
sustainability

Article

Bi-Objective Scheduling Optimization for Discrete
Time/Cost Trade-Off in Projects

Hongbo Li 1 ID , Zhe Xu 2 and Wenchao Wei 3,*
1 School of Management, Shanghai University, Shanghai 200444, China; ishongboli@gmail.com
2 School of Economics and Management, Beihang University, Beijing 100191, China; xuzhebuaa@163.com
3 School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China
* Correspondence: weiwenchao@bjtu.edu.cn; Tel.: +86-10-5168-7187

Received: 5 July 2018; Accepted: 5 August 2018; Published: 7 August 2018
����������
�������

Abstract: In sustainable project management, time and cost are two critical factors affecting the
success of a project. Time/cost trade-offs in projects accelerate the execution of some activities
by increasing the amount of non-renewable resources committed to them and therefore shorten
the project duration. The discrete time/cost trade-off problem (DTCTP) has been extensively
studied during the past 20 years. However, due to its complexity, the DTCTP—especially the
DTCTP curve problem (DTCTP-C)—has only been solved for relatively small instances. To the
best of our knowledge, there is no computational performance analysis for solving the DTCTP-C
on large project instances with up to 500 activities. This paper aims to fill this gap. We present
two bi-objective heuristic algorithms for the DTCTP-C where both project duration and cost are
minimized. The objective is to obtain a good appropriate efficient set for the large-scale instances.
The first algorithm is based on the non-dominated sorting genetic algorithm II (NSGA-II) and uses a
specially designed critical path-based crossover operator. The second algorithm is a steepest descent
heuristic which generates efficient solutions by iteratively solving the DTCTP with different deadlines.
Computational experiments are conducted to validate the proposed algorithms on a large set of
randomly generated problem instances.

Keywords: bi-objective optimization; heuristics; discrete time/cost trade-off; project scheduling

1. Introduction

The importance of time/cost trade-offs in projects have been recognized since the development
of the critical path method (CPM) in the late 1950s [1]. Sustainable project management requires the
resources to be used in an economical and sustainable way [2–4]. In project management, it is desirable
that shorter project duration is achieved at a lower total cost. The project duration can usually be
shortened by accelerating the execution of activities. Most often expediting the activity durations needs
to allocate more resources to these activities. In many real-life cases, such as construction projects,
the resources (e.g., human resources or heavy equipment) tend to be discrete and measured by a single
non-renewable one (capital or cost). Therefore, the duration of project activities can be treated as
discrete non-increasing functions of the cost. This results in the discrete time/cost trade-off problem
(DTCTP) [1]. Harvey and Patterson [5] and Hindelang and Muth [6] first proposed the DTCTP, which is
a special case of the multi-mode resource-constrained project scheduling problem [7].

In the DTCTP, each activity has multiple execution modes which are characterized by specific
time and cost combinations. In terms of the objective function, the DTCTP can be divided into
three versions: the deadline problem (DTCTP-D), the budget problem (DTCTP-B) and the time/cost
trade-off curve problem (DTCTP-C). In the DTCTP-D, given a set of modes and a project deadline,
the objective is to minimize the total project cost by specifying an execution mode for each activity.

Sustainability 2018, 10, 2802; doi:10.3390/su10082802 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0003-0986-3956
http://dx.doi.org/10.3390/su10082802
http://www.mdpi.com/journal/sustainability
http://www.mdpi.com/2071-1050/10/8/2802?type=check_update&version=2

Sustainability 2018, 10, 2802 2 of 15

In the DTCTP-B, a project budget is given and the objective is to determine the modes that minimize the
project makespan. In the DTCTP-C, the objective is to determine the Pareto curve that minimizes the
project makespan and cost simultaneously. In the remainder of this paper, we focus on the DTCTP-C.

Numerous exact and heuristic methods have been proposed for solving the DTCTP. Because the
DTCTP is strongly NP-hard [8], exact algorithms—such as a branch and bound procedure and
dynamic programming—can only solve relatively small instances [9–12]. Heuristic or meta-heuristic
methods are more practical for solving large instances within a reasonable time [13–15]. For more
detailed excellent literature reviews on the DTCTP, we refer to De et al. [9] and Demeulemeester and
Herroelen [1].

Despite the vast majority of the research efforts in the DTCTP, there are few studies that have
considered solving the DTCTP with more than 200 activities. Sonmez and Bettemir [16] developed a
hybrid genetic algorithm for the DTCTP-D and tested it on problem instances with up to 630 activities.
However, they only use ten instances to evaluate their algorithm which limits the generalizability of the
algorithm. To the best of our knowledge, there are no heuristic algorithms for the DTCTP-C that solves
representative instances with up to 500 activities in the existing literature. However, in practice, it is
common that a project will most likely consist of hundreds of activities [17]. This motivates us to study
efficient heuristic algorithms. Moreover, the lack of computational performance analysis is another
common drawback for the past research in the DTCTP. Some papers only used simple examples to
test their algorithms [18,19], which usually cannot fully prove the effectiveness and adaptability of
the algorithms.

The purpose of this paper is to develop and verify two heuristics and to obtain a good appropriate
efficient set for the large-scale DTCTP-C. The contributions of this paper are three-fold:

(1) We propose a bi-objective hybrid genetic algorithm (BHGA) for the DTCTP-C by introducing
a critical path based crossover operator in the non-dominated sorting genetic algorithm II
(NSGA-II) [20]. As an effective multi-objective optimization meta-heuristic algorithm, NSGA-II
has been widely used to solve the DTCTP [21,22]. Our BHGA further exploits the knowledge of
the DTCTP-C and enhances the searching efficiency of the NSGA-II for the DTCTP-C.

(2) We propose a steepest descent heuristic for the DTCTP-C to obtain efficient solutions by iteratively
solving the DTCTP with different deadlines. We design a special neighborhood search procedure
based on the inherent characteristics of the DTCTP-C. Our experimental results show that the
proposed steepest descent heuristic outperforms the NSGA-II based BHGA.

(3) We conduct extensive computational performance analysis for the proposed heuristics. We use
factorial experimental design to randomly generate a large number of instances (with up to 500
activities) in order to validate and compare our heuristic approaches.

This paper is organized as follows. In the next section, we give the description and the
model formulation of the DTCTP-C. Section 3 provides a bi-objective hybrid genetic algorithm
for the DTCTP-C. In Section 4, we propose a steepest descent heuristic for the DTCTP-C.
In Section 5, we present the computational results. Finally, Section 6 concludes the paper with
future research directions.

2. Problem Statement and Model Formulation

2.1. DTCTP-C

The DTCTP-C under study is described as follows. A project network G = (N, A) is represented in
activity-on-node format, where the set of nodes N denotes the activities N = {1, . . . , n}, and the set
of directed arcs A represents the finish–start, zero-lag precedence relations A ⊆ N × N. The nodes
are topologically numbered from the single start node 1 to the single terminal node n, n = |N|,
where nodes 1 and n are dummy activities. Each activity i (i = 1, . . . , n) has |Mi| modes, characterized
by a duration–cost pair (dij, cij), j = 1, . . . , |Mi|, where Mi is the set of modes of activity i,

Sustainability 2018, 10, 2802 3 of 15

Mi = {1, 2, . . . , m}. The duration dij of an activity i ∈ N is a discrete, non-increasing function of
the amount of a single non-renewable resources (cij) committed to it, i.e., if k < l (k, l ∈Mi), then dik < dil
and cik > cil. The dummy activities 1 and n have only one execution mode with zero duration/cost.
For the remainder of the paper, we need to assume the reader be familiar with CPM [1].

A sequence of distinct activities is called a path. The length of a path is calculated as the sum of
the durations of all activities belonging to this path. A critical path is the longest path from activity
1 to activity n. There may exist more than one critical path. Each delay caused to a critical (path)
activity incurs a delay in the global project. For a more detailed discussion on the CPM, we refer to
Demeulemeester and Herroelen [1].

In the DTCTP, given a mode mi = (dij, cij) (j = 1, . . . , Mi) for each activity i, the start time of activity
i can be computed as the maximum of the earliest finish times of all the predecessors of activity i in
accordance with the CPM.

The solution of the DTCTP-C can be represented by a baseline schedule or a selected set of modes,
i.e., a mode assignment vector m = (m1, m2, . . . , mn), mi ∈ Mi, i ∈ N. Given a mode assignment
vector m, the corresponding project makespan t(m) is the critical path length and the project cost c(m)
is the sum of the cost for all the activities. Then, the baseline schedule, i.e., a vector SB = (s1, s2, . . . , sn)

of start times (si ≥ 0, i ∈ N), can be obtained by calculating the earliest start time of each activity based
on the CPM.

2.2. Model Formulation of the DTCTP-C

The DTCTP-C involves the determination of a set of efficient project baseline schedules (or a set
of efficient mode assignment vectors), while satisfying the precedence relations constraints with the
objective of minimizing both the project makespan and the project cost. The bi-objective mixed integer
linear programming formulation for the DTCTP-C is written as follows:

minimize sn (1)

minimize ∑ i∈N ∑ m∈Mi cimxim (2)

subject to:

∑ m∈Mi xim = 1 ∀(i, j) ∈ A (3)

si + ∑ m∈Mi dimxim ≤ sj ∀(i, j) ∈ A (4)

si ≥ 0 ∀i ∈ N (5)

xim ∈ {0, 1} ∀m ∈ Mi, ∀i ∈ N (6)

where si and xim are decision variables. xim is a 0–1 variable which is 1 if mode m is selected for
executing activity i and 0 otherwise. The first objective (1) minimizes the project makespan t(m) which
is equal to the start time sn of the dummy end activity n. The second objective (2) minimizes the total
project cost c(m). The constraints in (3) ensure that exactly one execution mode is assigned to each
activity. The constraints in (4) represent the precedence relations. The constraints in (5) ensure that the
activity’s start times are non-negative. The constraints in (6) guarantee that xim is a binary variable.

A mode assignment vector m = (m1, m2, . . . , mn) is called efficient if there does not exist any other
mode assignment vector m′ such that the project makespan t(m′) ≤ t(m) and the total project cost
c(m′) ≤ c(m), with at least one strict inequality. The corresponding objective function value vector
(t(m), c(m)) is called non-dominated. The set of non-dominated objective function value vectors ND is
also referred to as the Pareto frontier or the time/cost trade-off curve. The objective of the DTCTP-C
boils down to find a set of efficient solutions (mode assignment vectors or modes): the efficient
(non-dominated or Pareto-optimal) set E.

Sustainability 2018, 10, 2802 4 of 15

2.3. Example

We use an example to illustrate the problem under consideration. Figure 1 shows a project
network, in which each node has a corresponding activity number placed inside the node. For each
activity, its modes are shown next to the node. The activities 1 and 5 are two dummy activities and
have only one mode with zero duration/cost. Activity 2/3/4 has 2/1/3 mode(s), respectively.

Sustainability 2018, 10, x FOR PEER REVIEW 4 of 15

2.3. Example

We use an example to illustrate the problem under consideration. Figure 1 shows a project
network, in which each node has a corresponding activity number placed inside the node. For each
activity, its modes are shown next to the node. The activities 1 and 5 are two dummy activities and
have only one mode with zero duration/cost. Activity 2/3/4 has 2/1/3 mode(s), respectively.

There are six mode combinations for the example project. In other words, there are six solutions
(mode assignment vectors) in total for this DTCTP-C instance. In Figure 2, the six solutions are
represented in a two-dimensional objective space. The number besides each point shows the
corresponding project makespan, cost, and mode assignment vector, respectively. The DTCTP-C
aims to find the Pareto-optimal solutions which have been associated to the points P1, P2, P3, P5 and
P6 in Figure 2. Figure 2 also shows the Pareto frontier.

Figure 1. The example project network.

Figure 2. The Pareto frontier of the example project.

3. Bi-Objective Hybrid Genetic Algorithm

NSGA-II is a fast and elitist multi-objective algorithm that aims at obtaining good
approximations of the non-dominated set of solutions [20,23–25]. In order to exploit the knowledge
of the DTCTP-C, we introduce a critical path based crossover operator into the NSGA-II. The
resulting algorithm is a bi-objective hybrid genetic algorithm (BHGA). Unlike the standard crossover
operators which tend to randomly choose parts of the good solutions without any guarantee, our
critical path based crossover operator can guarantee the offspring inherit the parts of the good
solutions that contribute most to the objectives.

P1: (4, 48)
(1,1,1,1,1)

P2: (5, 38)
(1,1,1,2,1)

P4: (7, 33)
(1,1,1,3,1)

P3: (6, 36)
(1,2,1,1,1)

P5: (7, 26)
(1,2,1,2,1) P6: (9, 21)

(1,2,1,3,1)

10

15

20

25

30

35

40

45

50

55

60

3 4 5 6 7 8 9 10

Pr
oj

ec
t c

os
t

Project makespan

Pareto frontier

(Project makespan, cost)
Mode assignment vector

Figure 1. The example project network.

There are six mode combinations for the example project. In other words, there are six solutions
(mode assignment vectors) in total for this DTCTP-C instance. In Figure 2, the six solutions are
represented in a two-dimensional objective space. The number besides each point shows the
corresponding project makespan, cost, and mode assignment vector, respectively. The DTCTP-C
aims to find the Pareto-optimal solutions which have been associated to the points P1, P2, P3, P5 and
P6 in Figure 2. Figure 2 also shows the Pareto frontier.

Sustainability 2018, 10, x FOR PEER REVIEW 4 of 15

2.3. Example

We use an example to illustrate the problem under consideration. Figure 1 shows a project
network, in which each node has a corresponding activity number placed inside the node. For each
activity, its modes are shown next to the node. The activities 1 and 5 are two dummy activities and
have only one mode with zero duration/cost. Activity 2/3/4 has 2/1/3 mode(s), respectively.

There are six mode combinations for the example project. In other words, there are six solutions
(mode assignment vectors) in total for this DTCTP-C instance. In Figure 2, the six solutions are
represented in a two-dimensional objective space. The number besides each point shows the
corresponding project makespan, cost, and mode assignment vector, respectively. The DTCTP-C
aims to find the Pareto-optimal solutions which have been associated to the points P1, P2, P3, P5 and
P6 in Figure 2. Figure 2 also shows the Pareto frontier.

Figure 1. The example project network.

Figure 2. The Pareto frontier of the example project.

3. Bi-Objective Hybrid Genetic Algorithm

NSGA-II is a fast and elitist multi-objective algorithm that aims at obtaining good
approximations of the non-dominated set of solutions [20,23–25]. In order to exploit the knowledge
of the DTCTP-C, we introduce a critical path based crossover operator into the NSGA-II. The
resulting algorithm is a bi-objective hybrid genetic algorithm (BHGA). Unlike the standard crossover
operators which tend to randomly choose parts of the good solutions without any guarantee, our
critical path based crossover operator can guarantee the offspring inherit the parts of the good
solutions that contribute most to the objectives.

P1: (4, 48)
(1,1,1,1,1)

P2: (5, 38)
(1,1,1,2,1)

P4: (7, 33)
(1,1,1,3,1)

P3: (6, 36)
(1,2,1,1,1)

P5: (7, 26)
(1,2,1,2,1) P6: (9, 21)

(1,2,1,3,1)

10

15

20

25

30

35

40

45

50

55

60

3 4 5 6 7 8 9 10

Pr
oj

ec
t c

os
t

Project makespan

Pareto frontier

(Project makespan, cost)
Mode assignment vector

Figure 2. The Pareto frontier of the example project.

3. Bi-Objective Hybrid Genetic Algorithm

NSGA-II is a fast and elitist multi-objective algorithm that aims at obtaining good approximations
of the non-dominated set of solutions [20,23–25]. In order to exploit the knowledge of the DTCTP-C,
we introduce a critical path based crossover operator into the NSGA-II. The resulting algorithm is a
bi-objective hybrid genetic algorithm (BHGA). Unlike the standard crossover operators which tend to
randomly choose parts of the good solutions without any guarantee, our critical path based crossover

Sustainability 2018, 10, 2802 5 of 15

operator can guarantee the offspring inherit the parts of the good solutions that contribute most to
the objectives.

3.1. Schedule Encoding and Decoding

As mentioned in Section 2.1, a schedule can be determined by a mode assignment vector.
Therefore, in the BHGA, a mode assignment vector m = (m1, m2, . . . , mn) is used as a chromosome.
The length of each chromosome is n = |N|. Each gene mi ∈ Mi (i ∈ N) in the chromosome corresponds
to a mode of activity i. Note that since the dummy start and end activities have zero duration/cost,
their modes are always unchanged in the BHGA.

Once a mode assignment vector (chromosome) is given, the baseline schedule SB = (s1, s2, . . . , sn)

can be obtained by calculating the earliest start time of each activity in accordance with the CPM.
In this way, a chromosome is decoded into a schedule.

With the above-mentioned schedule encoding and decoding mechanisms, given a chromosome,
the corresponding objective function values (project duration and cost) can be calculated according
to Equations (1) and (2). The fitness of a chromosome is represented by their non-domination rank
(see next section).

Consider the example project in Figure 1, a possible chromosome for this project is shown in
Figure 3. The length of this chromosome is equal to the number of activities, i.e., 5. Each gene
corresponds to a mode number. For example, the mode number of activities 3 and 4 are 1 and 3,
respectively. We can get the baseline schedule (0, 0, 0, 5, 9) by decoding this chromosome. The resulting
project duration and cost are 9 and 21, respectively.

Sustainability 2018, 10, x FOR PEER REVIEW 5 of 15

3.1. Schedule Encoding and Decoding

As mentioned in Section 2.1, a schedule can be determined by a mode assignment vector.
Therefore, in the BHGA, a mode assignment vector = (, , … ,) is used as a chromosome.
The length of each chromosome is = | | . Each gene ∈ 	(∈) in the chromosome
corresponds to a mode of activity i. Note that since the dummy start and end activities have zero
duration/cost, their modes are always unchanged in the BHGA.

Once a mode assignment vector (chromosome) is given, the baseline schedule =(, , … ,) can be obtained by calculating the earliest start time of each activity in accordance with
the CPM. In this way, a chromosome is decoded into a schedule.

With the above-mentioned schedule encoding and decoding mechanisms, given a chromosome,
the corresponding objective function values (project duration and cost) can be calculated according
to Equations (1) and (2). The fitness of a chromosome is represented by their non-domination rank
(see next section).

Consider the example project in Figure 1, a possible chromosome for this project is shown in
Figure 3. The length of this chromosome is equal to the number of activities, i.e., 5. Each gene
corresponds to a mode number. For example, the mode number of activities 3 and 4 are 1 and 3,
respectively. We can get the baseline schedule (0, 0, 0, 5, 9) by decoding this chromosome. The
resulting project duration and cost are 9 and 21, respectively.

Figure 3. A possible chromosome corresponding to the example project of Figure 1.

3.2. Selection Operator

The binary tournament selection operator is used for selecting parent chromosomes. Two
chromosomes are randomly chosen and the one with a lower non-domination rank is added to the
matting pool. However, if both chromosomes have the same rank, the one with a greater crowding
distance value will be chosen.

In NSGA-II, the non-domination rank of each chromosome is obtained by the fast non-
dominated sorting approach [20]. Assume that the current population size is P, we find out all the
non-dominated chromosomes and put them into the non-dominated set F1 with rank 1. Then, we find
out the non-dominated chromosomes from the remaining population and put them into the non-
dominated set F2 with rank 2. Repeat the process until all chromosomes are put into the
corresponding non-dominated set Fp with rank p. By doing so, the population is divided into p (p ≤
P) disjoint sub-populations (non-dominated sets) and satisfies the condition that the non-dominated
set with a smaller index dominates the non-dominated set with a larger index (i.e., dominates ,
if <).

For chromosomes with either the smallest or the largest function values, their crowding
distances are infinite. For other chromosomes, crowding distance is defined as the absolute
normalized difference between the objective function values of two adjacent chromosomes.
Therefore, the chromosomes with greater crowding distance value have more opportunities to be
involved in the evolution process, which can maintain the population diversity.

3.3. Critical Path Crossover Operator

The crossover operator ensures that the good characteristics of the parent chromosomes can be
inherited by the offspring. Given a chromosome, the corresponding project duration is determined
by the critical path length. In the DTCTP-C, a short critical path length and a low total cost are
desirable characteristics in a chromosome. However, shorter project duration is usually accompanied
by higher project cost. Therefore, it is not always reasonable to transmit all activities on the critical

Figure 3. A possible chromosome corresponding to the example project of Figure 1.

3.2. Selection Operator

The binary tournament selection operator is used for selecting parent chromosomes.
Two chromosomes are randomly chosen and the one with a lower non-domination rank is added to
the matting pool. However, if both chromosomes have the same rank, the one with a greater crowding
distance value will be chosen.

In NSGA-II, the non-domination rank of each chromosome is obtained by the fast non-dominated
sorting approach [20]. Assume that the current population size is P, we find out all the non-dominated
chromosomes and put them into the non-dominated set F1 with rank 1. Then, we find out the
non-dominated chromosomes from the remaining population and put them into the non-dominated set
F2 with rank 2. Repeat the process until all chromosomes are put into the corresponding non-dominated
set Fp with rank p. By doing so, the population is divided into p (p ≤ P) disjoint sub-populations
(non-dominated sets) and satisfies the condition that the non-dominated set with a smaller index
dominates the non-dominated set with a larger index (i.e., Fi dominates Fj, if i < j).

For chromosomes with either the smallest or the largest function values, their crowding distances
are infinite. For other chromosomes, crowding distance is defined as the absolute normalized difference
between the objective function values of two adjacent chromosomes. Therefore, the chromosomes
with greater crowding distance value have more opportunities to be involved in the evolution process,
which can maintain the population diversity.

3.3. Critical Path Crossover Operator

The crossover operator ensures that the good characteristics of the parent chromosomes can be
inherited by the offspring. Given a chromosome, the corresponding project duration is determined by

Sustainability 2018, 10, 2802 6 of 15

the critical path length. In the DTCTP-C, a short critical path length and a low total cost are desirable
characteristics in a chromosome. However, shorter project duration is usually accompanied by higher
project cost. Therefore, it is not always reasonable to transmit all activities on the critical path to
the offspring. Instead, we set a threshold τ that determines the number of critical path activities
transmitted to the offspring. In doing so, we might generate offspring with satisfying performance in
both project duration and cost.

Based on the above observations, we develop a critical path crossover operator and the procedure
is shown in Algorithm 1. In the critical path crossover operator, we first define the critical path ratio
(CPR) as the proportion of the critical activities in a chromosome i, i.e., CPRi = Nc/N, where Nc

is the number of critical activities in the corresponding schedule after decoding chromosome i.
Each chromosome is chosen for crossover with probability Pc according to tournament selection.
Given two chromosomes to be crossed, we select the one with shorter (longer) makespan as the father
(mother) chromosome. The son chromosome is generated in the following way: the value of the
threshold τ for the CPR is randomly selected from the interval [l, u] (0 < l < u < 1, l and u are
parameters and need to be determined by users). If the CPR of the father chromosome is less than
τ, then the son inherits all critical activities of the father, and the mother determines the remaining
positions. Otherwise, the son only inherits 100× τ% of critical activities of the father, and the mother
determines the remaining positions. In order to ensure the diversity of the offspring, the daughter
is generated in such a way that the daughter inherits the non-critical path activities of the mother
chromosome and the father determines the remaining positions.

Algorithm 1. The Critical Path Based Crossover Operator.

Step 1: Given two chromosomes, select the one with shorter (longer) makespan as the father
(mother) chromosome.

Step 2: Compute the critical path ratio (CPR) for the father chromosome CPRf.

Step 3: Generate the son chromosome.

• Choose τ randomly from the interval [l, u].
• If CPRf < τ

Put the genes that lie on the critical path of the father chromosome to the corresponding
positions of the son chromosome.

• Else

Select 100× τ% of critical activities randomly from the father chromosome and put them
to the corresponding positions of the son chromosome.

• End if
• The remaining positions of the son are determined by the corresponding genes of the

mother chromosome.

Step 4: Generate the daughter chromosome

• Put the genes that lie on the non-critical path of the mother chromosome to the corresponding
positions of the daughter chromosome.

• The remaining positions of the daughter chromosome are inherited from the corresponding
genes of the father chromosome.

3.4. Mutation Operator

In our algorithm, one-point mutation is used. Each chromosome has a probability Pm to be
selected to mutate. For the chosen chromosome, one of its genes is randomly selected and its value is
randomly changed to a different mode.

Sustainability 2018, 10, 2802 7 of 15

3.5. Algorithm Framework

In the BHGA, initial populations are generated randomly. In each iteration of the BHGA,
the genetic operators (i.e., selection, crossover, and mutation operators) are applied to the chromosomes.
The chromosomes with better fitness values have a higher chance to survive and enter next iteration.
After a given number of iterations, the remaining populations will belong to or be close to the Pareto
optimal set. The framework of the BHGA is described in Algorithm 2.

Algorithm 2. The Framework of the BHGA.

Step 1: Initialization. Generate the initial population P with size N randomly. Compute the objective
function value for each chromosome of P.

Step 2: Fast non-dominated sorting. Perform fast non-dominated sorting on the initial population P.
Compute the rank and the crowding distance for each chromosome of P.

Step 3: Genetic operation.

Select N/2 chromosomes from P using binary tournament, resulting in the population Q.
Generate offspring population R by performing the critical path crossover and mutation operator on Q.
P’← P ∪ Q.
Perform fast non-dominated sorting on population P’.
Update P by selecting N best chromosomes from P’ based on the rank and the crowding distance.

Step 4: If the maximum number of generations is not reached, then go to Step 3; else: return P.

4. Steepest Descent Heuristic

The basic idea of our steepest descent heuristic is as follows. The solution space of the DTCTP-C
could be divided into different parts in terms of the project deadline. For a given project deadline,
we are able to find a solution with minimum project cost (this corresponds to solving a DTCTP-D). For a
well-chosen project deadline, the resulting project duration and cost are most likely non-dominated.
Hence, in this section, we obtain efficient solutions for the DTCTP-C by iteratively solving the DTCTP
with different deadlines (i.e., DTCTP-D). In each iteration, given a project deadline, the solution that
minimizes the total project cost is determined with the steepest descent search procedure presented
in this section. Then the resulting solution is used as a start point for the next iteration. The solution
returned by each iteration is (appropriately) Pareto-optimal.

4.1. Algorithm Framework

The steepest descent heuristic mainly consists of two stages: an initialization stage and a
steepest descent search stage. Algorithm 3 gives the framework of our steepest descent heuristic.
In Algorithm 3, a solution is also represented by a mode assignment vector m = (m1, m2, . . . , mn) which
specifies the execution mode mi for each activity i.

In the initialization stage, the modes of each activity are sorted in the non-decreasing order of
durations and labeled from 1 to |Mi|. The initial solution (mode assignment) m is generated by setting
the mode of each activity at their crash mode mcrash = (1, 1, . . . , 1)n. In the crash mode, all activities are
set to their shortest duration. The normal mode mnormal in which all activities are set to their normal
modes (longest duration) and the crash mode mcrash are obviously two efficient solutions. Therefore,
they are added to the efficient set E. ITER is a predefined number used to control the number of
repetitions of the steepest descent search in stage 2.

Sustainability 2018, 10, 2802 8 of 15

Algorithm 3. The Framework of the Steepest Descent Heuristic.

Stage 1: Initialization.
For each activity i, sort its modes in the order of nondecreasing duration and label the resulting
modes from 1 to |Mi|.
m← mcrash.
E← {mcrash, mnormal}.
ND← {(t(mcrash), c(mcrash)), (t(mnormal), c(mnormal))}.
step←

⌊(
t
(

mnormal
)
− t

(
mcrash

))
/ITER

⌋
.

δ← t(mcrash) + step.
Stage 2: Iterative steepest descent.

For i = 1 to ITER
m’← sd_search(m, δ).
δ← t(m′) + step.
if c(m’) ≤ c(m) then E← E ∪ {m’}.
m← m’.

End for
For each m ∈ E

calculate t(m), c(m).
ND← ND ∪ {(t(m), c(m))}.

End for
Return efficient set E and non-dominated set ND.

In the second stage, the steepest descent search is repeated for ITER times to iteratively solve the
DTCTP-D(δ) with different deadline δ. These deadlines are determined as follows. In the DTCTP, we
can obtain the longest (t(mnormal)) and shortest project makespan (t(mcrash)) by choosing the normal
and crash mode, respectively. Let the time increment step =

⌊(
t
(
mnormal) − t

(
mcrash))/ITER

⌋
. Then,

in each iteration, the project deadline δ will be updated by adding step to the current deadline δ which
is calculated according to the current mode assignment.

In each iteration of Stage 2, the specific DTCTP-D(δ) is solved by the steepest decent search
procedure ‘sd_search()’. ‘sd_search()’ returns a mode assignment with minimum total project
cost. After completing all iterations, we obtain the set of efficient solutions E and the corresponding
non-dominated set ND. It can be observed that ITER (or step) determines the value of different project
deadlines and hence it has an influence on the quality and quantity of the solutions in E.

4.2. Neighborhood and the Steepest Decent Search Procedure ‘sd_search()’

We construct the neighborhood of a specific mode assignment vector m = (m1, m2, . . . , mn) by
changing the mode mi of each activity i to its right adjacent one mi

′, i ∈ N (mi
′= mi + 1). We call this

operation right move. Because the modes of each activity are already sorted in the non-decreasing
order of durations (this also leads to a decreasing order of cost), the right move guarantees that the
resulting total project cost satisfies c(m′) ≤ c(m′). The maximum number of possible moves equals n.

Given a mode assignment m, all of its neighbors are evaluated and then the one that yields the
biggest reduction in cost without violating the project deadline constrains is chosen as the updated
starting solution. In order to avoid calculating critical path for every move, we determine whether
the project deadline constraint is violated in the following way. For an activity on the critical path, it
is allowed to move to its neighbor mode, only when the difference between the activity’s neighbor
duration and current duration is less than the difference between the project deadline and critical path
length. For an activity that is not on the critical path, it is allowed to move to its neighbor mode, only
when the difference between the activity’s neighbor duration and current duration is less than the
difference between the project deadline and critical path length plus the activity’s total float. In doing
so, certain computational time can be reduced.

Sustainability 2018, 10, 2802 9 of 15

If the neighborhood is examined entirely without any improvement, we have found a local
optimum and terminate the search procedure.

In Algorithm 4, we give the pseudo-code for the steepest decent search procedure ‘sd_search()’.
CPL(m) is the critical path length that is calculated based on the mode assignment m. CA(m) is the set
of activities that lie on the critical path(s) given the mode assignment m. Best_activity represents the
activity that leads to the best improvement in the total project cost if a right move is performed on this
activity. CB is the current best improvement value of the total cost. TF(i) represents the total float of
activity i.

Algorithm 4. The Steepest Decent Search Procedure.

procedure sd_search(m, δ)
best_activity← 0.
Repeat

CB← 0.
∆d← δ − CPL(m).
For each activity i and its current mode number mi

If i ∈ CA(m) and mi 6= 1 and di(mi+1) − dimi < ∆d
If cimi − ci(mi+1) > CB

CB← cimi − ci(mi+1) .
best_activity← i.

End if
End if
If i /∈ CA(m) and mi 6= 1 and di(mi+1) − dimi < ∆d + TF(i)

If cimi − ci(mi+1) > CB
CB← cimi − ci(mi+1)

best_activity← i.
End if

End if
End for
If best_activity 6= 0 then mbest_activity ←mbest_activity + 1.

Until CB == 0
m← (m1, m2, . . . , mn).
Return m.

4.3. Example

In this section, we use the example of Figure 1 to illustrate our steepest descent heuristic. We will
let the steepest descent heuristic iterates three times (i.e., ITER = 3). The three iterations correspond
to three rectangles (labeled with “Iteration 1/2/3”) that are shown in Figure 4. Figure 4 is created
by adding the three rectangles to Figure 2. Each rectangle is associated with a project deadline and
hence resulting in a DTCTP-D. In each iteration, a mode assignment vector will be used as the input,
and all of its neighbors (associated with each rectangle) will be evaluated without violating the project
deadline constraints. In other words, we need to find a mode assignment that minimizes the project
cost given the project deadline specified by each rectangle.

As shown in Figure 4, points P1 and P6 correspond to crash mode and normal mode, respectively.
Therefore, P1 (corresponds to the mode (1, 1, 1, 1, 1)) and P6 (corresponds to the mode (1, 2, 1, 3, 1)) are
selected as two efficient solutions and added to the non-dominated set in the initialization stage.

Then the second stage which consists of three iterations begins. In Iteration 1, the project deadline
is set to 6. The crash mode P1 (1, 1, 1, 1, 1) is used as the initial solution. According to the definition of
the right move given in Section 4.2, P2 and P3 are two neighbors of P1. Since selecting P3 will yield the
biggest reduction in cost (48 − 36 = 12) and the total cost of P3 (which is 36) is lower than that of P1

(which is 48), we add P3 to the non-dominated set, and P3 will be the input of the second iteration.

Sustainability 2018, 10, 2802 10 of 15

In Iteration 2, the project deadline is 8. P3 has only one neighbor P5 and the total cost of P5 (which
is 26) is lower than that of P3 (which is 36). Hence P5 is added to the non-dominated set and will be the
input of the next iteration. In the last iteration, there is only one solution P6. Because P6 corresponds to
the normal mode and has been added to the non-dominated set in the initialization stage, there are no
other solutions to evaluate and the steepest descent heuristic terminates.

In this example, the steepest descent heuristic found four efficient solutions (P1, P3, P5, and P6)
and only P2 is missed.

Sustainability 2018, 10, x FOR PEER REVIEW 10 of 15

In this example, the steepest descent heuristic found four efficient solutions (P1, P3, P5, and P6)
and only P2 is missed.

Figure 4. The DTCTP-C instance can be seen as three DTCTP-D instances.

5. Computational Experiments

We have randomly generated a large number of problem instances to compare the performance
of our algorithms. All of our algorithms are implemented in Matlab version R2010b and run on an
Intel Core i5 2.40 GHz portable computer equipped with Windows 7. It is necessary to note that there
is no research that has reported computational results for the large-scale DTCTP-C. Therefore, we
only compare the performance of our two algorithms and our results can be served as the benchmark
for future research.

5.1. Problem Instances Generation

In order to evaluate our algorithms, RanGen2 [26,27], which can generate strongly random
networks in activity-on-the-node format, is used to construct 600 test instances using the parameter
settings in Table 1. RanGen2 uses the serial/parallel indicator (I2) to measure the topological structure
of a network. I2 measures the closeness of a network to a parallel or serial graph, ranging from 0
(indicating completely parallel) to 1 (indicating completely serial). For more information about the I2
indicator, we refer to Valadares Tavares et al. [28]. Specifying 5 settings for the number of activities,
4 settings for the number of execution modes, and 3 settings for the I2, we generated 10 problem
instances for each of the 5 × 4 × 3 parameter settings, resulting in 600 instances in total.

Table 1. The parameter settings of the problem instances.

Number of activities 100; 200; 300; 400; 500
Number of modes Fixed at 4; 8; or randomly chosen from the interval [4, 20]; [8, 30]
I2 0.3; 0.5; 0.7
Activity durations Randomly selected from the interval [1, 50]
Activity normal costs Randomly selected from the interval [1, 10]
Slope Randomly selected from the interval [1, 8]

In DTCTP, the types of cost functions could be linear, convex, concave, or random. We focus on
the random one which is more general [26]. Following Demeulemeester et al. [26], the modes of an
activity are generated in the following way: Firstly, the number of modes |Mi| is determined
according to the modes parameter shown in Table 1. Then, |Mi| different values are randomly chosen

P1: (4, 48)
(1,1,1,1,1)

P2: (5, 38)
(1,1,1,2,1)

P4: (7, 33)
(1,1,1,3,1)

P3: (6, 36)
(1,2,1,1,1)

P5: (7, 26)
(1,2,1,2,1) P6: (9, 21)

(1,2,1,3,1)

10

15

20

25

30

35

40

45

50

55

60

3 4 5 6 7 8 9 10

Pr
oj

ec
t c

os
t

Project makespan

Iteration 1
δ	≤	6

Iteration 2
δ ≤ 8

Iteration 3
δ ≤ 10

Figure 4. The DTCTP-C instance can be seen as three DTCTP-D instances.

5. Computational Experiments

We have randomly generated a large number of problem instances to compare the performance
of our algorithms. All of our algorithms are implemented in Matlab version R2010b and run on an
Intel Core i5 2.40 GHz portable computer equipped with Windows 7. It is necessary to note that there
is no research that has reported computational results for the large-scale DTCTP-C. Therefore, we only
compare the performance of our two algorithms and our results can be served as the benchmark for
future research.

5.1. Problem Instances Generation

In order to evaluate our algorithms, RanGen2 [26,27], which can generate strongly random
networks in activity-on-the-node format, is used to construct 600 test instances using the parameter
settings in Table 1. RanGen2 uses the serial/parallel indicator (I2) to measure the topological structure
of a network. I2 measures the closeness of a network to a parallel or serial graph, ranging from 0
(indicating completely parallel) to 1 (indicating completely serial). For more information about the I2
indicator, we refer to Valadares Tavares et al. [28]. Specifying 5 settings for the number of activities,
4 settings for the number of execution modes, and 3 settings for the I2, we generated 10 problem
instances for each of the 5 × 4 × 3 parameter settings, resulting in 600 instances in total.

Table 1. The parameter settings of the problem instances.

Number of activities 100; 200; 300; 400; 500

Number of modes Fixed at 4; 8; or randomly chosen from the interval [4, 20]; [8, 30]
I2 0.3; 0.5; 0.7
Activity durations Randomly selected from the interval [1, 50]
Activity normal costs Randomly selected from the interval [1, 10]
Slope Randomly selected from the interval [1, 8]

Sustainability 2018, 10, 2802 11 of 15

In DTCTP, the types of cost functions could be linear, convex, concave, or random. We focus on the
random one which is more general [26]. Following Demeulemeester et al. [26], the modes of an activity
are generated in the following way: Firstly, the number of modes |Mi| is determined according to the
modes parameter shown in Table 1. Then, |Mi| different values are randomly chosen from the discrete
uniform distribution [1, 50] as the durations and are sorted in ascending order (di|Mi|, di(|Mi|−1), . . . ,
di1). In order to generate activity cost, starting with the normal duration mode di|Mi|, its corresponding
cost ci|Mi| is randomly chosen from the discrete uniform distribution [1,10]. By randomly choosing
a slope s from the discrete uniform distribution [1, 8], we can calculate the cost of the next mode as
ci(|Mi|−1) = ci|Mi| + s × (di|Mi| − di(|Mi|−1)), and we repeat this stepwise procedure until the mode
corresponding to the maximum cost is reached.

5.2. Parameter Settings of the Algorithms

There are multiple settings of the parameters of our algorithms. For the BHGA, the parameters
include: the threshold τ in the critical path crossover, crossover probability, mutation probability,
population size, and the maximum number of generations. In our preliminary experiments, we found
that fixing the first three parameters as the following values is decent enough to produce good results:

• Threshold τ is randomly chosen from the interval [0.3, 0.9].
• Crossover probability = 0.8.
• Mutation probability = 0.2.

For the remaining parameters of the BHGA, assigning two settings for the population size,
and two settings for the maximum number of generations (as shown in Table 2), we therefore obtain
four variants of the BHGA: BHGA1, BHGA2, BHGA3, and BHGA4. For the steepest decent heuristic,
the maximum number of iterations (ITER) is the only parameter and is assigned two settings (as shown
in Table 2). Hence, we obtain two variants: SD1 and SD2.

Table 2. The parameter settings of the algorithms.

BHGA1
Population size 50
Number of generations 50

BHGA2
Population size 50
Number of generations 100

BHGA3
Population size 100
Number of generations 50

BHGA4
Population size 100
Number of generations 100

SD1
Number of iterations 50

SD2
Number of iterations 100

5.3. Experimental Results

In order to evaluate the performance of our six algorithms, we calculate the following metrics for
each algorithm over all instances: the CPU time and the coverage metric e. In our experiment, the exact
Pareto-optimal solutions are hardly known since the scale of the test instances is large. In this case,
the coverage metric e which measures the percentage of efficient solutions in the obtained efficient
set E that is produced by a specific algorithm is a suitable alternative. For a given algorithm ALG
(ALG ∈ {BHGA1, BHGA2, BHGA3, BHGA4, SD1, SD2}), the corresponding coverage metric e(ALG)
is calculated as [29]

e(ALG) =
|E(ALG) ∩ E|

|E| (7)

Sustainability 2018, 10, 2802 12 of 15

where E(ALG) is the efficient set obtained by algorithm ALG. Efficient set E is obtained by removing
the dominated modes from the union set E(BHGA1) ∪ E(BHGA2) ∪ E(BHGA3) ∪ E(BHGA4) ∪ E(SD1)
∪ E(SD2). Obviously, the coverage metric value ranges from 0 to 1. For a specific algorithm, the more
efficient solutions it contributes, the closer its coverage metric value will be to 1.

Table 3 presents the average CPU time over all problem instances solved by each of the six
algorithms. Table 4 has a similar format to Table 3 and shows the mean, median, and interquartile
range (IQR) of the coverage metric e for different algorithms. As shown in the row labeled ‘All
instances’ in Tables 3 and 4, the proposed steepest decent heuristic (SD2) outperforms the BHGA (1–4)
over all 600 problem instances in terms of computational time and coverage metric. For the steepest
decent method, better results are obtained with a large number of iterations (SD2) and the required
computational expense does not increase significantly. For the BHGA, a large population size and
generation lead to better results (BHGA4) at the expense of more computational time.

Table 3. The average CPU time of different algorithms (in seconds).

BHGA1 BHGA2 BHGA3 BHGA4 SD1 SD2

All instances 5.29 10.19 14.32 28.98 4.19 4.49

Number of activities

100 2.93 5.98 8.07 17.07 0.65 0.73
200 4.01 8.09 10.11 22.22 1.89 2.01
300 5.31 10.28 14.38 27.54 3.63 4.00
400 6.33 12.03 17.54 34.26 5.87 6.24
500 7.87 14.56 21.51 43.83 8.90 9.45

Number of modes

4 5.27 10.20 14.31 28.99 1.42 1.63
8 5.23 10.20 14.42 28.84 3.05 3.30
[4,20] 5.36 10.18 14.33 29.11 4.68 5.04
[8,30] 5.32 10.17 14.23 28.99 7.61 7.97

I2

0.3 4.68 9.30 13.34 27.03 4.01 4.33
0.5 5.26 9.84 14.12 28.20 4.14 4.40
0.7 5.94 11.42 15.51 31.72 4.42 4.73

Table 4. The mean, median, and IQR of the coverage metric e for different algorithms.

BHGA1 BHGA2 BHGA3 BHGA4 SD1 SD2

All instances
Mean

Median
IQR

0.04
0.03
0.03

0.05
0.04
0.04

0.13
0.12
0.13

0.23
0.22
0.20

0.12
0.10
0.12

0.46
0.46
0.30

Number of activities

100
Mean

Median
IQR

0.03
0.03
0.02

0.05
0.04
0.03

0.15
0.13
0.10

0.33
0.29
0.32

0.13
0.11
0.14

0.35
0.37
0.31

200
Mean

Median
IQR

0.03
0.03
0.02

0.04
0.04
0.02

0.13
0.10
0.11

0.22
0.21
0.19

0.13
0.11
0.09

0.48
0.51
0.27

300
Mean

Median
IQR

0.03
0.03
0.03

0.05
0.05
0.04

0.14
0.13
0.16

0.22
0.26
0.25

0.12
0.10
0.13

0.47
0.44
0.34

400
Mean

Median
IQR

0.03
0.03
0.02

0.04
0.04
0.03

0.12
0.11
0.10

0.18
0.16
0.14

0.12
0.11
0.11

0.53
0.53
0.20

Sustainability 2018, 10, 2802 13 of 15

Table 4. Cont.

BHGA1 BHGA2 BHGA3 BHGA4 SD1 SD2

500
Mean

Median
IQR

0.04
0.04
0.03

0.05
0.05
0.04

0.14
0.14
0.15

0.22
0.25
0.25

0.11
0.09
0.10

0.46
0.41
0.38

Number of modes

4
Mean

Median
IQR

0.02
0.02
0.02

0.04
0.03
0.03

0.08
0.07
0.08

0.21
0.17
0.21

0.14
0.10
0.16

0.55
0.59
0.28

8
Mean

Median
IQR

0.03
0.03
0.03

0.05
0.04
0.04

0.13
0.12
0.13

0.23
0.20
0.21

0.13
0.11
0.10

0.47
0.46
0.29

[4,20]
Mean

Median
IQR

0.04
0.04
0.02

0.05
0.05
0.04

0.16
0.16
0.14

0.27
0.25
0.21

0.11
0.09
0.11

0.40
0.39
0.31

[8,30]
Mean

Median
IQR

0.04
0.04
0.03

0.06
0.05
0.03

0.16
0.16
0.10

0.24
0.24
0.20

0.11
0.10
0.10

0.42
0.41
0.25

I2

0.3
Mean

Median
IQR

0.03
0.02
0.02

0.04
0.03
0.02

0.07
0.16
0.07

0.11
0.10
0.09

0.18
0.18
0.12

0.60
0.62
0.17

0.5
Mean

Median
IQR

0.04
0.04
0.03

0.05
0.05
0.03

0.14
0.14
0.10

0.22
0.23
0.11

0.11
0.10
0.09

0.47
0.45
0.20

0.7
Mean

Median
IQR

0.04
0.04
0.03

0.06
0.05
0.04

0.19
0.20
0.12

0.37
0.35
0.16

0.07
0.06
0.06

0.30
0.28
0.16

According to the rows labeled ‘Number of activities’, ‘Number of modes’, and ‘I2’ in Table 3,
we observe that the three factors have a negative impact on CPU time: the more complex the test
instance, the more the average CPU time is required.

It can be seen from Table 4 that the number of activities has a weak impact on the coverage metric,
and the impact is especially slight for the BHGA. However, the impact of the number of activities does
not show a regular pattern for the SD2, which probably means that we need to adjust the number of
iterations according to the number of activities. For both the BHGA and the SD, the impacts of both the
number of modes and the I2 on the coverage metric are opposite. For the BHGA, the higher both the
number of modes and the I2, the greater the number of efficient solutions obtained. However, the SD
shows an opposite behavior. This is because the performance of the SD is affected by the parameter
step which determines the project duration increment in each iteration. For a more complex instance,
it is necessary to use a relatively small value for step. While in our experiments, the value of step is
fixed for each instance.

Overall, the steepest descent heuristic SD2 obtains more efficient solutions than other algorithms
in promising computational time. Specifically, our SD2 outperforms the BHGA in both solution quality
and computation efficiency. Compared with the SD1, our SD2 produces much better solutions and the
required CPU time has only slightly increased.

6. Conclusions and Future Research

Time/cost trade-offs in projects are concerned with building baseline schedules that minimize
project duration and cost simultaneously. In this paper, we presented two bi-objective heuristic
algorithms for solving large-scale DTCTP-C with the aim of obtaining a good appropriate efficient
solution set. The first algorithm BHGA is based on the NSGA-II. We devise a critical path based

Sustainability 2018, 10, 2802 14 of 15

crossover operator to further exploits the knowledge of the DTCTP-C and improve the searching
efficiency of the NSGA-II. The second algorithm is a steepest descent heuristic which generates
efficient solutions by iteratively solving the DTCTP with different deadlines. We design a specified
neighborhood search procedure based on the steepest descent search logic. Computational experience
on the randomly generated problem data set validated both algorithms. Computational results reveal
that our steepest descent heuristic algorithm outperforms the BHGA in terms of both the computational
time and the coverage metric.

For future research, it will be a promising topic to devise more efficient and effective
meta-heuristics for the DTCTP. It will also make our algorithms more practical by integrating them
into project management decision support systems.

Author Contributions: H.L. conceived and designed the entire study; H.L., Z.X., and W.W. analyzed the data;
H.L. and W.W. wrote the paper.

Funding: This research was funded by the Humanities and Social Sciences Foundation of the Ministry of
Education of China (grant number 15YJCZH077), the National Science Foundation of China (grant numbers
71602106, 71271019, 7161101015, 71702097), the Fundamental Funds for Humanities and Social Sciences of Beijing
Jiaotong University (grant number 2017jbwy004), and the College Young Teachers Training Program of Shanghai
Municipal Education Commission (grant number ZZSD16025).

Acknowledgments: The authors thank the editor and reviewers for providing valuable suggestions that have
improved the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Demeulemeester, E.L.; Herroelen, W.S. Project Scheduling: A Research Handbook; Kluwer Academic Pub:
Dordrecht, The Netherlands, 2002.

2. Dobrovolskienė, N.; Tamošiūnienė, R. Sustainability-oriented financial resource allocation in a project
portfolio through multi-criteria decision-making. Sustainability 2016, 8, 485. [CrossRef]

3. Li, H.; Dong, X. Multi-mode resource leveling in projects with mode-dependent generalized precedence
relations. Expert Syst. Appl. 2018, 97, 193–204. [CrossRef]

4. Li, H.; Xiong, L.; Liu, Y.; Li, H. An effective genetic algorithm for the resource levelling problem with
generalised precedence relations. Int. J. Prod. Res. 2018, 56, 2054–2075. [CrossRef]

5. Harvey, R.T.; Patterson, J.H. An implicit enumeration algorithm for the time/cost tradeoff problem in project
network analysis. Found. Control Eng. 1979, 4, 107–117.

6. Hindelang, T.J.; Muth, J.F. A dynamic programming algorithm for decision CPM networks. Oper. Res. 1979,
27, 225–241. [CrossRef]

7. Brucker, P.; Drexl, A.; Möhring, R.; Neumann, K.; Pesch, E. Resource-constrained project scheduling:
Notation, classification, models, and methods. Eur. J. Oper. Res. 1999, 112, 3–41. [CrossRef]

8. De, P.; Dunne, E.J.; Ghosh, J.B.; Wells, C.E. Complexity of the discrete time-cost tradeoff problem for project
networks. Oper. Res. 1997, 45, 302–306. [CrossRef]

9. De, P.; James Dunne, E.; Ghosh, J.B.; Wells, C.E. The discrete time-cost tradeoff problem revisited. Eur. J.
Oper. Res. 1995, 81, 225–238. [CrossRef]

10. Demeulemeester, E.; Herroelen, W.; Elmaghraby, S.E. Optimal procedures for the discrete time/cost trade-off
problem in project networks. Eur. J. Oper. Res. 1996, 88, 50–68. [CrossRef]

11. Moussourakis, J.; Haksever, C. Flexible model for time/cost tradeoff problem. J. Constr. Eng. Manag. 2004,
130, 307–314. [CrossRef]

12. Hazır, Ö.; Haouari, M.; Erel, E. Discrete time/cost trade-off problem: A decomposition-based solution
algorithm for the budget version. Comput. Oper. Res. 2010, 37, 649–655. [CrossRef]

13. Akkan, C.; Drexl, A.; Kimms, A. Network decomposition-based benchmark results for the discrete time-cost
tradeoff problem. Eur. J. Oper. Res. 2005, 165, 339–358. [CrossRef]

14. Vanhoucke, M.; Debels, D. The discrete time/cost trade-off problem: Extensions and heuristic procedures.
J. Sched. 2007, 10, 311–326. [CrossRef]

http://dx.doi.org/10.3390/su8050485
http://dx.doi.org/10.1016/j.eswa.2017.12.030
http://dx.doi.org/10.1080/00207543.2017.1355120
http://dx.doi.org/10.1287/opre.27.2.225
http://dx.doi.org/10.1016/S0377-2217(98)00204-5
http://dx.doi.org/10.1287/opre.45.2.302
http://dx.doi.org/10.1016/0377-2217(94)00187-H
http://dx.doi.org/10.1016/0377-2217(94)00181-2
http://dx.doi.org/10.1061/(ASCE)0733-9364(2004)130:3(307)
http://dx.doi.org/10.1016/j.cor.2009.06.009
http://dx.doi.org/10.1016/j.ejor.2004.04.006
http://dx.doi.org/10.1007/s10951-007-0031-y

Sustainability 2018, 10, 2802 15 of 15

15. Afruzi, E.N.; Najafi, A.A.; Roghanian, E.; Mazinani, M. A multi-objective imperialist competitive algorithm
for solving discrete time, cost and quality trade-off problems with mode-identity and resource-constrained
situations. Comput. Oper. Res. 2014, 50, 80–96. [CrossRef]

16. Sonmez, R.; Bettemir, Ö.H. A hybrid genetic algorithm for the discrete time-cost trade-off problem.
Expert Syst. Appl. 2012, 39, 11428–11434. [CrossRef]

17. Wiest, J.D. A heuristic model for scheduling large projects with limited resources. Manag. Sci. 1967, 13, B-359.
[CrossRef]

18. Feng, C.W.; Liu, L.; Burns, S.A. Using genetic algorithms to solve construction time-cost trade-off problems.
J. Comput. Civ. Eng. 1997, 11, 184–189. [CrossRef]

19. Zheng, D.X.; Ng, S.T.; Kumaraswamy, M.M. Applying Pareto ranking and niche formation to genetic
algorithm-based multiobjective time-cost optimization. J. Constr. Eng. Manag. 2005, 131, 81–91. [CrossRef]

20. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [CrossRef]

21. Afruzi, E.N.; Roghanian, E.; Najafi, A.A.; Mazinani, M. A multi-mode resource-constrained discrete time–cost
tradeoff problem solving using an adjusted fuzzy dominance genetic algorithm. Sci. Iran. 2013, 20, 931–944.

22. Fallah-Mehdipour, E.; Haddad, O.B.; Tabari, M.M.R.; Mariño, M.A. Extraction of decision alternatives in
construction management projects: Application and adaptation of NSGA-II and MOPSO. Expert Syst. Appl.
2012, 39, 2794–2803. [CrossRef]

23. Kar, M.B.; Kar, S.; Guo, S.; Li, X.; Majumder, S. A new bi-objective fuzzy portfolio selection model and its
solution through evolutionary algorithms. Soft Comput. 2018, 1–15. [CrossRef]

24. Majumder, S.; Kar, S. Multi-criteria shortest path for rough graph. J. Ambient Intell. Hum. Comput. 2017, 1–25.
[CrossRef]

25. Kar, M.B.; Majumder, S.; Kar, S.; Pal, T. Cross-entropy based multi-objective uncertain portfolio selection
problem. J. Intell. Fuzzy Syst. 2017, 32, 4467–4483. [CrossRef]

26. Demeulemeester, E.; Vanhoucke, M.; Herroelen, W. RanGen: A random network generator for
activity-on-the-node networks. J. Sched. 2003, 6, 17–38. [CrossRef]

27. Vanhoucke, M.; Coelho, J.; Debels, D.; Maenhout, B.; Tavares, L.V. An evaluation of the adequacy of project
network generators with systematically sampled networks. Eur. J. Oper. Res. 2008, 187, 511–524. [CrossRef]

28. Valadares Tavares, L.; Antunes Ferreira, J.; Silva Coelho, J. The risk of delay of a project in terms of the
morphology of its network. Eur. J. Oper. Res. 1999, 119, 510–537. [CrossRef]

29. Al-Fawzan, M.A.; Haouari, M. A bi-objective model for robust resource-constrained project scheduling.
Int. J. Prod. Econ. 2005, 96, 175–187. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cor.2014.04.003
http://dx.doi.org/10.1016/j.eswa.2012.04.019
http://dx.doi.org/10.1287/mnsc.13.6.B359
http://dx.doi.org/10.1061/(ASCE)0887-3801(1997)11:3(184)
http://dx.doi.org/10.1061/(ASCE)0733-9364(2005)131:1(81)
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1016/j.eswa.2011.08.139
http://dx.doi.org/10.1007/s00500-018-3094-0
http://dx.doi.org/10.1007/s12652-017-0601-6
http://dx.doi.org/10.3233/JIFS-169212
http://dx.doi.org/10.1023/A:1022283403119
http://dx.doi.org/10.1016/j.ejor.2007.03.032
http://dx.doi.org/10.1016/S0377-2217(99)00150-2
http://dx.doi.org/10.1016/j.ijpe.2004.04.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statement and Model Formulation
	DTCTP-C
	Model Formulation of the DTCTP-C
	Example

	Bi-Objective Hybrid Genetic Algorithm
	Schedule Encoding and Decoding
	Selection Operator
	Critical Path Crossover Operator
	Mutation Operator
	Algorithm Framework

	Steepest Descent Heuristic
	Algorithm Framework
	Neighborhood and the Steepest Decent Search Procedure ‘sd_search()’
	Example

	Computational Experiments
	Problem Instances Generation
	Parameter Settings of the Algorithms
	Experimental Results

	Conclusions and Future Research
	References

