly used in evaluating hydrological model
performance. However, the Nash-Sutcliffe Efficiency (NSE) has been criticized in recent studies due to
its oversensitivity to extreme values [38,39]. In addition, the minor differences in the NSE index value
makes it difficult to compare hydrological model structures of different complexity. Moriasi et al. [40]
recommended the use of the NSE, and the ratio of the root mean square error to the standard deviation
of measured data (RSR) to evaluate hydrological model performances for streamflow simulation.
The logarithm transformed NSE (LogNSE) performance measure is often used in order to put more
weight on lowflow simulation. Moussa and Chahinian [39] advised considering various objective
functions besides the widely used NSE efficiency measure. Gupta et al. [41] proposed the Kling-Gupta
Efficiency (KGE), which considered different components, including correlation, variance, and mean
for evaluating hydrological models. Jung et al. [16] also addressed the benefit of considering a
multiobjective function for calibrating a hydrological model. In this study, four objective functions
were considered: the NSE, Log NSE, KGE, and RSR (which is related the Root Mean Square Error
(RMSE)) to calibrate five hydrologic models for each PET input.

Clark et al. [42] presented the challenges of identifying the most appropriate model’s structure
in the discipline of hydrology and developed the Framework for Understanding Structural Errors
(FUSE). The Akaike Information Criterion (AIC) proposed by Akaike [43] and the Bayesian Information
Criterion (BIC) suggested by Schwarz [44] are commonly applied model comparison criteria used to
select the most appropriate model structure. The Adjusted R-square (Ra2) statistical indicator is also
often used as an alternative criterion for comparing different model structures [39]. The AIC basically
assumes the Kullback-Leibler’s information and the BIC uses Bayesian approaches to estimate the
variations between the observed and simulated models. The AIC, BIC, and Ra2 statistical indicators
are able to balance performance against model complexity (the number of parameters). After the
computation of the statistical indicators, the model with a minimum value of AIC, BIC, and the
maximum value of Ra2 can be adopted for practical application [45,46].

Robustness is an essential quality of any model, but hydrological models often tend to perform
differently between calibration and validation periods [7]. Other studies have also argued the
importance of minimizing the water balance errors in the model calibration process to enhance
hydrological model robustness [47,48]. Coron et al. [48] suggested comparing the Dimensionless Bias
(the ratio of 10 year mean simulated and observed flows) to investigate the robustness and tested the
method while using three hydrological models of increasing complexity over 20 French catchments.
The Dimensionless Bias must be one for a perfectly robust model. In this study, three statistical
indicators (AIC, BIC, and Ra2) were used to select the most appropriate model structure among the
applied five hydrological models of increasing complexity and 12 PET estimation methods. Similarly,
the model robustness was evaluated by comparing the Dimensionless Bias of five hydrological models
for 12 PET inputs.

The main objective of this study was to assess the effects of five hydrological models of increasing
complexity and 12 PET estimation methods of different data requirements on model performance,
optimized parameters, and robustness. Specifically, three research questions were addressed: (i) does
the complexity of hydrological models enhance model performance? (ii); does the complexity of PET
estimation methods have analogous effects on optimized parameters?; and, (iii) does increasing the
complexity of PET estimation methods and hydrological models enhance robustness? We applied
five hydrological models: GR4J, Simplified HYDROLOG (SIMHYD), Catchment Hydrological Cycle
Assessment Tool (CAT), TANK, and Sacramento Soil Moisture Accounting (SAC-SMA) models that
considered the combined, radiation, and temperature-based PET estimation methods in a sample of
10 catchments that are located in South Korea (8.5–6648 km2). The five hydrological models and 12
PET estimation methods had different levels of complexity. The GR4J (four parameters), SIMHYD
(seven parameters), CAT (eight parameters), TANK (12 parameters), and SAC-SMA (16 parameters)
models were selected when considering their wide applications in several basins. Similarly, the 12 PET
estimation methods required different climatic variables including mean Temperature (T), Wind Speed
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(u), Relative Humidity (RH), and Solar Radiation (RS) data depending on the level of complexity. The
available hydro-meteorological data obtained from 10 catchments were used to set up and calibrate
five hydrological models for 12 PET inputs. The Thiessen polygon method was used for estimating
the mean areal precipitation. There exist several kinds of optimization methods for calibrating
hydrological models and the Shuffled Complex Evolution-University of Arizona (SCE-UA) algorithm
is often adopted by researchers due to its broad applications, efficiency, and robustness [49–52]. In this
study, the SCE-UA algorithm was used to optimize the hydrological model parameters for each PET
input by setting a similar objective function: NSE, LogNSE, KGE, and RSR. The detailed description of
the 10 catchments hydrological characteristics, the dataset used, the methodology adopted, the result,
and discussions are presented in the next sections.

2. Materials and Methods

2.1. Study Area

In this study, 10 catchments were selected, which are based on the availability of continuous
streamflow data from different climate zones in South Korea. The selected catchments represent the
major hydrological characteristics of the Korean Peninsula with fewer anthropogenic effects on flow
over the modelling period. The catchments are located in unregulated and mountainous regions and
the catchment areas vary from 8.5 to 6648 km2. The main hydrological characteristics of the catchments
are concentrated in summer (June to September), contributing to 70% of the precipitation that leads to
peak flow. However, the snowmelt effect is not significant in these regions due to the limited amount
of winter precipitation (December to February). The location of the 10 catchments, major rivers, and
streamflow gauging stations are shown in Figure 1.
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2.2. Data

The dataset that is used in this study consisted of daily hydro-meteorological measurements with
no missing records over the application period (2001–2012) for nine gauged catchments. However,
for the Kyeongan catchment, the available observed streamflow data (1999–2008) were used. The
observed streamflow data at the outlet of the catchment and the areal precipitation data generated
using the Thiessen polygon method were acquired from the Water Resources Management Information
System operated by the Ministry of Land, Infrastructure, and Transport of the Korean Government.
The climate data used for estimating PET were provided by the Korea Meteorological Administration.
The hydro-meteorological data used for the Seolmacheon experimental catchment are managed by the
Korea Institute of Civil Engineering and Building Technology (KICT). The climate data obtained from
each station to estimate PET include daily T (◦C), RH (%), u (m/s), and RS (MJ/m2 d) estimated from
the daily sunshine hours (n) while using the Ångström-Prescott equation [53]. The major hydrological
characteristics and hydro-climate conditions of the catchments are summarized in Table 1. The mean
annual PET was estimated using the Penman-Monteith method.

Table 1. Hydrological characteristics of the 10 gauged catchments.

No 1 Catchment
Area
(km2)

Mean Annual
T (◦C)

Mean Annual
P (mm)

Mean Annual
PET (mm)

Mean Annual
Q (mm) PET/P Q/P

1 Seolmacheon 8.50 11.19 1542.30 1226.65 1064.40 0.80 0.69
2 Boryeong 163.70 12.77 1425.43 1012.27 882.52 0.71 0.62
3 Kyeongan 262.40 12.76 1400.28 1326.09 937.12 0.95 0.67
4 Seomjingang 763 11.91 1466.98 815.19 883.34 0.56 0.60
5 Yongdam 930 11.11 1477.57 883.27 904.69 0.60 0.61
6 Juam 1010 14.61 1595.86 1017.39 776.18 0.64 0.49
7 Imha 1361 12.52 1073.55 940.98 575.06 0.88 0.54
8 Andong 1584 11.82 1302.23 1032.93 728.20 0.79 0.56
9 Soyanggang 2703 11.78 1394.90 840.89 915.85 0.60 0.66
10 Chungju 6648 12.10 1406.93 922.96 930.96 0.66 0.66
1 The analysis period (2002–2012) was the same for all catchments except Kyeongan (2000–2008). Mean Temperature
(T), Potential Evapotranspiration (PET), Precipitation (P), and Streamflow (Q).

The input data for the physically based hydrological model (CAT) were extracted from land
use and soil data provided by the Korea National Geography Institute, Korea Rural Development
Administration, and the Ministry of Environment. More than 60% of the ten tested catchments are
covered by forest and the Kyeongan catchment is the only urbanized area (15%) being covered with
minimum forest (60%) and agriculture (18%) areas. The dominant soil texture of the ten catchments
are sandy loam, clay loam, silty clay, and loamy. The remaining areas are covered by different kinds of
soil types. The dominant land use and the soil texture of the 10 catchments are shown in Figure 2.

2.3. PET Estimation Methods

Long-term estimation of Actual Evapotranspiration (AET) requires sophisticated techniques
or eddy flux instrumentation, which is expensive, and it is more challenging than quantifying the
magnitude of PET and other hydro-meteorological parameters [23,53]. Hence, hydrologists interested
in applying conceptual rainfall-runoff models often give more emphasis to PET estimation. There are
several PET estimation methods with various development philosophies and climate data needs. Xu
and Singh [54] grouped the PET estimation methods into five categories: (i) combination, (ii) water
budget, (iii) mass-transfer, (iv) radiation, and (v) temperature-based methods. In this study, 12 PET
estimation methods with different levels of complexity were applied as inputs to five hydrological
models. Guo et al.’s [23] R “evapotranspiration” package was used to estimate the input values of
12 PET over the application periods. The Blaney Criddle, Chapman Australian, Granger Gray, Matt
Shuttleworth, Penman, Penman-Monteith, Priestley Taylor, and Turc estimation method are the most
complex equation, which requires more data and the Hargreaves Samani method is the only equation
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that requires temperature data. The remaining three PET estimation methods (Abtew, Hamon, and
Makkink) require at least two climate data.Sustainability 2018, 10, x FOR PEER REVIEW  6 of 33 
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The PET methods selected in this study were only intended to meet the research objectives and
the detailed evaporation process, theory, history, and applications of the PET estimation methods
have been intensively discussed in several hydrological studies [53–56]. The PET estimation methods
used, including the equation and climate data required, are summarized in Table A1 (Appendix A).
The daily PET values of the nine catchments (Seolmacheon, Boryeong, Seomjingang, Yongdam, Juam,
Imha, Andong, Soyanggang, and Chungju) were estimated using 12 year climate data (2001–2012) and
for the Kyeongan Catchment, 11 year climate data (1998–2008) were used. The Hamon PET estimation
method underestimated the daily PET values in all catchments. However, the estimated mean annual
PET was identical for the remaining methods. The daily PET values also showed identical patterns
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and the values were less than 10 mm/day, except for a few outlier values. The estimated daily PET
input values for the 10 catchments are presented in Figure 3.
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2.4. Overview of Hydrological Model Structure

In this study, the GR4J, SIMHYD, CAT, TANK, and SAC-SMA models of increasing complexity
with identical input data, including daily precipitation (P) and 12 PET inputs were applied over
10 Korean catchments to assess their effect on model performance, robustness, and optimized
parameters. The detailed description of the five hydrological models and the parameters used for
calibration are presented in Figures A1–A5 (Appendix B). The RS MINERVE tool that was developed
at the Research Center On Alpine Environment (CREALP) was used to set up the SAC-SMA model;
currently, the RS MINERVE platform is providing flood predictions for the Rhone River Basin located
in Switzerland [57]. The Catchment Hydrological Cycle Assessment Tool (CAT) Version 3 software,
as developed at KICT, was used to set up the GR4J, SIMHYD, CAT, and TANK models [51–53].

2.4.1. GR4J

The GR4J model is a conceptual rainfall-runoff model with a parsimonious structure with only
four parameters [15]. The rainfall-runoff process starts by separating the rainfall depth and PET to net
rainfall or net evapotranspiration capacity depending on the interception storage capacity level. After
the separation, the production store capacity, the routing reservoir, lag time, and the groundwater
exchange amounts are computed based on the governing equations. Evapotranspiration in the GR4J
model occurs only from the production store. The percolated water from the production store is
transformed into two unit hydrographs. The routing store uses the input discharge from one of the
unit hydrographs, after that, the routing reservoir is emptied by a routing discharge. The groundwater
exchange only occurs from the routing reservoir. The model has been tested intensively in several
basins and climatic conditions, moreover, there exists several hydrological studies [7,58–62]. The
feasible ranges of the four parameters used to calibrate the model for each PET input in the tested
catchments were adopted from previous works [15,58,63]. The detailed description of the GR4J model
and the parameters that were used for calibration is presented in Figure A1 (Appendix B).
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2.4.2. SIMHYD

The SIMHYD model is a daily conceptual rainfall-runoff model adopted from a similar model
developed by Porter and McMahon [64]. The SIMHYD model used in this study had seven parameters
to simulate the rainfall-runoff response for each PET input [65,66]. The rainfall-runoff conceptualization
considers the runoff from impervious areas and infiltration excess modelled as a nonlinear function
of soil moisture. The remaining two-process, interflow and base flow from the groundwater store,
are modelled when considering linear relationships. In the SIMHYD model, daily evaporation starts
from the interception store depending on the availability of water. The model was tested in Australia,
the United States, and France for different applications [66–70]. Furthermore, the Australia National
Land and Water Resources Audit regularly uses the model to estimate runoff [71]. Chiew et al. [65]
provided a detailed technical description of the rainfall-runoff process. The lower and upper limits of
all the parameters used to calibrate the model for 12 different PET inputs were selected from previous
work [65,67]. The detailed description of the SIMHYD model and the parameters used for calibration
is shown in Figure A2 (Appendix B).

2.4.3. CAT

The CAT model is a physically based semi-distributed hydrological model developed to assess
the water cycle and the impacts of impervious cover change on storm runoff [72–74]. The model is
capable of simulating the hydrological components, including AET, soil moisture content, base flow,
and runoff from a daily to a sub-daily time step. The main physical parameters that are required for
initial simulation are slope, soil types, land use, aquifer, and river information. The conceptualization
and development of the basic model were based on the unconfined aquifer and single soil layer
assumptions. The model first separates the incoming precipitation that falls on impervious, pervious,
and paddy areas. Subsequently, the three areas transform the precipitation to surface flow, infiltration,
and evapotranspiration based on the governing equations. The infiltration process can be simulated
using Rainfall Excess, Horton, and Green-Ampt models. The groundwater movement computation
is based on the Darcy law. Furthermore, the Muskingum, Muskingum-Cunge, and Kinematic wave
methods are also included for channel routing. The evapotranspiration in the CAT model depends on
the land use and it is composed of plant transpiration as well as evaporation from the surface and soil
layer. In this study, the infiltration process is modeled using the Green-Ampt method [75] and lumped
hydrological models are considered to represent the rainfall-runoff process. The model has been
applied to assess the impacts of urbanization on storm runoff in the north of Swindon town, UK [73].
Recently, Jang et al. [76] applied the CAT model to assess the impact of climate change impact on the
hydrological cycle and water management practices while considering A1B and B1 scenarios. The
model has also been applied to predict reservoir water levels, to analyze the water cycle, and for flood
event simulations [77–79]. The main hydrological processes of the CAT model and the parameters that
are used for calibration are presented in Figure A3 (Appendix B).

2.4.4. TANK

The TANK model is a conceptual rainfall-runoff model that was originally developed while
considering the hydrological conditions of Japan. The TANK model has a series of four tanks arranged
in order with 12 parameters [80]. The soil moisture storage tanks transform the catchment rainfall to
streamflow by collecting water from each storage tank [81]. The rainfall enters the first tank, which
drains free water at two outlets on the side (surface discharge) and the infiltrated water from soil
moisture drains downward to the bottom outlet. The infiltrated water from the first tank enters the
second tank; the second tank drains the free water to the side outlet (intermediate discharge) and the
percolated water drains downward to the bottom outlet to enter the third tank. Similarly, the third tank
drains the sub-base discharge to the side outlet and the deep percolated water drains the remaining
water to the fourth tank. The lowermost tank drains the water at one side of the tank outlet (base
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discharge) and it often contributes a small portion of the total outflow. However, the water that drains
from the three side tanks contributes a considerable amount of total outflow. Evapotranspiration is
able to occur from the four tanks. Sugawara [82] discussed the rainfall-runoff and calibration process
in detail. The model has been widely applied in many Asian countries and other basins for various
applications [83–86]. The twelve feasible parameter ranges used to calibrate the TANK model were
adopted from earlier works [82,87]. The TANK model description and the parameters that were used
for calibration are presented in Figure A4 (Appendix B).

2.4.5. SAC-SMA

The SAC-SMA model is a soil moisture accounting model with 16 parameters [88] and the most
complex model when compared to the other four models that are applied in this study. The SAC-SMA
model was originally developed at the California-Nevada River Forecast Center and the U.S. National
Weather Service River Forecast System uses it as the main model for forecasting flood events [89].
The model transforms the precipitation that falls on impervious and pervious areas to direct runoff.
The remaining water infiltrated from the previous areas to the first soil layer will be changed to
tension and free water. The free water drains water to the river through surface runoff or interflow
and the remaining water will percolate to the second soil layer. The second soil layer contains
three zones to store water: tension water, primary, and supplementary free water. The primary as
well as supplementary free water transforms the percolated water to the total river flow via the
base flow and subsurface discharge. The surface water and first and second zone tension water
stores are able to contribute to total evapotranspiration. Burnash [88] presented a more detailed
description of the SAC-SMA model. The SAC-SMA model has also been tested in a wide range of
basins and climatic conditions [14,90–93]. In this study, 13 SAC-SMA model parameters were selected
for calibration [89,94,95] and the default values were used for the remaining three parameters across
all of the catchments. The feasible parameter ranges for calibration were adopted from a previous
study [96]. The detailed description of the SAC-SMA model and the feasible parameters ranges used
for calibration are presented in Figure A5 (Appendix B).

2.5. Model Calibration and Validation

Hydrological model calibration can be done manually or automatically while using an
optimization algorithm to enhance streamflow simulation and model robustness. There exist different
kinds of global optimization algorithms, including the Monte Carlo, Genetic Algorithm, Generalized
Likelihood Uncertainty Estimation, Artificial Neural Network, and SCE-UA, which have been used to
calibrate hydrological models [97,98]. Similarly, the Latin Hypercube and Rosenbrock algorithms have
also been used to calibrate hydrological models [99,100]. Each optimization algorithm has their own
benefits and limitations. The SCE-UA global optimization algorithm considers the deterministic and
probabilistic approaches. Moreover, the complex shuffling, the systematic evolution of complex points,
and competitive evolution makes the algorithm efficient, effective, and robust [49].

In this study, the SCE-UA optimization algorithm of Duan et al. [49] was applied while considering
its broad applications, flexibility, robustness, and efficiency [50–52,101]. The SCE-UA algorithm was
applied to calibrate five hydrological models for 12 different PET inputs when considering four
objective functions: NSE, LogNSE, KGE, and RSR. The NSE, LogNSE, KGE, and RSR objective
functions have been recommended for evaluating hydrological model performance for streamflow
simulation in recent studies [40,41]. The five hydrological models were calibrated while using seven
years of observed streamflow data (2002–2008) for nine catchments and the remaining four year data
were used for validation (2009–2012). However, the Kyeongan catchment calibration was carried out
using the available observed streamflow data (2000–2005) and the remaining data (2006–2008) were
used for validation. A one-year warm-up period was considered in all of the tested catchments to
minimize the errors at the beginning of the calibration period for all models and their corresponding
PET input values. In addition, the five hydrological model performance percentage variations were
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compared with other PET inputs considering the Penman-Monteith PET input NSE index values as a
benchmark. The four objective functions, NSE, LogNSE, KGE, and RSR, were calculated, as follows:

NSE = 1− ∑ (Qobs −Qsim)2

∑ (Qobs −Qmean)
2 (1)

LogNSE = 1− ∑ (logQobs − logQsim)2

∑ (logQobs − logQmean)
2 (2)

KGE = 1−

√
(R2[Qobs, Qsim]− 1)2 + (

SD[Qsim]

SD[Qobs]
− 1)2 + (

M[Qsim]

M[Qobs]
− 1)2 (3)

RSR =
RMSE

SD[Qobs]
=

√
∑ (Qobs −Qsim)2√

∑ (Qobs −Qmean)
2

(4)

where Qobs, Qsim, and Qmean are the observed, simulated, and mean observed streamflow, respectively.
R2, SD, and M are the Pearson Correlation Coefficient, standard deviation, and mean, respectively.

2.6. Model Complexity Comparison Criteria and Robustness

2.6.1. Model Complexity Comparison Criteria

The five hydrological models were further evaluated by comparing three statistical indicators:
AIC, BIC, and Ra2 for each PET input. The AIC, BIC, and Ra2 are the statistical indicators commonly
used to compare a model structure of different complexity in various subject areas. The three statistical
indicators’ model comparison criteria are able to penalize the number of estimated parameters
depending on the model complexity. The model comparison criteria have been applied for frequency
analysis of hydrological extremes [46,102] and for predictions of groundwater models [103]. Other
studies have also applied the criteria to compare conceptual rainfall-runoff models with artificial
neural network models [45,104,105]. Akaike [43] proposed the AIC for the first time based on
Kullback-Leibler’s information as the discrepancies between the observed and simulated models.
Similarly, Schwarz [44] proposed a more parsimonious method, called the BIC, which considers the
Bayesian approaches. The Adjusted R-square Ra2 has also been used as an alternative method to
compare model structures of different complexity [45]. The AIC, BIC, and Ra2 statistical indicators
were calculated for the five hydrological models of increasing complexity for each PET input. The
model with a minimum AIC, BIC, and maximum Ra2 was considered to be the better performing and
with greater parsimony. In this study, similar model comparison criteria were adopted to evaluate the
five hydrological models for each PET input. The three statistical indicators, AIC, BIC, and Ra2 were
calculated, as follows:

AIC = nln(RMSE) + 2p (5)

BIC = nln(RMSE) + pln(n) (6)

Ra
2 = R2 −

(
p− 1
n− p

)
(1− R2) (7)

where n, RMSE, p, and R2 are the number of data points, root mean squared error of the model output,
the number of model parameters, and Pearson Correlation Coefficient, respectively.
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2.6.2. Model Robustness

Model robustness plays an important role in practical applications to provide reliable results. [106].
Although robustness is an essential quality of any model, hydrological models often tend to perform
differently between the calibration and validation periods [7]. Moreover, the parameters of the
conceptual rainfall-runoff model often face difficulties in appropriately reproducing the water
balances [48]. The importance of minimizing the water balance errors in the model calibration process
to enhance hydrological model robustness has been discussed in recent studies [47,48]. The KGE
model evaluation criteria consider the various aspects of model behavior, including the water balance
error, accuracy, and robustness. Furthermore, Coron et al. [48] investigated the robustness of three
rainfall-runoff models regarding water balance simulation and suggested comparing the Dimensionless
Bias (the ratio of 10 year mean simulated and observed flows) to evaluate the robustness of three
hydrological models of increasing complexity over 20 French catchments. In this study, a similar
approach that was suggested by Coron et al. [48] was adopted to evaluate the five hydrological models’
robustness and behavioral similarities for each PET input. The Dimensionless Bias for a robust model
is expected to be one. The Dimensionless Bias is calculated, as follows:

Dimensionless Bias =

→
Qsim

→
Qobs

(8)

where →
Qsim

and →
Qobs

are the 10 year mean simulated and observed flows, respectively.

3. Results

3.1. Calibration and Validation

The model evaluation guidelines of Moriasi et al. [40] recommended a NSE > 0.50 and RSR < 0.70
as satisfactory performance for streamflow simulation. The performance of the GR4J, SIMHYD, CAT,
TANK, and SAC-SMA models for the 12 PET inputs were found to be satisfactory for all of the tested
catchments in the calibration periods, as shown in Figure 4. Similarly, the performances of the five
hydrological models for each PET input fell within satisfactory criteria for all the tested catchments in
the validation periods (Table A2 in Appendix A), as shown in Figures 5 and A6 (Appendix B). The
Hamon PET estimation method relatively underestimated the daily PET values in all catchments
(Figure 3), and the response of the five hydrological models also clearly showed the minimum
performance, except for the Seolmacheon catchment. Figure 4 shows the model performances (NSE,
LogNSE, RSR, and KGE) in the calibration periods for the 12 PET input values.

The comparison of Figures 4 and 5 clearly shows the existence of minor model performance
variation between the calibration and validation periods. The variation depends on the hydrological
model structures, PET inputs, hydrological characteristics, and climatic conditions of the 10 tested
catchments. In the case of NSE and RSR, for example, the variation ranged from 0.1 to 0.2. However,
in the case of KGE, the variation ranged from 0.1 to 0.35 in the calibration as well as validation periods.
The variation of the NSE, LogNSE, RSR, and KGE index values indicates the existence of model stability
or the robustness difference in the calibration and validation periods (Figures 4 and 5). The GR4J,
SIMHYD, CAT, TANK, and SAC-SMA hydrological model performances for the 12 PET inputs for
the 10 tested catchments are shown in Figures 4 and 5. Figure 4 shows the model performances (NSE,
LogNSE, RSR, and KGE) in the validation periods for the 12 PET input values.
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Figure 4. The performances of the five hydrological models for the 12 Potential Evapotranspiration
(PET) input values in the calibration periods. (a) Nash-Sutcliffe Efficiency (NSE); (b) Logarithmic
Nash-Sutcliffe Efficiency (LogNSE); (c) Ratio of the root mean square error to the standard deviation of
measured data (RSR); and, (d) Kling-Gupta Efficiency (KGE) corresponding to the catchment No. 1–10.
The vertical axis corresponds to the model performances of the 12 PET inputs.

The five hydrological model performance percentage variations, calculated while considering the
Penman-Monteith PET input NSE index values as benchmark, showed a maximum drop of 17% in the
Soyanggang catchment when the SIMHYD model was applied using the Penman PET input. However,
a maximum rise of 11% was observed in the Boryang catchment when the SAC-SMA model was
applied using the Makkink PET input in the calibration period (Figure A6 in Appendix B). Similarly,
the five hydrological model performance percentage variations computed when considering identical
assumption showed a maximum drop of 19% in the Soyanggang catchment when the SIMHYD model
was applied while using the Penman PET input and a maximum rise of 6.5% was observed in the
Chungju catchment when the SAC-SMA model was applied using the Granger Gray PET input in
the validation period, as shown in Figure 6. The five hydrological model performance percentage
variations calculated when considering the Penman-Monteith PET input NSE index values as a
benchmark for four selected catchments in the validation period are presented in Figure 6.
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Figure 5. The performances of the five hydrological models for the 12 Potential Evapotranspiration
(PET) input values in the validation periods. (a) Nash-Sutcliffe Efficiency (NSE); (b) Logarithmic
Nash-Sutcliffe Efficiency (LogNSE); (c) Ratio of the root mean square error to the standard deviation of
measured data (RSR); and, (d) Kling-Gupta Efficiency (KGE) corresponding to the catchment No. 1–10.
The vertical axis corresponds to the model performances of the 12 PET inputs.

The GR4J, CAT, and SAC-SMA hydrological models’ NSE, RSR, KGE, and R2 assessment criterion
showed relatively higher values when compared to the SIMHYD and TANK models in most of the
tested catchments in the calibration as well as the validation periods. However, it would be naive to
identify one best hydrological model because of the minor differences in the index values (NSE < 0.2,
RSR < 0.15, KGE < 0.2, and R2 < 0.15) in most of the tested catchments, except for the Imha and
Andong catchments. The five hydrological models’ performance was observed to be higher and more
insensitive for the Seolmacheon experimental catchment for the 12 PET inputs in the calibration and
validation periods (Figures 4 and 5). The scatterplot of the five hydrological models’ performance
simulated over the application period (2002–2012) for four selected catchments when considering the
Penman-Monteith PET input also showed a small variation (R2 < 0.15), as presented in Figure 7.
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3.2. Effect of Model Structure Complexity on Model Performance

The GR4J, CAT, and SAC-SMA models showed a consistent and better model performance in all
of the tested catchments both in the calibration and validation periods. The GR4J, CAT, and SAC-SMA
models’ performance response to the 12 PET inputs showed a similar pattern and magnitude of
NSE, LogNSE, RSR, and KGE, as shown in Figures 4 and 5. The SIMHYD model performed less
when compared to the GR4J, CAT, TANK, and SAC-SMA models in most of the tested catchments.
However, for the SIMHYD model, consistent and comparable performances were observed for the
Kyeongan, Seomjingang, and Andong catchments in the calibration periods. Similar responses were
also observed for the Seolmacheon, Seomjingang, and Chungju catchments in the validation periods.
The TANK model performed relatively better than the SIMHYD model, except for the Kyeongan,
Seomjingang, and Andong catchments in the calibration periods, and the Seolmacheon, Seomjingang,
and Chungju catchments in the validation periods. The GR4J, SIMHYD, CAT, TANK, and SAC-SMA
models responses to 12 different PET inputs showed a minor difference (NSE < 0.2) in terms of the
NSE index value in all of the tested catchments. Although the SIMHYD model response to 12 PET
inputs showed a minor difference (NSE < 0.2), unstable patterns of NSE were observed, except in the
Seolmacheon experimental catchment. The five hydrological models’ performance for four selected
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catchments simulated over the application periods (2002–2012) for the 12 PET inputs are shown in
Figure 8.Sustainability 2018, 10, x FOR PEER REVIEW  15 of 33 
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3.3. Effect of PET Complexity on Model Parameters

The GR4J model, the production store (X1), water exchange coefficient (X2), and routing store
(X3) parameters were used to adjust the overestimated and underestimated PET values for a better
streamflow simulation. The unit hydrograph time base parameter (X4) was only responsible for fixing
the lag time and it was insensitive to the 12 different PET input values. However, the three model
parameters, X1, X2, and X3 were found to be sensitive to 12 different PET input values, as shown
in Figure 9a. The SIMHYD model, the interception store capacity (INSE), maximum infiltration loss
(COEFF), and soil moisture store capacity (SMSC) parameters were observed to be sensitive to 12
different PET input values, but the remaining parameters were relatively stable as shown in Figure 9b.
The CAT model, wetting front soil suction head (PSI) parameter was sensitive to the 12 different PET
inputs values, as shown in Figure 9c, and the remaining parameters were fairly stable in all the tested
catchments. The response of the TANK model parameters to the 12 different PET inputs was clearly
captured by the vertically arranged water level of the series of tanks, including the height of the runoff
outlets of the first (HA1, HA2), second (HB), and third (HC) tanks, as shown in Figure 9d. Similarly, the
SAC-SMA model, the upper layer tension water capacity (UZTWM), upper layer free water capacity
(UZFWM), lower layer tension water capacity (LZTWM), lower layer supplemental free water capacity
(LZFSM), and lower layer primary free water capacity (LZFPM), and the ratio of maximum and
minimum percolation rates (ZPERC) parameters were significantly affected by the 12 PET input values,
as shown in Figure 9e. The remaining SAC-SMA model parameters were quite stable in all of the
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tested catchments. The GR4J, SIMHYD, CAT, TANK, and SAC-SMA models’ parameters showed a
similar response to the 12 PET input in all the tested catchments and the calibrated parameters were
also found to be within the recommended ranges. The five hydrological models’ parameters response
to the 12 PET input for the Boryeong catchment is shown in Figure 9.
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catchment. (a) Génie Rural à 4 paramètres Journalier (GR4J); (b) Simplified Hydrolog (SIMHYD);
(c) Catchment Hydrological Cycle Assessment Tool (CAT); (d) TANK, and (e) Sacramento Soil Moisture
Accounting (SAC-SMA). The letters correspond to the five hydrological models’ parameters.

3.4. Effect of PET and Model Structure Complexity on Model Robustness

The three statistical indicators, AIC, BIC, and Ra2 values, calculated to compare a model structure
also showed similar results with the model performance evaluation index values (NSE, LogNSE, RSR,
and KGE). The GR4J, CAT, and SAC-SMA models’ statistical indicator showed a minimum AIC, BIC,
and maximum Ra2 value in all of the tested catchments, both in the calibration and validation periods.
The minimum AIC, BIC, and maximum Ra2 value showed that the GR4J, CAT, and SAC-SMA had
better model performance for simulating streamflow (Figure 10). However, the SIMHYD and TANK
models showed a higher AIC, BIC, and lower Ra2 for most of the tested catchments when compared
with the GR4J, CAT, and SAC-SMA models’ statistical indicator values. Moreover, the effect of the
12 PET complexity was more captured by the three statistical indicators, and higher AIC, BIC, and
lower Ra2 values were also observed for the Hamon PET input values, as shown in Figure 10. Similar
responses were also observed in all of the tested catchments and Figure 10 shows the AIC, BIC, and
Ra2 values of four selected catchments for the 12 PET input values in the validation periods.
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The PET and model structure complexity effect on model robustness were significantly affected
by the low flow and the simulated streamflow was found to be greater than the observed, except the
SIMHYD and TANK models. The Dimensionless Bias result also showed a higher water balance error,
particularly for extreme hydrological conditions (high and low flow). Similarly, the five hydrological
models overestimated the streamflow for the Hamon PET input value and a higher water balance error
was observed as shown in Figure 11. The GR4J, CAT, and SAC-SMA models’ behavioral similarities
with a relatively lower water balance error were observed (Figure 11) and similar responses were also
seen in all of the tested catchments. The SIMHYD and TANK models showed a relatively higher water
balance error and a lack of robustness was noticed for normal hydrological conditions, as shown in
Figure 10. For a perfectly robust model, flat curves (Dimensionless Bias≈ 1) and a minor water balance
error were expected, but the results that were obtained showed a lack of robustness particularly for
average hydrological conditions besides Hamon lack of robustness is observed for low flow conditions.
The five hydrological models’ Dimensionless Bias and behavioral similarities to the 12 PET inputs in
the Boryeong catchment are shown in Figure 11 and similar responses were also observed in all of the
tested catchments.
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4. Discussion

Most studies that were conducted in the subject area showed interesting results. The advantages of
applying simple models rather than a complex one were first suggested by testing a topography-based
model in a small forested catchment in the United States [107]. A similar finding was also obtained
when three event-based rainfall-runoff models were applied [108]. Furthermore, Beven [109] suggested
the use of three to five parameters to characterize the most dominant physical processes. Recent studies
have also shown that complexity does not necessarily enhance the robustness of hydrological models;
rather, data quality and hydrological characteristics have more influence on the robustness [7,110,111].
The benefit of reducing the water balance error to enhance conceptual rainfall-runoff models robustness
has also been addressed briefly in recent studies [47,48,106].

The GR4J, SIMHYD, CAT, TANK, and SAC-SMA models have increasing levels of complexity.
Of these models, the GR4J have the least parameters (four parameters), SIMHYD (seven parameters),
CAT (eight parameters), and TANK (12 parameters) are moderate, and the SAC-SMA have several
parameters (16 parameters). Similarly, for the 12 PET estimation methods, the data requirements also
varied from simple (T) to complex (T, RH, RS, n, and u). The five hydrological models’ performance
was relatively low in the Imha and Andong catchments when compared to the other tested catchments
in the validation periods. The Hamon PET estimation method was the only input that clearly showed a
decreasing model performance in all of the tested catchments, except for Seolmacheon. This decrease in
model performance was likely due to the underestimated values of the Hamon PET estimation method
in all of the tested catchments. The better model performance and stable parameters observed in the
smallest Seolmacheon experimental catchment were probably related to the size or the availability
of high-quality hydro-meteorological data when compared to other study sites. The complexity of
the PET estimation method and hydrological model structure did not affect the model performance
significantly because of the efficiency of the SCE-UA algorithm to optimize the model parameters for
each PET input in the calibration process.

The complexity of the PET inputs had a significant influence on the five hydrological models’
parameters. Particularly, model parameters that are responsible for transforming the PET to AET were
found to be sensitive for all of the tested catchments. The GR4J model, X1 parameter is in charge
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of changing the total PET input value by optimizing the level of production reservoir based on the
net rainfall intensity and net evapotranspiration. The X3 parameter variation was mainly caused
by the complexity of the PET estimation methods that led to the higher or lower values that affect
the routing reservoir. However, the X2 parameter’s identical response to different PET inputs could
be an indication of minor groundwater exchange in the tested catchments. The SIMHYD model’s
COEFF and SMSC parameters were more sensitive than the INSE parameter. The small variations
of the INSE parameters showed the dominance of evapotranspiration from the soil moisture store
rather than from the interception store. However, the SMSC parameter variation was due to the SMSC
linear relationship with evapotranspiration. The COEFF parameter was affected by the nonlinear
relationship with the SMSC parameter in the infiltration estimation process. The sensitivity of these
three parameters might help us understand the effect of soil moisture and land use on evaporation.
The CAT model PSI parameter sensitivity to the PET input was due to the dependence of the model
evapotranspiration on the land use of the 10 tested catchments, which is forest dominated. However,
the river and aquifer parameters were not sensitive in all of the tested catchments. In the TANK model,
the sensitivity of four of the parameters (HA1, HA2, HB, and HC) to PET inputs was because the model
assumption for transforming the water level of each tank to AET was initially based on the availability
of water on the sequentially arranged tanks. The other parameters remained insensitive as the output
from each tank was transformed to surface, intermediate, and subbase runoff. In the SAC-SMA
model, tension water and free water storage parameter sensitivity to PET input was because the AET
estimations from the upper and lower water storage were proportional to the magnitude of PET,
whereas the sensitivity of the ZPERC parameter was unexpected, as it is responsible for controlling
percolation. The unexpected responses of the ZPERC parameters could be related to the problem of
finding a unique set of values and over-parameterization, which occurs in most rainfall-runoff models.
Similar findings were observed in a previous research work conducted while using the GR4J and
TOPMODEL models when considering different PET input scenarios [17].

The results of the three statistical indicators (AIC, BIC, and Ra2) also agreed with the computed
model evaluation index values (NSE, LogNSE, RSR, and KGE). The results of the three statistical
indicator showed higher AIC, BIC, and lower Ra2 values for the Hamon PET estimation method
in all of the tested catchments. The lower performance for the Hamon PET input was most likely
due to the underestimated value of the PET. The 12 PET estimation methods and five hydrological
models’ structure complexity effect were better captured by the three statistical indicators. Although
the model complexity comparison criteria (AIC, BIC, and Ra2) results revealed that the GR4J, CAT,
and SAC-SMA models had a better capability to simulate streamflow, it would be naive to identify
the best hydrological model. The GR4J, CAT, and SAC-SMA models’ behavioral similarities and
lower Dimensionless Bias were observed in all of the tested catchments. The five hydrological
models lacked robustness, particularly for extreme hydrological conditions (high and low flow) and
for the Hamon PET input value, which was observed in all of the tested catchments, except the
Seolmacheon. Perrin et al. [7] also discussed the difficulty of identifying the best hydrological model.
Furthermore, a previous study conducted on the frequency analysis of hydrological extremes also
addressed the limitations and difficulties of completely concluding the superiority of one model for
practical applications [46].

5. Conclusions

In this study, the responses of five hydrological models to the 12 PET estimation methods and
their effect on model performance, optimized parameters, and robustness were assessed. The GR4J,
SIMHYD, CAT, TANK, and SAC-SMA models with increasing levels of complexity were applied
over 10 catchments that are located in South Korea. The 10 selected catchments represented the main
hydrological characteristics of the Korean Peninsula and have continuous hydro-meteorological data
with negligible artificial effects on streamflow. The 10 catchments are mainly covered with forest and
sandy loam soil. The 12 PET estimation methods that were used in this study varied from simple to
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more data demanding. The Hamon PET estimation method was the only input that underestimated
the estimated daily PET values in all of the tested catchments except for the Seolmacheon. The SCE-UA
algorithm was used to calibrate five hydrological models for the 12 PET inputs when considering four
objective functions: NSE, KGE, and RSR. The GR4J, CAT, and SAC-SMA models showed a consistent
model performance regardless of the differences in model structure complexity in both the calibration
and validation periods. The five hydrological models’ performance were not sensitive to the 12 PET
inputs due to the SCE-UA algorithm’s robustness and efficiency. However, the five hydrological
models’ parameters in charge of transforming the PET to AET were observed to be sensitive for the
PET input values.

The Hamon PET estimation method was the only method that showed decreasing model
performance in all of the tested catchments, except for the Seolmacheon. The results of the three
statistical indicators (AIC, BIC, and Ra2) captured the PET and hydrological model structure complexity.
The model complexity comparison criteria results showed minimum AIC, BIC, and maximum
Ra2 values for the GR4J, CAT, and SAC-SMA, which is in agreement with the computed model
evaluation index values (NSE, RSR and KGE). In addition, the three hydrological models showed
lower Dimensionless Bias, and identical behavioral similarities were observed in all of the tested
catchments. However, the five hydrological models’ lack of robustness were observed for high and
low flow, as well as the Hamon PET input values in all of the tested catchments.

The results of this study revealed the dependence of the model performance and robustness on
hydrological conditions (high and low flow) and catchment characteristics, rather than on complexity.
The findings of this study will provide a certain level of confidence for hydrologists who work
with simple hydrological models and PET estimation methods, particularly in areas with limited
hydro-meteorological data, provided that standard datasets are employed.
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Appendix A

Table A1. List of the 12 PET estimation methods and the required climate data.

PET Estimation
Methods Formula Required Data Reference

Abtew PET = 0.52 Rs
λ

T, Rs [112]

Blaney Criddle PET =
(
0.0043RHmin − n

N − 1.41
)
+ bvar py(0.46Ta + 8.13) T, RH, n [113]

Chapman Australian PET = ApEpan + Bp T, RH, Rs [114]
Epan = ∆

∆+apγ
RNpan

λ +
apγ

∆+apγ fpan(u)(va
∗ − va)

Granger Gray PET =
∆Gg

∆Gg+γ
Rn−G

λ +
γGg

∆Gg+γ Ea T, RH, Rs [115]

Hamon PET = 0.55( n
12 )

2( SVD
100 )(25.4) T, n [116]

Hargreaves Samani PET = 0.0135CHS
Ra
λ

(
Tmax − Tmin)

2(Ta + 17.8
)

T [117]

Makkink PET = 0.61( ∆
∆+γ −

Ra
2.45 )− 0.12 T, Rs [118]

Matt Shuttleworth PET = 1
λ

∆Rn+
ρacau2(VPD2)

rc50 (
VPD50
VPD2

)

∆+γ(1+ (rs )cu2
rc50 )

T, RH, Rs, u [119]

Penman PET ≈ 0.047RS(Ta + 9.5)0.5 − 2.4( RS
Ra
)

2
+ 0.09(Ta + 20)(1− RHmean

100 ) T, RH, Rs [120]

Penman-Monteith PET =
0.408∆(Rn−G)+γ 900

Ta+273 u2 (va
∗−va)

∆+γ(1+0.34u2 )
T, RH, Rs, n, u [121]

Priestley Taylor PET = 1.26∆Rn
λρ(∆+γ) T, RH, Rs [122]

Turc
PET = 0.013(23.88Rs + 50)

(
Ta

Ta+15

)
, for RH > 50% T, RH, Rs [123]

PET = 0.013(23.88Rs + 50)
(

Ta
Ta+15

)(
1 + 50−RH

70

)
, for RH < 50%

Ea is the aerodynamic component of Penman’s equation (mm/d); rc50 is the aerodynamic
resistance for crop height, h(s/m); rs is the surface resistance (s/m); (rs)c is the surface resistance
of a well-watered crop equivalent to FAO crop coefficient (s/m); ρ is the water density (kg/m3); ρa

is the mean air density at constant pressure (kg/m3), SVD is the saturated vapor density at mean air
temperature (g/m3); G is the soil heat flux (MJ/m2d); Rn is the net radiation at evaporating surface at
air temperature ((MJ/m2 d); Rs is the incoming solar radiation ((MJ/m2 d); Ra is the extraterrestrial
radiation ((MJ/m2 d); RNPan is the net radiation at Class-A pan ((MJ/m2 d); λ is the latent heat of
vaporization (MJ/kg); ca is the specific heat of air (MJ/kg ◦C); Ta, Tmax, Tmin are the mean, maximum,
and minimum temperature (◦C), respectively; bvar is the working variable (-); Gg is the dimensionless
relative evaporation parameter (-); CHS is the Hargreaves-Samani working coefficient (-); ap is the
constant in PenPan equation (-); Ap is the gradient (-); Bp is the intercept (-); RH, RHmean, RHmin are the
daily, mean, minimum relative humidity(%), respectively; py is the percentage of actual daytime hours
for the specific day compared to the day-light hours for the entire year (%); N is the total day length
(h); n is the duration of sunshine hours in a day (h); ∆ is the slope of the saturation vapor pressure
curve (kPa/◦C); γ is the psychrometric constant (kPa/◦C); VPD2, VPD50 are the vapor pressure deficit
at 2 m and 50 m, respectively (kPa); (va

∗ − va) is the vapor pressure deficit at air temperature (kPa);
f Pan(u) is the wind function for Class-A pan (ms−1); u2 is the average daily wind speed at 2 m height
(m/s); and u is the mean daily wind speed (m/s).
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Table A2. The performances of the five hydrological models in the validation periods.

Seolmacheon NSE LogNSE

PET Methods GR4J SIMHYD CAT TANK SAC-SAMGR4J SIMHYD CAT TANK SAC-SAM

Abtew 0.85 0.87 0.80 0.89 0.87 0.71 0.18 0.85 0.91 0.87
Blaney Criddle 0.87 0.87 0.79 0.89 0.87 0.87 0.29 0.88 0.62 0.87

Chapman Australian 0.86 0.87 0.78 0.90 0.87 0.83 0.38 0.89 0.57 0.89
Granger Gray 0.90 0.84 0.80 0.89 0.84 0.87 0.31 0.88 0.47 0.89

Hamon 0.87 0.86 0.80 0.89 0.86 0.88 0.37 0.89 0.62 0.89
Hargreaves Samani 0.87 0.86 0.77 0.88 0.86 0.88 0.03 0.90 0.49 0.89

Makkink 0.85 0.85 0.80 0.90 0.85 0.81 0.34 0.88 0.32 0.88
Matt Shuttleworth 0.87 0.86 0.78 0.90 0.86 0.89 0.39 0.90 0.63 0.89

Penman 0.87 0.88 0.79 0.88 0.88 0.83 0.35 0.88 0.55 0.88
Penman-Monteith 0.86 0.87 0.79 0.89 0.87 0.84 0.38 0.89 0.45 0.88

Priestley Taylor 0.85 0.86 0.78 0.87 0.86 0.73 0.25 0.85 0.76 0.87
Turc 0.88 0.86 0.80 0.89 0.86 0.90 0.39 0.90 0.65 0.88

Boryeong

Abtew 0.85 0.66 0.79 0.77 0.79 0.82 0.46 0.81 0.24 0.15
Blaney Criddle 0.85 0.72 0.79 0.77 0.79 0.80 0.75 0.83 0.72 −1.33

Chapman Australian 0.86 0.76 0.76 0.82 0.76 0.84 0.46 0.84 0.25 −0.71
Granger Gray 0.85 0.74 0.79 0.77 0.79 0.81 0.72 0.83 0.62 −1.00

Hamon 0.83 0.64 0.79 0.70 0.79 0.68 0.65 0.73 0.42 0.29
Hargreaves Samani 0.74 0.74 0.79 0.79 0.79 0.82 0.23 0.84 0.31 0.34

Makkink 0.85 0.72 0.81 0.76 0.81 0.84 0.63 0.85 0.66 −0.82
Matt Shuttleworth 0.85 0.70 0.81 0.79 0.81 0.80 0.74 0.82 0.83 −1.03

Penman 0.85 0.75 0.78 0.72 0.78 0.83 −0.09 0.82 0.59 0.27
Penman-Monteith 0.86 0.74 0.80 0.80 0.80 0.84 0.40 0.82 0.74 −0.40

Priestley Taylor 0.85 0.73 0.79 0.79 0.79 0.83 0.38 0.84 0.77 −1.07
Turc 0.73 0.71 0.77 0.77 0.77 0.80 0.57 0.85 0.75 −0.87

Kyeongan

Abtew 0.85 0.79 0.78 0.87 0.85 0.65 −2.15 0.73 0.77 0.70
Blaney Criddle 0.86 0.75 0.82 0.87 0.86 0.76 0.16 0.77 0.49 0.70

Chapman Australian 0.86 0.72 0.80 0.87 0.86 0.70 −2.09 0.74 0.66 0.68
Granger Gray 0.87 0.72 0.80 0.88 0.87 0.75 −0.43 0.75 0.55 0.68

Hamon 0.86 0.70 0.82 0.82 0.86 0.77 0.15 0.79 0.60 0.75
Hargreaves Samani 0.86 0.72 0.78 0.86 0.86 0.68 −1.54 0.74 −0.45 0.71

Makkink 0.86 0.71 0.80 0.87 0.86 0.72 −1.00 0.74 −0.03 0.67
Matt Shuttleworth 0.87 0.76 0.80 0.88 0.87 0.76 −0.52 0.78 0.42 0.72

Penman 0.83 0.69 0.78 0.86 0.83 0.53 −1.64 0.69 −0.14 0.72
Penman-Monteith 0.86 0.71 0.79 0.87 0.86 0.68 −2.97 0.75 0.05 0.72

Priestley Taylor 0.86 0.67 0.81 0.87 0.86 0.72 −1.11 0.76 0.27 0.72
Turc 0.87 0.68 0.81 0.87 0.87 0.76 −0.50 0.79 −0.18 0.73

Seomjingang

Abtew 0.91 0.81 0.80 0.90 0.81 0.83 −0.72 0.83 −0.32 0.79
Blaney Criddle 0.90 0.79 0.79 0.86 0.79 0.79 0.66 0.80 0.57 0.68

Chapman Australian 0.91 0.79 0.79 0.90 0.79 0.84 −0.02 0.84 0.37 0.78
Granger Gray 0.91 0.80 0.79 0.90 0.80 0.83 0.05 0.83 0.51 0.76

Hamon 0.88 0.76 0.77 0.83 0.76 0.73 0.64 0.73 0.42 0.70
Hargreaves Samani 0.92 0.79 0.78 0.89 0.79 0.84 −0.50 0.83 −0.16 0.76

Makkink 0.91 0.81 0.79 0.90 0.81 0.84 0.20 0.84 0.44 0.79
Matt Shuttleworth 0.91 0.80 0.79 0.91 0.80 0.80 −0.13 0.83 0.57 0.80

Penman 0.92 0.82 0.79 0.90 0.82 0.84 −1.25 0.84 −0.42 0.78
Penman-Monteith 0.91 0.79 0.79 0.90 0.79 0.84 −0.93 0.84 0.10 0.77

Priestley Taylor 0.91 0.79 0.79 0.89 0.79 0.84 −0.55 0.83 0.29 0.75
Turc 0.91 0.80 0.79 0.90 0.80 0.82 −0.36 0.82 0.47 0.76

Yongdam

Abtew 0.91 0.79 0.89 0.89 0.89 0.85 −2.80 0.86 0.49 0.46
Blaney Criddle 0.90 0.73 0.87 0.82 0.87 0.81 0.47 0.86 0.55 0.32

Chapman Australian 0.91 0.78 0.89 0.89 0.89 0.85 −0.87 0.86 0.19 0.18
Granger Gray 0.90 0.78 0.88 0.89 0.88 0.84 −0.09 0.84 0.64 0.46

Hamon 0.84 0.68 0.85 0.78 0.85 0.75 0.59 0.77 0.29 0.33
Hargreaves Samani 0.91 0.75 0.86 0.88 0.86 0.86 −0.76 0.86 −0.57 0.55

Makkink 0.90 0.77 0.88 0.89 0.88 0.85 0.23 0.86 0.63 0.33
Matt Shuttleworth 0.90 0.76 0.88 0.88 0.88 0.84 0.17 0.85 0.67 0.33

Penman 0.91 0.78 0.86 0.88 0.86 0.86 −2.34 0.85 0.73 0.64
Penman-Monteith 0.91 0.77 0.88 0.88 0.88 0.86 −0.67 0.86 0.46 0.56

Priestley Taylor 0.91 0.81 0.87 0.88 0.87 0.85 −0.88 0.85 0.68 0.52
Turc 0.87 0.79 0.87 0.89 0.87 0.83 0.10 0.84 0.34 0.46
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Table A2. Cont.

Seolmacheon NSE LogNSE

PET Methods GR4J SIMHYD CAT TANK SAC-SAMGR4J SIMHYD CAT TANK SAC-SAM

Juam

Abtew 0.90 0.66 0.84 0.88 0.84 0.88 −0.46 0.90 0.85 0.86
Blaney Criddle 0.90 0.57 0.83 0.81 0.83 0.82 0.72 0.87 0.67 0.70

Chapman Australian 0.91 0.67 0.81 0.88 0.81 0.89 0.37 0.90 0.79 0.80
Granger Gray 0.90 0.70 0.81 0.84 0.81 0.81 0.41 0.86 0.56 0.84

Hamon 0.84 0.57 0.82 0.78 0.82 0.61 0.20 0.60 0.73 0.52
Hargreaves Samani 0.89 0.74 0.83 0.90 0.83 0.89 −0.07 0.90 0.03 0.75

Makkink 0.91 0.60 0.85 0.84 0.85 0.86 0.54 0.90 0.87 0.85
Matt Shuttleworth 0.90 0.60 0.85 0.82 0.85 0.80 0.56 0.86 0.85 0.77

Penman 0.90 0.72 0.84 0.89 0.84 0.86 0.00 0.87 0.67 0.80
Penman-Monteith 0.91 0.69 0.84 0.88 0.84 0.90 0.15 0.89 0.08 0.85

Priestley Taylor 0.91 0.63 0.84 0.88 0.84 0.88 0.40 0.89 0.34 0.82
Turc 0.83 0.66 0.83 0.88 0.83 0.85 0.35 0.87 0.81 0.81

Imha

Abtew 0.69 0.61 0.64 0.67 0.69 0.70 −1.53 0.73 0.89 0.70
Blaney Criddle 0.65 0.58 0.67 0.71 0.65 0.83 0.41 0.83 0.74 0.70

Chapman Australian 0.72 0.65 0.65 0.71 0.72 0.78 −1.35 0.80 −1.00 0.78
Granger Gray 0.67 0.62 0.60 0.66 0.67 0.82 −0.44 0.80 −0.03 0.71

Hamon 0.61 0.55 0.58 0.55 0.61 0.67 0.37 0.70 0.61 0.67
Hargreaves Samani 0.65 0.63 0.62 0.67 0.65 0.80 −1.11 0.79 0.76 0.71

Makkink 0.70 0.62 0.64 0.72 0.70 0.80 −0.63 0.78 −0.61 0.65
Matt Shuttleworth 0.69 0.65 0.69 0.75 0.69 0.84 −1.76 0.81 0.59 0.50

Penman 0.65 0.65 0.61 0.65 0.65 0.79 −0.77 0.78 0.59 0.71
Penman-Monteith 0.72 0.65 0.68 0.67 0.72 0.76 −2.05 0.75 0.86 0.60

Priestley Taylor 0.70 0.63 0.62 0.72 0.70 0.82 −1.03 0.80 −0.42 0.56
Turc 0.72 0.63 0.67 0.72 0.72 0.86 −0.76 0.84 −0.30 0.71

Andong

Abtew 0.83 0.69 0.74 0.84 0.83 0.79 −1.63 0.80 0.78 0.51
Blaney Criddle 0.70 0.68 0.73 0.86 0.70 0.76 0.46 0.80 0.61 0.57

Chapman Australian 0.84 0.69 0.75 0.88 0.84 0.80 −0.88 0.81 −0.38 0.35
Granger Gray 0.82 0.69 0.73 0.86 0.82 0.76 −0.18 0.79 0.30 0.29

Hamon 0.75 0.52 0.75 0.71 0.75 0.67 0.43 0.71 0.72 0.39
Hargreaves Samani 0.85 0.69 0.71 0.81 0.85 0.80 −0.88 0.79 −0.74 0.40

Makkink 0.83 0.71 0.73 0.89 0.83 0.78 −0.45 0.81 −0.42 0.33
Matt Shuttleworth 0.83 0.70 0.77 0.89 0.83 0.76 0.14 0.79 0.68 0.03

Penman 0.84 0.67 0.75 0.84 0.84 0.80 −0.93 0.80 0.11 0.51
Penman-Monteith 0.84 0.69 0.74 0.88 0.84 0.80 −0.81 0.81 −0.57 0.48

Priestley Taylor 0.83 0.70 0.74 0.86 0.83 0.78 −0.61 0.80 0.73 0.52
Turc 0.76 0.68 0.76 0.80 0.76 0.76 −0.08 0.79 0.66 0.45

Soyanggang

Abtew 0.91 0.77 0.86 0.92 0.86 0.84 −1.47 0.82 −1.66 0.71
Blaney Criddle 0.91 0.75 0.88 0.92 0.88 0.80 0.55 0.84 0.69 0.79

Chapman Australian 0.91 0.76 0.87 0.93 0.87 0.84 −0.52 0.84 0.66 0.73
Granger Gray 0.91 0.76 0.86 0.92 0.86 0.83 −0.15 0.83 0.65 0.63

Hamon 0.90 0.77 0.88 0.90 0.88 0.79 0.66 0.80 0.77 0.72
Hargreaves Samani 0.91 0.75 0.84 0.92 0.84 0.84 −1.68 0.83 0.03 0.66

Makkink 0.91 0.73 0.86 0.92 0.86 0.84 −1.78 0.84 0.68 0.71
Matt Shuttleworth 0.91 0.69 0.86 0.92 0.86 0.83 −0.80 0.83 0.68 0.67

Penman 0.92 0.62 0.87 0.91 0.87 0.84 −4.15 0.82 −0.04 0.71
Penman-Monteith 0.91 0.76 0.87 0.92 0.87 0.84 −1.06 0.83 0.46 0.71

Priestley Taylor 0.91 0.78 0.87 0.92 0.87 0.83 −0.45 0.82 0.62 0.68
Turc 0.92 0.78 0.87 0.92 0.87 0.82 0.13 0.82 0.47 0.73

Chungju

Abtew 0.79 0.66 0.60 0.84 0.79 0.86 −1.67 0.86 0.80 0.83
Blaney Criddle 0.82 0.64 0.65 0.85 0.82 0.79 0.65 0.85 0.73 0.86

Chapman Australian 0.80 0.65 0.59 0.86 0.80 0.86 −0.87 0.87 −0.09 0.86
Granger Gray 0.81 0.66 0.66 0.85 0.85 0.85 0.33 0.86 0.44 0.86

Hamon 0.80 0.68 0.62 0.81 0.80 0.77 0.65 0.78 0.80 0.78
Hargreaves Samani 0.80 0.68 0.56 0.82 0.80 0.86 −1.56 0.86 0.70 0.85

Makkink 0.81 0.66 0.59 0.85 0.81 0.86 −0.23 0.87 0.68 0.87
Matt Shuttleworth 0.81 0.68 0.64 0.85 0.81 0.84 0.32 0.86 0.58 0.86

Penman 0.79 0.64 0.61 0.84 0.79 0.86 −2.55 0.86 0.79 0.85
Penman-Monteith 0.80 0.64 0.62 0.82 0.80 0.86 −1.09 0.86 −0.92 0.84

Priestley Taylor 0.81 0.64 0.58 0.81 0.81 0.85 −0.28 0.86 0.64 0.82
Turc 0.83 0.68 0.60 0.85 0.83 0.83 0.14 0.85 0.51 0.86
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