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Abstract: This paper presents a new design strategy for the passive vibration suppression of
a single-cylindrical engine (SCE) through multi-objective evolutionary optimisation. The vibration
causes machine damages and human pain, which are unsustainable problemsthat need to be
alleviated. Mathematical forced vibration analyses of a single-cylinder engine, including dynamic
pressure force due to ignition combustion, are presented. A multi-objective design problem is set
to find the shape and size variables of the crank and connecting rod of the engine. The objective
functions consist of the minimisation of the crank and connecting rod mass, and the minimisation
of vibration response while the SCE is subject to inertial force and pressure force. Moreover, design
constraints include crank and rod safety. The design problem is tackled by using an adaptation
of a hybrid of multi-objective population-based incremental learning and differential evolution
(RPBIL-DE). The optimum results found that the proposed design strategy is a powerful tool for the
vibration suppression of SCE.

Keywords: vibration suppression; single-cylinder engine; multi-objective evolutionary algorithms;
dynamic analysis; crank–slider

1. Introduction

A single-cylinder engine (SCE) is one of the most widely used engines, especially in motorcycles,
which are the most popular two-wheel automotive in this world. It is also included in a variety
of applications particularly for agricultural proposes such as the driving pump, walking tractor,
lawnmower, etc. In contrast with the applications, the vibration of this engine is the main problem
at present. Two causes of vibration are from moving links in a crank–slider mechanism and ignition
pressure due to combustion process. These can be a cause of machine damages, human discomfort,
and user-accumulated fatigue and pain. SCE vibration can be alleviated in two ways i.e., balancing
and isolation.

Balancing a SCE can be classified as active and passive balancing [1]. Active balancing is a method
for reducing shaking force and moment by introducing dummy pistons and geared revolving counter
weights, etc. Passive balancing, on the other hand, is a method used to reduce shaking force and
moment by the addition or removal of mass from various portions of the moving links.

Research work toward this area has been continually made. Lowen et al. [2] summarised the
techniques for the force and moment balancing of linkages. Zhang and Chen [3] have applied vibration
suppression of a four-bar linkage by using the weighted sum method, which is a means to convert
multi-objective optimisation to become a problem with one design objective. The counterweights’
mass parameters were set as design variables in this passive balancing. Snyman et al. [4] have applied
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an unconstrained optimisation problem to minimise the transmission of engine vibration due to inertial
forces to the supporting structure where the case study is a mounted four-cylinder V-engine rotating
at idling speed by an active balancing method. The individual balancing masses and associated phase
angles of counter rotating balancing masses were chosen as design variables. Chiou et al. [5] proposed
an optimum design in which disk counterweights were added to reduce shaking force and moment
of the drag-link drive of mechanical presses. Sleesongsom [6] proposed applying multi-objective
optimisation to reduce the engine mount translation and rotation displacements of SCE where the
normalised normal constraint method [7], in combination with sequential quadratic programming,
is an optimiser. The use of finite element analysis and optimisation codes for connecting rod [8],
crankshaft [9], and piston design [10] has been conducted. In addition, the finite element technique
has been used to optimise the crankshaft parameters of a single-cylinder motorcycle engine to reduce
vibration without considering the gas pressure force inside the combustion chamber [11].

The second vibration suppression technique for the engine is vibration isolation. The challenge
for designers and engineers is how to properly select vibration isolators in order to minimise the force
transmission to the engine base [11–13] and the powertrain mounting system [14,15]. Further work
focuses on optimisation of engine mounting systems and blocks can be found in References [16–23],
while the literature of using meta-heuristic algorithms (MHs) or evolutionary algorithms (EAs) for
engine mounting and engine part design can be seen further in Reference [24].

Both methods has been studied and used in industry, but the new design technique still lacks
development. Recent works of automotive technology have focused on designing the motor of
an electric vehicle (EV) to increase its efficiency and reduce vibration [25]. This kind of automotive uses
an electric motor as a power or hybrid with the traditional engine. This research focuses on optimising
the flux-weakening performance and reducing the vibration of an Interior permanent magnet (IPM)
motor for EVs using the evolutionary algorithm (EA), which focuses on the source of vibration similar
to our present research. Furthermore, this kind of designing problem is multi-objective optimisation,
but the authors compromise it to be a single objective. So, in the present research, we focus on using
a multi-objective evolutionary algorithm (MOEA) to alleviate the vibration of a single-cylinder engine.

This research proposes a new design strategy for the vibration suppression of a single-cylinder
engine using a multi-objective evolutionary algorithm (MOEA). In this design, design variables
including the shape and sizing parameters of the engine are proposed to suppress the inertia force and
pressure force, which are the main vibration causes of this kind of engine. The MOEA optimiser is the
hybrid of multi-objective population-based incremental learning and differential evolution (RPBIL-DE).
The new design technique can reduce the vibrations that cause machine damages, human discomfort,
and user-accumulated fatigue and pain, which can lead to sustainable development.

2. Single-Cylinder Engine Model

Herein, vibration analysis of a single-cylinder engine system is simplified for ease in the
computation of an optimisation process. The kinematic and dynamic force analyses of a crank–slider
with external ignition forces are carried out, while the obtained reactions will be used as external forces
for the engine box and mounting system.

2.1. Kinematic and Kinetic Analyses

Figure 1 shows a crank–slider with the crank radius R and connecting rod L. The parameters θ2

and θ3 are the angular positions of links 2 and 3, respectively, while x is the position vector of the
piston. Given that θ2,

.
θ2, and

..
θ2 are known input variables, we can have the relation:

R sin(θ2) = L sin(θ3) (1)
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Having determined the first and second-order derivatives of Equation (1) with respect to time t
and rearranged the derivative equations, the parameters

.
θ3 and

..
θ3 can be obtained as:

θ3 = arcsin(R sin(θ2)/L)
.
θ3 = [R

.
θ2 cos(θ2)]/[L cos(θ3)]

..
θ3 =

{
L

.
θ

2
3 sin(θ3) + R[

..
θ2 cos(θ2)−

.
θ

2
2 sin(θ2)]

}
/[L cos(θ3)]

(2)

The position of the piston can be written as:

x = R cos θ2 + L cos(θ3) (3)

The velocity and acceleration of the piston can then be determined by differentiating Equation (3):

.
x = −R

.
θ2 sin θ2 − L

.
θ3 sin(θ3)

..
x = −R[

.
θ

2
2 cos θ2 +

..
θ2 sin θ2]− L[

.
θ

2
3 cos(θ3) +

..
θ3 sin(θ3)]

(4)

For the kinematic analysis of a crank–slider, if we have the input values of θ2,
.
θ2, and

..
θ2, the angular

position, velocity, and acceleration of link 3, as well as the position, velocity, and acceleration of piston
4, can be computed using Equations (1)–(4).

For dynamic force analysis in this paper, the crank–slider system is thought of as being
kinematically driven by input angular velocity and acceleration at the input link 2. The kinematic
analysis can be accomplished as previously detailed. A free-body diagram of a crank–slider at
a particular motion phase is shown in Figure 2. The piston is subject to external forces due to gas
pressure P, while the moment M2 is applied at link 2, so as to meet its prescribed motion. The force
analysis can be computed using the following system of equations:

[A]{F} = {RHS} (5)
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Where:

A =



I2×2 I2×2 02×2 02×1 02×1[
−rO2/G2,y rO2/G2,x

] [
−rB/G2,y rB/G2,x

]
01×2 0 1

02×2 −I2×2 I2×1 02×1 02×1

01×2

[
rB/G3,y rB/G3,x

] [
−rC/G3,y rC/G3,x

]
0 0

02×2 02×2 −I2×2

[
0
1

]
02×1


F = {F12,xF12,yF32,xF32,yF43,xF43,yF14,yM2}T

and: RHS =



m2aG2

IG2 α2

m3aG3

IG3 α3

m4aC − FP


.

Fij is the constrained force acting at body i by body j, mi is the mass of body i, IGi is the moment of
inertia with respect to the axis at the centroid of body i, ri/j is the relative position vector of point i
with respect to point j, and aC and aG2 are the acceleration vector of link 4 (piston) and the centre of
gravity i in the x–y coordinates, respectively. The gas pressure P (kPa) in one cycle for some engine has
been proposed by Asadi et al. [8] as follows:

P =



101.3
7.53x−1.21

2950
29.8x−1.21

101.3

0 ≤ θ2 ≤ π

π ≤ θ2 ≤ 2π

2π ≤ θ2 ≤ 13/6π

9/4π ≤ θ2 ≤ 3π

3π ≤ θ2 ≤ 4π


(kPa) (6)

Where x in above equation is in Equation (3).
The external force FP due to gas pressure can be computed by:

FP = (P − Patm)Ap (7)

Where Patm is atmosphere pressure (kPa) and Ap is the piston area (m2).
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2.2. Engine Vibration System

A mounted engine system will be modeled as a simple spring-mass system with the rigid mass
having six degrees of freedom. Linear spring behavior is assumed as shown in Figure 3, while force
and displacement relation can be written as:

F = k(r− r0) = kδr (8)

Where k is spring stiffness, r0 is the position of the unstretched spring, r is the position vector of the
spring under the force F, and δr is a spring translational vector.
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Figure 3. Spring displacement vector in three-dimensional spaces.

A rigid body attached with a number of linear springs is given in Figure 4. From the figure,
the position vector of the i-th spring can be expressed with respect to the centroid position as:

ri = rc + rci (9)

Where ri is the position vector of spring I, rc is the position vector of the mass centre, and rci is the
potion vector of spring i with respect to the centroid.

When the body is in motion, the derivation of the vectors in Equation (9) can be written as:

δri = δrc + δrci (10)
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As the centroid and the i-th point are at the same body, we can have:

δri = δrc + δθ× rci (11)

Where δθ is the vector of rotation displacements of the body. The translation and rotation vectors can
be defined as:

δrc =

 ux

uy

uz

, δθ =

 θx

θy

θz

 (12)

Where ui is the translation in i-th direction and θi is the angular displacement in the i-th axis. The rigid body
has six degrees of freedom, as shown in Figure 5. By substituting Equation (12) into Equation (11), we have:

δri =

 ux + θyrci,z − θzrci,y
uy + θzrci,x − θxrci,z
uz + θxrci,y − θyrci,x

 =

 1 0 0 0 rci,z −rci,y
0 1 0 −rci,z 0 rci,x
0 0 1 rci,y −rci,x 0




ux

uy

uz

θx

θy

θz


= Tid (13)

Where Ti is called a transformation matrix for the i-th spring and d is the displacement vector of the
body. As a result, elastic potential energy of the i-th spring is:

Ui =
1
2

kiδrT
i δr =

1
2

dT(kiTT
i Ti)d =

1
2

dTKid (14)

If the spring-mass system has n linear springs, the total elastic potential energy can be computed as:

U =
1
2

dT

(
n

∑
i=1

Ki

)
d =

1
2

dTKd (15)

Where K is the stiffness matrix of the system. The kinetic energy or the work due to inertial forces can
be computed as:

T =
1
2

mδ
.
rT

c δ
.
rc +

1
2

δ
.
θ

T
Iδ

.
θ =

1
2

.
d

T
M

.
d (16)

Where:

M =

[
m 0
0 I

]
=



m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ixx −Ixy −Ixz

0 0 0 −Iyx Iyy −Iyz

0 0 0 −Izx −Izy Izz


(17)

m is body mass, and I is the matrix of moments of inertia. Adding the work done by external forces to
the system, a vibration model of a three-dimensional (3D) spring-mass system can be expressed as:

M
..
d + Kd = F (18)

Damping can be added to the model using a proportional damping matrix or a Reylize
damping i.e.,

C = αM + βK (19)
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Where α and β are the proportional damping constants to be specified. The dynamic model then
becomes:

M
..
d + C

.
d + Kd = F(t) (20)

In this work, numerical solutions of the system of differential equations in Equation (20) can be
carried out by using Newmark’s integration technique [26].
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3. Hybrid RPBIL-DE for Multi-Objective Optimisation

The multi-objective design problems of trusses [27,28] and mechanisms [29,30] have been
solved with the hybridisation of real-code population-based incremental learning and differential
evolution (RPBIL-DE). This optimizer is found to be one of the high-performance multi-objective
optimisers, and is therefore selected to solve our problem in this study. The algorithm is extended from
References [31,32] by integrating into it the differential evolution (DE) operators in the main procedure
of real-code population-based incremental learning (RPBIL), leading to a hybrid algorithm [27].
This technique is developed to avoid a premature convergence searching of RPBIL due to the
probability of matrix updating relying on the current best solution. The mutation and crossover
of DE are incorporated into a RPBIL procedure. This hybridisation has been proved that it can increase
the population diversity for multi-objective optimisation. Additionally, the non-dominated solutions
can be chosen using a clustering technique that is detailed in Reference [33]. The RPBIL-DE and DE
operator partsare shown in Algorithm 1, where F is a scaling factor, pc is a crossover probability, and CR
is the probability of selecting an element of an offspring c in binomial crossover.
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Algorithm 1. Multi-objective RPBIL-DE [27].

Input: NG(number of generation), NP (population size), nI(number of subinterval), NT(number of trays), objective
function name (fun), Pareto archive size (NA)
Output: xbest, fbest

Initialisation: Pij= 1/nI for each tray, where Pij is a probability matrix
Main steps
: Generate a real-code population X from the probability trays and find f = fun(X)
: Find a Pareto archive A
1: For i = 1 to NG
2: Separate the non-dominated solutions into NT groups using a clustering technique, and find the centroid rG
of each group
3: Update each tray Pij based on rG
4: Generate a real-code population X from the probability trays
5: For j = 1 to NP recombine X and A using DE operators
5.1: Select p from A randomly
5.2: Select q and r from X randomly, q 6= r
5.3: Calculate c = p + F(q −r) (DE/best/1/bin)
5.4: Set ci into its bound constraints.
5.5: If rand <pc, perform crossover
5.5.1: For k = 1 to n
5.5.2: If rand <CR, yk = ck
5.5.3: Otherwise, yj,k = pk
5.5.4: End
6: End
7: New real-code population is Y = {y1, . . . , yj, . . . , yNP} and find f = fun(Y)
8: Find non-dominated solutions from Y∪A and replace the members in A with these solutions
9: If the number of archive members is larger than NA, remove some of the members using a clustering
technique
10: End

For more details of RPBIL-DE, see Reference [27].

4. Design Problems

A simplified forced vibration model is used in this study instead of the more complicated model
as presented in Reference [34]. Figure 6 displays the vibration model of a mounted single-cylinder
engine where the mass matrix (including mass and moments of inertia) and the mass centre of the
engine system are set to be constant. The engine box is attached to the ground by using four liner
springs as shown. The origin of the reference rectangular coordinates is located at the engine box mass
centre. For a computational procedure, forces and moments due to the moving links of a crank–slider
are computed separately. Then, the dynamic force vector is obtained as:

F(t) =



Fx

Fy

Fz

Mx

My

Mz


=


F21,x

F21,y + F41,y
0

RO/G × F21 + RC/G × F41

 (21)

Where RC/G = RO/G +


x
0
0

.
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The parameters according to the kinematic, force, and vibration analyses are given in Table 1.
The external force due to pressure inside the cylinder followed Equation (6). The fidelity of the
optimisation result in the next section is affected by the pressure force and inertia force, which will
be studied in the next section. International System of Units (SI) are used unless otherwise specified.
Figure 7 displays the top and front views of the crank. The parameters used to define the crank
dimensions and shape are tC, lP, RC1, RC2, R2, rC, and ψ. If the values of those parameters are known,
the mass centre and moment of inertia of the crank can be calculated. Figure 8 shows the connecting
rod where nine design parameters are used to define the shape and dimensions of the rod as l1, l2, b1,
b2, R1, R2, t, rp1, and rp2. It should be noted that the crank and rod are created for design demonstration
in this paper. For practical applications, their shapes may be defined differently. From Figures 7 and 8,
lP = l1, and R2 = RC2, so 14 parameters are assigned as elements of a design vector as x = {RC1, RC2, rC,
R2, ψ, lP, tC, R1, rp1, rp2, l2, t, b1, and b2}T.
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Piston diameter d 100 mm 

Figure 6. A single-cylinder engine and its engine box.

Table 1. System parameters.

Parameters Symbols Quantities

Total engine mass m 14.528 kg
Piston mass m4 0.2 kg

Moment of inertia Ixx, Iyy, Izz, Ixy, Ixz, Iyz 0.0768, 0.0640, 0.0812, 0, 0, 0 kg-m2

Centre of gravity RG [0,0,0]T m
Crank shaft centre RO/G [−0.760, −0.0232, 0.0100]T m

Mount stiffness k 4 × 106 N/m
Crank length R 0.1 m

Connecting rod length L 0.3 m
Material density ρ 7850 kg/m3

Piston diameter d 100 mm
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The multi-objective design problem for this work is posed to find a design variable vector x
such that:

Min: f = {f 1(x),f 2(x)}T (22)

Subject to:
σCrank ≤ σall

σRod ≤ σall

λRod ≥ 1

rp1 ≥ rp2 + 0.005 m
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l2 ≥ b1 + 0.005 m

b1 ≥ b2 + 0.02 m

rp1 ≥ rp2 + 0.005 m

l1 ≥ l2

R1 ≥ rp1 + 0.002 m

rC1 ≥ R2 + 0.002 m

RC1 ≥ rc1 + 0.002 m

R1 ≥ R2 + 0.002 m

xl ≤ x ≤ xu

Where σCrank is the maximum stress on the crank, σall is an allowable stress, and σRod is the maximum
stress on the connecting rod. The bound constraints are set as xl = {0.03, 0.05, 0.015, 0.01, π/6, 0.03,
0.01, 0.03, 0.02, 0.01, 0.02, 0.002, 0.02, and 0.01}T, and xu = {0.045, 0.09, 0.04, 0.03, π, 0.05, 0.03, 0.05, 0.03,
0.03, 0.04, 0.005, 0.04, and 0.03}T. The buckling factor for the rod λRod is defined as the ratio of critical
load to applied load. The first three design constraints are set for structural safety, while the other
constraints are assigned for manufacturing tolerances and practicality. The objective functions used in
this study are set as f = {urms + θrms, mass}T. The root mean squares (RMS) of the vibration translations
(urms) and rotations (θrms) over the period t∈ [0, tmax] can be computed as:

urms =

√
1
T

∫
(u2

x+u2
y + u2

z)dt (23)

and:

θrms =

√
1
T

∫
(θ2

x+θ2
y + θ2

z )dt (24)

In the function evaluation process, with the given input design vector x being decoded, the shape
and sizing parameters are repaired to meet constraints 4–12, and the inertial properties of the crank
and rod can then be computed (the rest of constraints will be handled by using the non-dominated
sorting scheme [35]. Then kinematic and dynamic force analyses are carried out as detailed in Section 2.
A simple finite element model using a three-dimensional (3D) beam element is applied to determine
the maximum stresses on the crank and rod. A buckling factor is also calculated in the cases of the rod.
Also, the obtained dynamic forces are used as external excitation for the vibration model of the engine.
Having obtained a dynamic response, the objective functions can then be computed.

Three multi-objective optimisation problems with the same design objectives and constraints but
different engine rotational speeds are posed as:

OPT1: min {urms + θrms, mass}, constant crank angular speed 1000 rpm
OPT2: min {urms + θrms, mass}, constant crank angular speed 1500 rpm
OPT3: min {urms + θrms, mass}, constant crank angular speed 2000 rpm

The RPBIL-DE is used to tackle each design problem, with 10 runs starting with the same
initial population. The population size is set to be 100, while the total number of iterations is
150. The crank and connecting rod are made of alloy steel AISI 4140H with a Young’s modulus of
211.65 GPa, σyt = 417.1 MPa, and density of 7850 kg/m3. For each finite element analysis, the maximum
compressive force over the period of time [0, tmax] will be used for buckling calculation.
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5. Pressure Force and Inertia Force Validation

The gas pressure force and inertia force exert on the engine box similar to an external force.
The fidelity of the both forces is very important in the vibration analysis of the single-cylinder engine,
which we will do by considering the forces versus the crank angle. The gas pressure force, inertia
force, and total force in one cycle is coded by using MATLAB commercial software over the interval
[0, tmax], as shown in Figures 9–11 at 1000 rpm. The maximum gas pressure force exerted on the piston
head occurred at the maximum torque, but the maximum tensile force occurred during the maximum
revolution speed [8]. Figure 9 shows that the maximum gas pressure force is 22,374 N, which occurs
in the combustion process. The inertial force due to the slider–crank mechanism in the x direction is
show in Figure 10; meanwhile, the maximum inertia in positive direction is 1141N, while the negative
inertia force is 2286 N. Figure 11 shows the total force due to the gas pressure force and inertia force
that give the maximum gas pressure force as 20,364 N, while the maximum tensile force is 2867 N.
All of the diagrams indicate similar trends to the work by Reference [8], while the magnitude of all of
the forces are different, as a result of the differences in the system parameters.
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Figure 9. Gas pressure force versus crank angle at 1000 rpm.
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Figure 10. Inertia force due to crank slider versus crank angle at 1000 rpm.
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Figure 11. Total force due to gas pressure force and inertia force versus crank angle at 1000 rpm.

6. Design Results

We implemented the RPBIL-DE for solving the design problems, ran 10 OPT1-3 runs, and chose
the best front based on the hypervolume indicator of each design problem. According to its definition,
the larger the hypervolume, the better the Pareto front. Figures 12–14 show the best front at each engine
speed. The results from minimising vibrations (RMS) and the mass of the single cylinder engine (kg)
at the engine speed of 1000 rpm are in the ranges of [0.06402 0.06402] and [2.688 4.998] kg, respectively.
The vibration and engine mass at the engine speed of 1500 rpm are in the ranges of [0.06252 0.06252]
and [2.688 4.986] kg. At the engine speed of 2000 rpm, the results are in the ranges of [0.06012 0.06012]
and [2.688 4.957] kg for vibration magnitude and engine mass, respectively. Some selected design
solutions of each design problem in Figures 12–14 and the corresponding crank–sliders of each front
are illustrated in Figures 15–17.

Dynamic analyses of the crank–sliders in Figures 15–17 are carried out, and the results are shown
in Figures 18–23. Figures 18, 20 and 22 display the components of the translational displacements of
the six engines, while Figures 19, 21 and 23 display the components of the rotational displacements of
the six engines. From our design results, when focusing on vibration amplitude, it is found that our
technique can control the vibration amplitude to oscillate in a small strip throughout the Pareto front,
while the changing of mass is in accordance with the shape design parameters of the moving parts of
a single cylinder.
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Figure 12. The best Pareto front of OPT1.
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Figure 18. The components of the translational displacements of the six engines in Figure 15.
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Figure 19. The components of the rotational displacements of the six engines in Figure 15.
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Figure 20. The components of the translational displacements of the six engines in Figure 16.
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Figure 21. The components of the rotational displacements of the six engines in Figure 16.
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Figure 22. The components of the translational displacements of the six engines in Figure 17.
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7. Conclusions

The vibration suppression of a single-cylinder engine by means of multi-objective evolutionary
optimisation is proposed. Simple kinematic and dynamic force analyses of a single cylinder are
presented. The multi-objective design problems are posed to minimise the mass of the engine
mechanism and vibration amplitudes of the engine system. We implemented RPBIL-DE to solve
the design problems. The obtained design solutions are illustrated and analysed. The computation
results reveal that the proposed design process for forming the moving parts of a single-cylinder
engine is practical. Our technique can control the vibration amplitude to oscillate in a small strip
throughout the Pareto front by optimisation of the moving parts of a single-cylinder engine. With the
use of RPBIL-DE, multiple solutions for decision-making can be obtained within one optimisation run.
Future work will be the use of three-dimensional finite element analysis for calculating the design
constraints. This could be a time-consuming process, which may require a surrogate-assisted MOEA.
Also, different shapes of the crank and connecting rod should be studied.
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