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Abstract: Accurate mapping the spatial distribution of different soil textures is important for
eco-hydrological studies and water resource management. However, it is quite a challenge to map the
soil texture in data scarce, hard to access mountainous watersheds. This paper compares a nonlinear
method, the Markov chain random field (MCRF) with a classical linear method, ordinary kriging
(OK) for calculating the soil texture at different search radiuses in the upstream region of the Heihe
River Watershed. Results show that soil texture values that were calculated by the OK method tends
to predict soil texture values within a certain range (sand (12.098~40.317), silt (47.847~71.231), and
clay (12.781~19.420)) because of the smoothing effect, thus leading to greater accuracy in predicting
the major soil texture type (silt loam). Nonetheless, the MCRF method considers the interclass
relationships between sampling points, leading to greater accuracy in predicting minor types (loam
and sandy loam). Meanwhile, the OK method performed best for all the types at the radius of 65
km influenced by the densities of all the sampling points, while the best performance of the MCRF
method differs with radiuses as the largest densities varying for different soil types. For loam and
sandy loam, the OK method ignored them, thus the MCRF method is more suitable in mountainous
areas with high soil heterogeneity.

Keywords: Markov chain random field; ordinary kriging; soil texture interpolation; The Heihe
River Watershed

1. Introduction

Soil texture directly affects infiltration, retention, holding capacity of water, nutrients, and
pollutants and long-term soil fertility [1,2]. It also influences the physical, chemical, biological, and
hydrological processes of watersheds [3-5]. Therefore, it is essential to accurately map the spatial
distribution of different soil texture types at the watershed scale for eco-hydrological studies and water
resource management [1,6-10].

Field surveys provide the most accurate soil texture data [4,11]. However, it is difficult and
expensive to map the spatial distribution of soil texture by field sampling at point scale [12]. In recent
years, remote sensing has become an effective way to obtain soil texture data over large scales [13,14].
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Soil texture types are estimated from field samples and satellite images. However, results that were
obtained from remote sensing may contain inaccuracies, thus leading to uncertainties in the estimates
based on such techniques [15]. To date, scale expansion methods based on limited field sampling
data are the most widely used approaches to map the spatial distribution of soil texture at large
scales [1,16-19].

Over the past decades, numerous scale expansion methods have been used to infer the spatial
distribution of soil texture types at large scales. These methods can be divided into four groups:
statistical methods, data mining methods, kriging methods, and Markov chain models. Statistical
methods, such as multiple linear regression and multiple stepwise regression (MSR) [20], are easy to
apply. However, the accuracy of these methods is limited by the reliability of the sampling data [20].
Data mining methods, such as the random forest model [21-23] and the artificial neural network
models [1], often perform well in mapping soil texture [1,20,23]. However, such methods lack physical
mechanisms, which limits their applications [24].

The kriging methods have been frequently applied in soil science to estimate the spatial variation
in soil types [25]. The ordinary kriging (OK) method is the basis of all the kriging methods. A number
of kriging methods extend the OK method by adding auxiliary information, aiming to improve the
interpolation accuracy [13,26-28] To date, the OK method is still considered to be the best linear,
unbiased estimator and it remains the most popular geostatistical interpolation method [29,30]
because of fewer parameter requirements and relatively consistent results [31]. However, a major
limitation of the kriging methods is its assumption that the spatial distributions and changes of the
interpolated properties are continuous [1]. To meet this requirement, a large number of sampling
points are needed to generate an accurate high-resolution soil map, which is quite difficult or even
impossible in high elevation, topographically complex mountainous areas with high spatial variability
of soil texture, especially at large scales [1,32-34]. Additionally, the kriging methods do not consider
interclass relationships between soil texture values, thus making it less applicable to areas with great
soil heterogeneity.

The Markov chain (MC) theory was first proposed by a Russian mathematician Andrey
Markov in 1906 [35]. It describes stochastic processes with discrete state space or discrete index
set [36]. Over the past century, the MC has been widely applied to simulate and predict stochastic
processes in both physical and social-economic sciences [37,38]. Aiming for areal soil mapping
from irregularly distributed point samples, the Markov chain random field (MCRF) method was
proposed by Li (2007) by extending Markov chains into practical nonlinear geostatistical method.
The MCRF method considers the interactions of the unknown location being estimated with its
nearest known neighbors in different directions [39,40]. It also can incorporate interclass relationships
(i.e., cross-correlations, neighboring relationships, and directional asymmetry of class patterns)
through cross transition probabilities. Additionally, it has also been demonstrated the capabilities of
addressing the underestimation of small-class problem of the coupled Markov chain model [41]. The
MCRF method has been demonstrated to predict the soil texture types from limited soil samples, which
makes it more suitable for estimating soil texture distribution in areas with high soil heterogeneity over
large scales [41]. However, the MCRF method has only been applied in a small flat, square area with
5.9 km by 5.9 km. The performance and influencing factors of the MCRF method at large scale are still
unknown, especially in high elevation, mountainous areas with considerable variation in soil texture.

This study compares the MCRF method with the OK method at the watershed scale. The study
area is the upstream of the Heihe River Watershed in Northwest China, a data scarce, mountainous
area with high elevation and complex topography. This paper first applies both the MCRF and OK
methods in order to calculate soil texture data based on a total of 178 field sampling points, and then
evaluates the performances of the both methods by cross validation. Subsequently, the paper discusses
the applicability and the influence factors of both methods in the mountainous watershed.



Sustainability 2018, 10, 2819 30f18

2. The Study Area

The Heihe River Watershed, which is located in Northwest China with a drainage area of
128,000 km?, is the second largest inland river (or terminal lake) in China (97.494°~101.548° E,
37.731°-39.655° N) (Figure 1). The upstream of the Heihe River Watershed is located in the Qilian
mountain ranges and it produces almost all of the water resource for the entire watershed [42,43].
The elevation of the upstream of the Heihe River Watershed ranges from 1674 to 5584 m above sea
level (m a.s.l.) [44,45].
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Figure 1. The Heihe River Watershed: the black line represents the boundary of the upstream region
of the Heihe River Watershed; the blue line represents the river in the Heihe River Watershed; and,
the red line represents the boundary of the study area.

Soil maps available for this watershed include the global soil texture map (1:1,000,000 scale) [46]
and the 1:1,000,000 soil map of China [47,48]. Recently, two more soil texture maps have become
available, for the study area [8,15]. Gao et al. [15] developed a soil texture map for the watershed,
which is based on the soil classification by the Chinese occurrence taxonomy or diagnosis taxonomy
classification criteria with 53 sampling points for the entire Heihe River Watershed. Lu et al. [8] used
fuzzy logic and data fusion to generate a soil texture map from 220 samples, for the entire Heihe River
watershed with most of the samples for the upstream region taken from the valley area. To date, no
detailed digital soil texture mapping for the entire Heihe River Watershed has been conducted [8].

These two coarse maps show seven soil texture types in the study area: loam, loamy sand, sandy
clay loam, sandy loam, silt, silt loam, and silty clay loam [8,15]. Silt loam is the main soil texture type
in the upstream area of the Heihe River Watershed. Lu et al. [8] also report that the proportions of silt
loam, loam, and sandy loam are 42%, 25%, and 26%, respectively, and the remaining types (loamy
sand, sand, sandy clay loam, silty clay sand, and silty sand) account for less than 8% of the soil types
in the entire watershed [8].
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However, the numbers of sampling points used to generate the existing maps are quite small,
thus limiting the quality and applications of these maps [49,50]. As the upstream region of the Heihe
River Watershed is the main runoff generation area for the entire watershed, high-quality soil texture
maps are urgently needed to support eco-hydrological modeling and water resource management of
the watershed.

3. Materials and Methods

3.1. Soil Sampling

We used the following formula to determine the minimum number of soil samples that would be
needed to meet the sampling requirement of a robust statistical analysis [51].

_ BIT;(1-1I)

N
b7

)

where B denotes the percentiles, about (%) of the Chi-square distribution with 1 degree of freedom; k is
the total number of soil type in the study area and « is the confidence level, I'l; denotes the proportion
of type with proportion closest to 50% among all the types, and b; denotes the desired precision of the
type i. In this study, soil type 7 (saturated frigid frozen soils under dense grassland between 3500 and
4000 m a.s.l.) occupies roughly 9.33% of the soil types and this proportion is closest to 50%. We set
b; = 0.05 and « = 0.85, yielding a value of 170 for N. This indicates that if soil samples are collected
randomly from 170 points, the field samples are to be statistically analyzed with a confidence level
85% and precision of 95%.

A total of 178 soil samples of various soil texture types were collected from the surface layer
(0-10 cm) in the upstream region of the Heihe River Watershed between July 2012 and August 2015
(Figure 2). We used a Mastersizer 2000 (Malvern Instruments Ltd., Malvern, UK; the measurement
range is 0.02-2000 um) laser diffraction particle size analyzer at the Key Laboratory of West China’s
Environmental System (Ministry of Education) in the College of Earth and Environmental Sciences
at Lanzhou University to analyze the proportions of sand, silt, and clay in the samples. We used the
United States Department of Agriculture (USDA) soil texture classification scheme [52,53] to determine
the soil textures of the 178 soil samples. Five soil texture types were identified: silt loam, clay loam,
loam, sandy loam, and loamy sand. The percentage of each type is shown in Table 1 and Figure 3.

Table 1. Soil texture types used in this study based on the USDA soil classification scheme.

Texture Type Conditions Percentage
clay loam (27% < clay < 40%) and (20%< sand < 45%) 2.247%
silt loam ((silt > 5(3 %o and (12%< clay < 27%)) or ((50% < silt < 80%) and 88.764%
clay < 12%))
loam (7 %< clay <27%) and (28%< silt < 50%) and (sand < 52%)) 2.247%
((7% < clay < 20%) and (sand > 52%) and ((silt + 2 x clay) > 30%))
sandy loam or 6.180%

(clay < 7% and silt < 50% and (silt + 2 x clay) > 30%)
loamy sand (silt + 1.5 x clay > 15%) and (silt + 2 x clay < 30%)) 0.562%
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Figure 2. Locations of sampling points (shown in black) in the upstream region of the Heihe
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(USDA) triangular.



Sustainability 2018, 10, 2819 6 of 18

3.2. The MCRF Method

The MCREF is defined as the single spatial Markov chain that moves (or jumps) within a given
space, where its conditional probability distribution (CPD) depends on its nearest known neighbors
within a circle of a particular radius [54]. When using the MCRF method, the first step is to fit the
CPD function that describes the relationship between transition probability values and distance [40].
The transition probability value between two types can be calculated by Equation (2):

Fis(d)

R SEYAT) <2>

where, Fis(d) represents the frequency of transitions from type f to type s at distance d, and the texture
type is identified by the percentage of sand, silt, and clay of the point by the USDA classification, 7 is
the total number of soil texture types present among the sampling points at different radius.

The number of neighbors is determined by radius; changing the radius therefore changes the
transition probability values. We constructed all of the CPD functions for all pairs of soil texture types
for different values of radius.

The next step is to calculate the transition probability values between the prediction point and the
known sampling points. For each selected prediction point, the number of sample points that are used
in the calculation is different at each radius. The CPD value Pr(u;) between sample point u; and the
prediction point u; is calculated by Equation (3) (Figure 4):

o H?:l pl:lku] (hk)pu]ul (hl>
St [T P, (1) Py ()

Pr(u;) ] (k #1) ©)

where, Pug; (hy) represents the transition probability value from sample point u; to prediction point u i
separated by distance /i between points uy and uj, puu, (h;) represents the transition probability value
from the sample point u; to prediction point u; separated by distance h; between points u; and u;, m
represents the number of sample points lying within a circle of the selected radius whose center is the
prediction point, n represents the number of known locations in the whole space, and u represents
the fth point in this space [54,55]. The initial (or reference) soil texture types of the prediction point
and calculation point determine which CPD function will be used. Then, this function will be used
to calculate the transition probability value in the Equation (3). In this study, the initial (or reference)
soil texture type of the prediction point is determined from the existing coarse resolution soil texture
map [18]. At last, for a prediction point u;, its predicted soil texture value (composition of sand, silt,
and clay) Z* (u;), is calculated by Formula (4).

7" () = . Pr(w)Z(u) @

where, Z(u;) is the percentage values of each sand, silt, and clay of sample point u;. Then, the soil
texture type of u; is identified by the composition of percentage values of sand, silt, and clay.
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U

m

Figure 4. Tllustration of a Markov chain random field. Arrows represent directional interactions in the
spatial Markov chain.

3.3. The Ordinary Kriging Method

The Ordinary Kriging (OK) method is a well-known geostatistical method. The OK estimate
the value of a random variable Z* ok (1;) (proportion of sand, silt, and clay) at the point #; and the
estimator is described by Equations (5) and (6) below [56]:

Zrox (1)) = Y AP Z(u;) ©)
i=1
fA?K ©6)

i=1
where, Z(u;) is the measured soil texture value of sample point u;, Zog (uj) is the predicted value at

point u;, and /\?K is the weighted index of point u; calculated using Equation (7) below. (The meaning
of m and Z(u;) are the same as described in the MCRF method).

The weights APK are found by solving the following system of linear equations:
¥ \OK
L AP () Cr (1) — i) + prox = Cr (1 = 1)
= m @)
Y A9k =1
i=1

where, Cg (u; — ;) is the covariance function for the residual component of the variable calculated by
the semivariogram functions between u; and u;, and ok is the Lagrange parameter to minimize the
kriging variance [26]. In this study, types of semivariograms are from the Gaussian semivariogram
model because the Gaussian semivariogram model generates a relatively smooth estimated surface [57].
It is widely used in the field of approximate optimization [58].
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3.4. Evaluation Criteria

In this study, we used the mean absolute error (MAE) and the relative mean absolute error (RMAE)
to evaluate the soil texture type predictions that are derived using the MCRF and OK methods [43,59].
MAE and RMAE are computed while using the following formulas:

M
MAE = % Y 1Z(us) = 2" (uy) | ®8)
j=1
1 ¥ Z(w) -z (w))]
RMAE = M}; Z(w) )

where, M is the number of field sample points used for validation, Z*(u;) is the prediction value of
point u;, and Z (uj) is the measured value of u;.

Both MAE and RMAE are used to quantify the error between the predicted and observed values.
By definition, both measures are greater than or equal to zero, with equality when the predicted values
are identical to the observed values [43,59,60]. The MAE value reflects the error between the predicted
value and measured value. The RMAE value represents the ratio of the error between the measured
value and the predicted data set to the measured value of all the points.

In this study, the soil texture value of each sample point was predicted from the measured values
of other sample points by applying the OK and the MCRF methods. Then, through cross validation,
the predictive accuracy of the two methods was evaluated while using MAE and RMAE.

4. Results

In the study area, around 90% of field samples are the silt loam type (Table 1). Thus, we refer to
silt loam as the “major” soil texture type and all the other types, sandy loam, clay loam, and loam, as

minor’ types. Because only one sample is the loamy sand type, it was discarded in the comparison in
this study.

4.1. The Search Radiuses

Almost 90% of field samples are of the silt loam type, thus any sample point is likely to have at
least one neighboring sample point of this type, irrespective of the search radius. Given that predicted
results are influenced by sample points having the same type [61], we specified our search radiuses
on the basis of distances between the samples having the same minor soil texture type. The shortest
distances between the samples of the same minor soil texture type: clay loam to clay loam, sandy loam
to sandy loam, and loam to loam were 33 km, 64 km, and 82 km, respectively; the second shortest
distances were 82 km, 65 km, and 83 km, respectively; and, the furthest distances were 290 km, 290 km,
and 159 km, respectively. We also included the search radius of 500 km, the furthest distance between
two sample points, which has the effect of considering all of the sample points when applying the OK
and MCRF methods. In summary, search radiuses of 33, 64, 65, 82, 83, 159, 290, and 500 km have been
applied in this study.

4.2. The Performance Comparison of the MCRF and OK Methods in Calculating Individual Sand, Silt, and
Clay Component

We compared the accuracy of the MCRF and OK methods in terms of their respective abilities to
predict the quantities of sand, silt, and clay in a sample. As shown in Figure 5, for silt and clay, the
MAE and RMAE values for the OK method are lower than those for the MCRF method, suggesting
that the OK method is more accurate than the MCRF method in calculating silt and clay, irrespective
of the search radius. For sand, although the RMAE values for both methods are close at a radius of
159 km, the OK method is more accurate than the MCRF method for all of the search radiuses.
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Figure 5. Comparison of mean absolute error (MAE) and relative mean absolute error (RMAE) for the
ordinary kriging (OK) and Markov chain random field (MCRF) methods by soil component; (a): the
MAE result of sand; (b): the RMAE result of sand; (c): the MAE result of clay; (d): the RMAE value of
clay; (e): the MAE value of silt; (f): the RMAE value of silt.

As the search radius increases, the performance of the OK method in predicting the amount of
sand and silt first increases and then decreases, with the greatest accuracy being obtained when the
radius is 65 km (Figure 5). The accuracy of the OK method in predicting the amount of clay shows
little variation. The accuracy of the MCRF method in predicting the quantities of sand and silt also
increases first and then decreases, with the greatest accuracy being obtained when the search radius
is 159 km. The accuracy of the MCRF method in predicting quantities of clay shows little variation,
like that of the OK method. Overall, in predicting quantities of sand, clay, and silt, the accuracy of the
MCRF method shows larger variations than the OK method as the search radius increases, and both
methods show the greatest accuracy in predicting quantities of clay, followed by silt, and then sand.

4.3. The Performance of Both the MCRF and OK Methods in Calculating Different Soil Texture Types

In this study, we also evaluated the accuracy of the MCRF and OK methods in predicting different
soil texture types. As shown in Figure 6, the accuracy of the MCRF method exhibits little variation
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when predicting quantities of sand, clay, and silt for silt loam. For clay loam, the accuracy of the MCRF
method in predicting quantities of sand, clay, and silt decreases until the radius reaches 64 km, and
then remains stable. For loam, the accuracy of the MCRF method varies little up to search radiuses
of 65 km, sharply increases at the radius of 82 km, and it subsequently remains stable. For sandy
loam, its accuracy improves as the radius increases up to 159 km and subsequently decreases. Overall,
the accuracy of the MCRF method is similar for all of the search radiuses for the major type (silt loam),
but it varies significantly for the minor soil texture types as the radius changes.
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Figure 6. The MAE and RMAE for the MCRF method for different soil texture types by soil component;
(a): the MAE value of sand by the MCRF method; (b): the RMAE value of sand by MCREF; (c): the MAE
value of clay by MCREF; (d): the RMAE value of clay by MCREF; (e): the MAE value of silt by MCREF;
and, (f): the RMAE value of silt by MCRF.

The accuracy of the OK method in predicting quantities of sand, clay, and silt is shown in Figure 7.
For silt loam, the accuracy of the OK method remains fairly constant. For clay loam, the OK method
achieves its greatest accuracy at a radius of 65 km, varies slightly in predicting sand and silt, and
it remains fairly constant in predicting clay. For loam and sandy loam, the OK method is most
accurate at a radius of 65 km and then decreases in predicting sand and silt, while remaining stable in
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predicting clay. Overall, the OK method shows little variation in accuracy in predicting soil texture
types, irrespective of the search radius.

The MAE result of sand calculated by OK method in different types The RMAE result of sand calculated by OK method in different types
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Figure 7. The MAE and RMAE for the OK method for different soil texture types by soil component;
(a): the MAE value of sand by OK; (b): the RMAE value of sand by OK; (c): the MAE value of clay by
OK; (d): the RMAE value of clay by OK; (e): the MAE value of silt by OK; and, (f): the RMAE value of
silt by OK.

Both of the methods were compared for all of the soil texture types at their best radius. As shown
in Table 2, for the clay loam and major type-silt loam, the OK method performed significantly better
than the MCRF method in calculating the sand, clay, and silt. For calculating sand, clay, and silt of
the loam, the MCRF method performed significantly better than the OK method. Both methods show
similar performance in calculating sand, clay, and silt of the sandy loam.
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Table 2. Performance of the OK and MCRF methods for the best radius for each soil texture type.

MAE RMAE
Soil Texture Types OK MCRF OK MCRF
Sand 10.1021 28.1851 3.8387 4.7396
Clay loam Silt 3.2202 12.8048 0.0542 0.2111
Clay 13.9221 17.2663 0.4489 0.5732
Sand 14.4521 6.1023 0.3402 0.13401
Loam Silt 10.5080 49518 0.2279 0.1139
Clay 3.9748 1.1504 0.3601 0.1068
Sand 32.2152 31.9541 0.5221 0.4912
Sandy loam Silt 23.5802 25.1850 0.4619 0.9619
Clay 8.7981 6.7691 1.3259 1.1093
Sand 4.8970 8.0348 0.3751 0.4531
Silt loam Silt 3.7931 6.3381 0.0588 0.1012
Clay 2.6656 3.7331 0.1708 0.2468

The OK method achieves its greatest accuracy for a search radius of 65 km, irrespective of soil
texture type. In contrast, the accuracy of the MCRF method varies according to soil texture type
and search radius, achieving its greatest accuracy in predicting silt loam, clay loam, loam, and sandy
loam at radius of 159 km, 33 km, 82 km, and 159 km, respectively. When comparing the accuracy of
both methods at all radiuses, the OK method is slightly better than the MCRF method for silt loam,
the major soil texture and is worse than the MCRF method for loam and sandy loam. For clay loam,
the accuracy of the OK method is slightly better than the MCRF method, except at the 33 km radius.

5. Discussion

5.1. The Impacts of Different Computation Mechanisms

As the search radius increases, the accuracy of the OK method remains fairly stable, while the
accuracy of the MCRF method shows larger variations for all soil texture types. This discrepancy
is mainly caused by the different computation mechanisms that are used by each method. When
computing the predicted value for a point by the OK method, the weights of the sampling points
are determined by a semivariogram function. For each such prediction point, the semivariogram
function is derived to describe the relationships between distances and variance values of the sampling
points within a specific radius around the prediction point. As the radius increases, new sampling
points are incorporated into the calculation. Although the farthest distance varies significantly, most
variance values also remain in the same range and thus show little variation. Thus, the sill values
show smaller variations as the radius increases, yielding smaller variations in the accuracy of the OK
method. Moreover, the OK method only considers the distribution of the sampling points, which also
results in the relatively consistent accuracy of the OK method in calculating all of the soil texture types
for all search radiuses. On the other hand, the MCRF method identifies the soil texture type of the
prediction point. Then, the different transition probabilities will be applied in the calculation, which
means that its results are likely to reflect the influence of different soil texture types in the sampling
points. This leads to larger variations in the accuracy of the MCRF method as the radius increases.

The OK method is more accurate than the MCRF method for the major soil texture type, silt
loam. This is because the OK method is a classical linear method, thus has a smoothing effect with
overestimations of small values and underestimations of high values [18,62]. Thus, we would expect
the results produced by the OK method to occupy a relatively small range of values (excluding extreme
values) [18]. In this study, because silt loam accounts for around 90% of the sampling points, the
predicted values are concentrated in the ranges that are associated with silt loam, thus leading to the
greater accuracy of the OK method.
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The MCRF method is more accurate than the OK method for loam and sandy loam. This is mainly
because the MCRF method incorporates interclass relationships as a result of having different CPD
functions for different situations [54]. The MCRF method applies the CPD function to calculate the
transition probabilities between the soil texture types in the study area. The transition probabilities
between the points of the same soil texture type are larger than those between points having different
soil texture types. When the first sampling point with the same soil texture type of the prediction
point is included in the calculation, the larger transition probability of this sampling point causes the
predicted values tending towards the soil texture type of the sampling point. In other words, the
interclass relationships enable MCRF to account for complex categorical variables from the limited
samples [54], leading to its greater accuracy when predicting the minor soil texture types.

For the classification of soil texture type, only main soil texture type (silt loam) is identified by the
OK method in this study in all radiuses. To the opposite, the MCRF method could predict loam and
sandy loam with radiuses 82 km and 159 km, respectively. With all sample points being added to the
calculation, the MCRF could predict 75% points belonging to all minor types that were correctly in this
study. The OK method, however, failed to predict any point belonging to all minor types.

5.2. The Impacts of Sampling Point Distribution

Density of sampling points affects the performance of interpolation methods [18,63]. For example,
Delabri et al. reported that the performance of OK method, for the silt, the root mean square error was
3.35 for the study area of 0.25 km? with 136 sample points [18]; the performance became worse, the root
mean square error was 16.09 with the study area increasing to 144 km? with 164 sample points [63].
Thus, it appears the density of sample points affects the performance of the OK interpolation.

In this study, the OK method achieves its greatest accuracy at a radius of 65 km for all soil texture
types, largely because of the sampling point density at this radius. The sampling point density of a
point is determined by Equation (10):

where m is the number of points within a circle of radius r centered at the sampling point, and 7t is
3.1415. Intuitively, the accuracy of the OK method will be improved as the number of sample points
increases, and the number of sampling points is related to the sampling point density. As shown in
Table 3, the average sampling point density decreases as the radius increases. Although the radius
of 33 km has the highest average density, only two sampling points has been used in the calculation,
which leads to significantly worse performance. At the radius of 65 km, however, the average number
of sampling points used for each prediction point is 30, and the minimum number is 7. Therefore, the
OK method achieves greatest accuracy at the radius of 65 km because of the combination of higher
sampling density within the search radius.

Table 3. Average sampling point density for different radiuses.

Radius (km) 33 64 65 82 83 159 290 500
Density((km?)~1)  0.0025 0.0022 0.0023 0.0020 0.0020 0.0015 0.0006 0.0002

For the MCRF method, the greatest accuracy is achieved at the radius of 33 km for clay loam, at
82 km for loam, and at 159 km for sandy loam (Figure 5), which may be attributed to the sampling
point density of these soil texture types at different radiuses. As shown in Table 4, the sampling
point density of clay loam is highest with a value of 14.6 x 10~ (km?)~! at 33 km, while the highest
density of the loam is 9.5 x 1072 (km?)~! at 82 km, and that of sandy loam is 4.7 x 1072 (km?)~ ! at
159 km. In other words, for each soil texture type, the performance of the MCRF method is related to
its sampling point density of the same type at all radiuses (Table 4).
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Table 4. Average sampling point density for each minor soil texture type.

Radiuses (km) 33 64 65 82 83 159 290 500
Clay loam 14.6 5.8 57 3.6 3.5 32 1 0.3
Loam 0 0 0 9.5 92 25 08 0.2
Sandy loam 0 22 32 2.7 2.6 47 2 0.7

Note: Values are stated in units of x107° (km?)~1.

The accuracy of the MCRF method is highest for silt loam and sandy loam at the search radius of
159 km. Given that over 95% of the soil in the study area is of these two types (Table 2), the MCRF
performs best at the search radius of 159 km.

5.3. The Impacts of Sampling Point Variability

Both the OK and MCRF methods exhibit reasonably consistent accuracy in predicting the major
soil texture type, silt loam, for all of the search radiuses. The OK method only considers the distribution
of the sampling points, thus exhibiting consistent accuracy for all soil texture types [64]. For the MCRF
method, an interclass relationship exists with the major type at all radiuses because around 90% of the
samples are silt loam. Therefore, there is no significant variation in the accuracy of the MCRF method
as the search radius varies.

Both the OK and MCRF methods are most accurate when predicting the quantity of clay, then silt
and sand. This is due to the statistical characteristics of the sampling points. The average proportions
of the clay, silt, and sand in the study area are 15.858%, 63.006%, and 21.136%, with standard deviations
4.577,9.850, and 12.433, respectively. The low standard deviation indicates that the data tend to be
close to a specific value (usually the mean value or expected value), while the high standard deviation
indicates that data spread out over a wider range of the values [65]. Because scale expansion methods
tend to reflect the main trend of the sampling data, they perform poorly at handling large fluctuations
in the data. Therefore, both of the methods perform best in predicting the proportions of clay, because
it has the lowest standard deviation of the three components.

In this study, both of the methods show similar accuracy for clay loam, for which the average
proportions of sand, clay, and silt are 9.484%, 30.468%, and 60.048%, respectively. The corresponding
values are 18.977%, 15.991%, and 65.033% for silt loam, 43.230%, 11.098%, and 45.672% for loam,
and 61.171%, 7.064%, and 31.765% for sandy loam. In other words, the composition of clay loam is
closest to that of silt loam when comparing with other minor types. The accuracy of the OK method is
consistent for all soil texture types. For the MCRF method, the similarity between clay loam and silt
loam leads to a little variation when a new clay loam sampling point is used in the calculation. Thus,
both of the methods show similar performance for clay loam.

6. Conclusions

This study compares a relatively nonlinear method, Markov chain random field, with a classical
linear method, ordinary kriging, for computing soil texture types at the watershed scale in the upstream
region of the Heihe River Watershed. Using soil texture data obtained from 178 sampling points,
both of the methods were applied at different search radiuses to calculate soil texture types by cross
validation. Results show that the predicted soil texture values computed by the OK method tend to
concentrate within a small range (sand (12.098~45.440), silt (41.964~71.231), and clay (12.781~19.419)),
thus leading to greater accuracy in predicting the major soil texture type, silt loam (sand (12.098~40.317),
silt (47.847~71.231), and clay (12.781~19.420)). In contrast, the MCRF method considers the interclass
relationships between sampling points, which effectively captures the complex categorical variables
from the limited soil samples, leading to greater accuracy in predicting minor types, loam, and
sandy loam.
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As silt loam accounts for almost 90% of the sampling points used in this study, the greater accuracy
of the OK method for silt loam leads to greater accuracy than the MCRF method overall. However, the
MCRF method has greater accuracy when predicting the minor soil texture types, due to the different
computation mechanisms used by the OK and MCRF methods. Thus, the MCRF method may be more
suitable than the OK method for predicting the distribution of soil texture types across the entire Heihe
River Watershed.

When considering the distribution of all the sampling points together, the accuracy of the OK
method shows little variation with the search radius increasing. The MCRF method is more capable
to reflect the influence of different soil texture types from the sampling points, thus leading to larger
variations in its accuracy for different radiuses.

The performance of both methods has been influenced by the sampling point density. The OK
method shows the greatest accuracy at the radius of 65 km because the average density of the sampling
points within each circle is highest at this radius, while the MCRF method shows greatest accuracy at
different radiuses for each specific soil texture type (82 km for loam, and the 159 km for sandy loam)
because the largest densities of the sampling points with the same soil texture type occur at different
radiuses for different soil texture types. Moreover, both methods are more accurate at predicting the
proportion of clay, because it has lower standard deviation than either silt or sand in the samples that
were used in the study.

In summary, the OK method is suitable in areas with low soil heterogeneity, and the MCRF
method is more suitable in the areas with high soil heterogeneity. In future studies, the impacts of the
sampling point densities need to be further evaluated in other mountainous regions with even higher
heterogeneous soil texture.
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