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Abstract: Land use and cover changes (LUCC) have been identified as one of the main causes of
biodiversity loss and deforestation in the world. Fundamentally, the urban land use has replaced
agricultural and forest cover causing loss of environmental services. Monitoring and quantifying
LUCC are essential to achieve a proper land management. The objective of this study was to analyze
the LUCC in the metropolitan area of Tepic-Xalisco during the period 1973–2015. To find the best
fit and obtain the different land use classes, supervised classification techniques were applied using
Maximum Likelihood Classification (MLC), Support Vector Machines (SVMs) and Artificial Neural
Networks (ANNs). The results were validated with control points (ground truth) through cross
tabulation. The best results were obtained from the SVMs method with kappa indices above 85%.
The transition analysis infers that urban land has grown significantly during 42 years, increasing
62 km2 and replacing agricultural areas at a rate of 1.48 km2/year. Forest loss of 5.78 km2 annually
was also identified. The results show the different land uses distribution and the dynamics developed
in the past. This information may be used to simulate future LUCC and modeling different scenarios.

Keywords: Maximum Likelihood Classification; Support Vector Machines; Artificial Neural Networks;
significant transitions; urban growth; Nayarit (Mexico)

1. Introduction

Terrestrial ecosystems are important components of nature since they have biological and
functional effects on climate regulation, the hydrologic cycle and as a source of natural resources to
satisfy human needs. However, during the last 300 years, the planet has suffered big transformations [1].
The ecosystems have been subject to accelerated processes of land use and cover changes (LUCC) [2],
which have been identified as one of the main factors contributing to global environmental change [3–5],
as a result of major current environmental problems [6] such as land loss and degradation, climate
change, biodiversity loss, deforestation [7] and ecosystems fragmentation [4,8,9], which in turn cause
loss of associated environmental services [10] to such a degree that more than half of the world’s forest
cover has been lost, and around 30% of these ecosystems face degradation processes. Anthropogenic
activities are one of the main elements that contribute to land use changes [11].

Mexico is known as a megadiverse country, consisting of large diversity of organisms, landscapes
and terrestrial ecosystems [12]. Forests, jungles and other natural vegetation are distributed all
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over the country [13] covering 74% of the national territory [14], about 146 million hectares [12].
The distribution of natural vegetation has been studied for monitoring LUCC, but most of the
research conducted at a regional scale has focused on the analysis of losses in natural vegetation
and deforestation [15,16]. The deforestation rates recorded show a difference from 260,000 ha/year
to 775,000 ha/year (i.e., 2600 km2/year to 7760 km2/year) [15]. Since local scale studies on LUCC
have been scarce [14], the present work was centered on monitoring LUCC locally, paying particular
attention to the urban land use in the metropolitan area of Tepic-Xalisco as a starting point for further
research on urban growth simulation and future scenarios design.

The advance in using Geographic Information Systems (GIS) and remote sensing techniques has
proven to be very useful to get accurate and coherent information according to the spatial reality [16];
these tools are widely used to analyze the distribution, patterns and trends of the LUCC processes
via different methods to obtain several land use classes in the territory, as well as diverse approaches
to detect temporary differences, such as the traditional method of cross tabulation [17,18].

In this context, the objective of this study was to analyze the dynamics on urban LUCC at local
scale. The methodology was developed through the analysis and processing of four Landsat satellite
images corresponding to the years 1973, 1985, 2000 and 2015. To find the best fit and obtain the
different land use classes, three supervised classification methods were applied: Maximum Likelihood
Classification (MLC), Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs).
The results were validated with control points (ground truth). Then, to identify the significant
transitions between different land uses—especially in the urban land use changes—losses, gains,
changes and interchanges were obtained through the cross-tabulation matrix and according to the
methodology of Pontius [19].

The remainder of the paper is organized into four sections. Section 2 describes the study area and
the satellite images that were used to obtain different classes of cover and land use. Section 3 outlins
the procedure that was followed to classify the satellite images using two supervised classification
methods and LUCC analysis. Section 4 describes and discusses the results obtained with respect to
other similar works. Finally, the conclusions are presented in the Section 5.

2. Materials and Methods

2.1. Study Area

The metropolitan area of Tepic-Xalisco is located in the central part of the state of Nayarit (Mexico),
as presented in Figure 1. The study area comprises two of the main localities of the state that are
linked by commercial and administrative activities through the Tepic-Xalisco highway, which in turn
provoked a conurbation process that was formalized as metropolitan area in 2006 by the National
Institute of Statistics and Geography (INEGI, for its abbreviation in Spanish), the National Population
Council (CONAPO, for its abbreviation in Spanish) and the Ministry of Social Development (SEDESOL,
for its abbreviation in Spanish).

The study area was delimited through a 900 km2 quadrant (30 km × 30 km polygon) including
the metropolitan area, a polygon wide enough to locally observe and analyze the processes of LUCC
during a 42 year-period.
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Figure 1. Localization and delimitation of the study area. Source: Own elaboration based on
INEGI’s data.

The surrounding zone of the study area contains a diversity of land use where are predominant
intensive agricultural activities—mainly devoted to sugarcane, maize, mango and jicama crops—
as well as farming activities. To the West of the study area is located the Natural Protected Area (NPA)
Sierra de San Juan with over 50% of cover consisting of pine trees and live oaks forest, a great variety
of natural resources that provide diverse environmental services susceptible of exploitation.

The metropolitan area has suffered important changes in land use as a result from urban growth.
The forest is endangered by the indiscriminate clearcutting activities and mining performed in the
east of the mountain, at the boundaries of the locality of Xalisco. Therefore, a historical analysis is
necessary to show the distribution of land use and the change processes during a period of 42 years.
Such information may be used to simulate future land use changes, such as the urban growth and
modeling several scenarios.

2.2. Data

To set a temporary standardized thematic nomenclature for the analysis of the different land use,
the four Landsat satellite images described in Table 1 were used. The images were taken from the
United States Geological Survey (USGS) official website (http://glovis.usgs.gov).

http://glovis.usgs.gov
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Table 1. Landsat images used for mapping land uses in the study area.

Description Image Description Image

Landsat 1 (1973)
Multispectral Scanner System (MSS) Sensor

LM10320451973043GDS03 Scene
Spatial resolution 60 m

Acquisition date 12 February 1973
Composition

V-A-R

Landsat 5 (1985)
Thematic Mapper (TM) Sensor

LT50300451985139AAA03 Scene
Spatial resolution 60 m

Acquisition date 5 May 1985
Composition
NIR-SWIR-R

Landsat 7 (2000)
Enhanced Thematic Mapper (ETM) Sensor

LE70300452000045EDC00 Scene
Spatial resolution 30 m

Acquisition date 14 February 2000
Composition NIR-SWIR-R

Landsat 8 (2015)
Operational Land Imager (OLI) Sensor

LO80300452015062LGN01 Scene
Spatial resolution 30 m

Acquisition date 3 April 2015
Composition NIR-SWIR-R

Source: United States Geological Survey (USGS) official website.

2.3. Methodology

Figure 2 shows the methodological process that was followed to analyze urban land use changes
in the metropolitan area during a period of 42 years. First, supervised classification techniques
were applied through Maximum Likelihood Classification (MLC), Support Vector Machines (SVMs)
and Artificial Neural Networks (ANNs); from the preparation of the images (pre-processing) to the
application of three supervised classification methods (processing), and validation of classifications
(post-processing). Then, to detect changes between different land uses, the periods 1973–1985,
1985–2000, 2000–2015 and 1973–2015 were analyzed using cross tabulation. Finally, to identify
significant changes, transitions analysis was conducted using the method of Pontius [19]. All processes
were performed using GIS with ENVI 5.3, Arcgis 10.3 and Focus (PCI Geomatics, 2015) applications.

Figure 2. Landsat images classification methodology for LUCC analysis. Source: Own elaboration.

3. Satellite Images Classification

3.1. Pre-Processing

The scenes of Landsat images 1, 5, 7 and 8 were pre-processed to classify the different types of land use
during the identification of changes in the urban areas for each analyzed period. Prior to images processing,
the study area was cropped for each satellite image by means of a layer (30 km × 30 km polygon) wide
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enough to visualize urban land use changes in the metropolitan area during a 42-year period; the polygon
was measured from the center of the urban land of the metropolitan area.

In the region of interest, it was necessary to verify and standardize the pixel size and the dimensions of
each image by means of geometric correction in the WGS-1984 reference system, UTM projection in the
zone 13 N. The validation of the geometric correction was obtained with the Mean Squared Error (MSE) for
the control points, using one of the images as reference and comparing it (in pairs) to get the best geometric
adjustment. To standardize a spatial resolution to 30 m, the four Landsat images were standardized by
resampling the pixel size, especially the 1 and 2 Landsat images.

Spectral bands were selected for each image, in particular the ones with optical spectrum, Near Infrared
(NIR) and Short-Wave Infrared (SWIR); the panchromatic bands were omitted due to high atmospheric
influence, as well as the thermal bands, especially in the 7 and 8 Landsat images. To easily visualize the
several classes of covers and land uses, a RGB composition in false color was used, highlighting the strong
green areas with the NIR, SWIR and R combination; in addition, 2% of linear contrast highlighting was
applied to enhance the visualization and identification of the training sites.

The conversion to reflectance was performed to obtain the terrestrial area spectral reflectance
values for the different covers and land uses, giving the spectral value to each pixel. The conversion
to reflectance was conducted considering the method of Chavez [20] through the following equation
(Equation (1)).

ρk =
d2 ∗ π ∗ ∂1,k ∗ (NDk − NDmin, k)

E0,k ∗ sin θe ∗ τk,i
(1)

where ρk is the reflectance for the k band; d is the factor that considers the solar variation from the
Earth–Sun distance, calculated from the Julian Day; ∂1,k is the conversion to radiance multiplicative
coefficient; θe is the solar elevation angle; and E0,k is the solar irradiance in the top of atmosphere for
the k band. The data to make the conversion to reflectance were obtained from the header files of each
satellite image.

3.2. Processing

For processing the images, spectral signatures were created from selecting training sites based on
the identification of similar areas in different covers and land uses, combining the knowledge of the
area for a proper selection of the regions of interest (ROI). To identify the different land use classes,
some visual patterns such as tone, texture and the influence areas were used.

During the identification of the training sites, the separability of the spectral signatures was
verified for the five land use classes described in Table 2.

Table 2. Description of identified covers and land uses.

Class No. Class Description

1 Urban Includes urban and industrial areas.
2 Agricultural Periodic and temporary irrigation agriculture.
3 Water bodies Water bodies, lakes and rivers.

4 Secondary vegetation Includes arbustive (scrub and grassland) and arboreal
vegetation of low or scarce density.

5 Forest High density arboreal vegetation.

Source: Own elaboration.

While selecting the training sites, control fields verified in situ were also set for validation of each
classified image (post-processing).

To obtain the different land use classes, three supervised classification methods were used.
First, the Maximum Likelihood Classification (MLC) method, as the most widely used in the scientific
literature, is fast, easy to apply and enables a clear interpretation of the results [21]. This algorithm can
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obtain a spectral image of each land use class through variance and covariance statistics of the set of training
sites identified in the image and calculates the probability of belonging to each class according to the spectral
signature; this method has been proven in works such as those of [22–25], with satisfactory results.

The Support Vector Machines (SVMs) algorithm was the second method applied. This automatic
learning algorithm trains linear and non-linear learning functions by transforming the original data
into a different space with a function (kernel) to obtain the hyperplane which maximizes the margin of
separation between two or more classes to be classified [26]. Currently, the SVMs algorithm is among
the most reliable methods; therefore, it is used in many works [27–29] with satisfactory results. For the
classification of images the Radial Basis Function (RBF) for not-linearly separable data was used.

Finally, the third method applied was the Artificial Neural Networks (ANNs), an automatic
learning method that predicts a complex behavior from a sample of observed inputs and outputs.
The network structure is based on a simplified model of the human brain consisting of three layers:
input, hidden and output. This structure is trained to recognize the result from input values and
classify the rest according to the given rules [30,31]. Neural networks have been applied to classify
satellite images with good results [32,33].

The ANNs classification was applied with a hidden layer of standard backpropagation for
supervised learning by means of the logistic activation function for non-linear classification.

3.3. Post-Processing

To obtain a better representation of the land use mapping, each classified image was subject
to a series of auxiliary processes: a process of majority filtering (3 × 3 pixels) and a method of
generalization of polygons less than one hectare—as they are few representatives with respect to
the minimum mapping unit—were applied, which reduced the image noise and eliminated the
isolated polygons, resulting in the land use mapping for each year of analysis. Finally, to standardize
and confirm the location of urban areas, a visual inspection of the mapped urban localities and the
population census with historical data from INEGI for the same analyzed periods was carried out.

To validate the obtained results, the classified images were compared against the control fields
through a cross-tabulation matrix for the different dates. At the same time the following were obtained:
the kappa index, which shows the degree of similarity between a set of control fields and the classified
image; the general accuracy, which indicates the percentage of pixels properly classified; the percentage
of producer’s accuracy, which sets the percentage of a kind of particular land use change correctly
classified in the image; and the percentage of user’s accuracy, which provides the percentage of a land
use class in the image that matches with the class that corresponds in the land.

The model validated as the one with higher accuracy was used to represent the cover and land
use mapping for the years 1973, 1985, 2000 and 2015.

3.4. Analysis of Land Use and Cover Changes

The analysis of LUCC was conducted through the cross-tabulation matrix to obtain losses, gains
and interchanges between the different covers and land uses and after that, the significant transitions
analysis was conducted according to the methodology proposed by [19]. For each cover and land use
the cross-tabulation matrix enables to obtain, through the diagonal values, the stable areas between two
dates, as well as the losses (below the diagonal) and the gains (above the diagonal). Such significant
transitions on each cover and land use were obtained by comparing the gains and/or real losses
against the gains and/or expected losses randomly, divided by the gains and/or expected losses.
This comparison gave as a result the transition index where the values less than one indicated
non-significant changes among covers and land uses, while the positive values more than one, indicated
significant transitions.
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4. Results and Discussion

4.1. Satellite Images Classification

Figure 3 shows the mapping of covers and land uses obtained for each classified Landsat image.
The urban land use has mainly replaced agricultural land use where the productive activities has been
focused on sugarcane, maize, mango and jicama crops at rate of 1.48 km2/year.

Figure 3. Image classified from Landsat images 1, 5, 7 and 8 with SVMs; Cover and land use: (a) 1973;
(b) 1985; (c) 2000; and (d) 2015. Source: Own elaboration from Landsat images 1, 5, 7 and 8.

4.2. Classification Validation

Table 3 shows the results from the process of classified images validation through the
cross-tabulation matrix and the parameters obtained: kappa index, general accuracy, producer’s
accuracy and user’s accuracy. Validation statistics show better results when using the SVMs
classification method, from which general accuracy above 85% is recorded for the four classified
Landsat images 1, 5, 7 and 8, unlike the maximum likelihood classification and the artificial neural
networks methods.

Table 3. Classified images validation.

Year Evaluated
SVMs MLC ANNs

General Accuracy Kappa Index General Accuracy Kappa Index General Accuracy Kappa Index

1973 98.7% 0.98 97.7% 0.96 97.7% 0.96
1985 89.0% 0.85 92.5% 0.90 96.5% 0.95
2000 89.3% 0.85 82.1% 0.76 92.7% 0.90
2015 90.4% 0.87 86.1% 0.81 86.1% 0.81

Source: Own elaboration.
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When selecting training fields, separability problems were identified between the secondary
vegetation and the agricultural land use classes, which is reflected in the producer’s accuracy
percentage with values below 90%. The best fit was recorded when using the SVMs classification
method, where the accuracy percentages average 96% for the user, and 95% for the producer; as shown
in the Table 4.

Table 4. Percentages of producer’s accuracy and user’s accuracy.

Classified
Image Class

SVMs MLC ANNs

Producer’s
Accuracy

(%)

User’s
Accuracy

(%)

Producer’s
Accuracy

(%)

User’s
Accuracy

(%)

Producer’s
Accuracy

(%)

User’s
Accuracy

(%)

Landsat 1
MSS (1973)

Urban 100 100 100 100 100 100
Agricultural 97 100 96 99 95 100
Water body 100 100 100 100 100 100

Secondary vegetation 100 95 100 93 100 98
Forest 99 100 96 100 98 94

Landsat 5
TM (1985)

Urban 100 100 100 100 83 199
Agricultural 100 100 100 100 100 98
Water body 100 100 100 100 100 90

Secondary vegetation 68 100 82 100 99 94
Forest 100 74 100 83 93 100

Landsat 7
ETM (2000)

Urban 100 100 100 56 100 39
Agricultural 100 100 93 100 89 98
Water body 100 100 100 100 100 100

Secondary vegetation 56 100 63 100 86 100
Forest 100 67 100 71 100 89

Landsat 8
OLI (2015)

Urban 100 100 100 100 94 89
Agricultural 100 80 100 94 95 84
Water body 100 100 100 100 100 95

Secondary vegetation 72 100 44 100 71 69
Forest 100 96 100 76 83 93

Mean 95 96 94 94 94 96

Source: Own elaboration.

4.3. Analysis of Land Use Changes

Table 5 shows the changes in area for each class of cover and land use occurred during 1973–2015.
The urban land use has increased 7% from the overall analyzed area with an annual rate of 1.48 km2/year.
At the same time, the forest cover has lost 28% of area in 42 years, with an annual rate of 5.78 km2/year.
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Table 5. LUCC during 1973–2015 according to the SVMs method.

Classification
Method

Class Description
1973 1985 2000 2015

Annual Rate
(km2)Area

(km2)
Area
(%)

Area
(km2)

Area
(%)

Area
(km2)

Area
(%)

Area
(km2)

Area
(%)

SVMs

1 Urban 6.8 1 19.2 2 40.0 4 68.8 8 1.48
2 Agricultural 151.1 17 215.1 24 342.8 38 211.3 23 1.43
3 Water body 1.1 0 1.4 0 1.5 0 1.4 0 0.01
4 Secondary vegetation 322.7 36 383.7 43 243.7 27 442.8 49 2.86
5 Forest 418.3 46 280.6 31 272.1 30 175.7 20 5.78 *

MLC

1 Urban 6.8 1 19.2 2 39.9 4 68.6 8 1.47
2 Agricultural 179.5 20 258.1 29 234.7 26 218.5 24 0.93
3 Water body 1.2 0 1.7 0 1.4 0 1.5 0 0.01
4 Secondary vegetation 396.0 44 319.6 36 372.7 41 401.7 45 0.13
5 Forest 316.4 35 301.3 33 251.3 28 209.7 23 2.54 *

ANNs

1 Urban 6.8 1 19.2 2 39.9 4 68.8 8 1.48
2 Agricultural 140.1 16 221.3 25 314.2 35 331.1 37 4.55
3 Water body 1.1 0 2.6 0 2.1 0 1.8 0 0.02
4 Secondary vegetation 281.2 31 413.4 46 283.6 32 284.4 32 0.08
5 Forest 470.8 52 243.6 27 260.2 29 213.9 24 6.12 *

* Loss. Source: Own elaboration.
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The annual rates of change for each class of cover and land use are shown in Figure 4. Differences
were identified depending on the classification methods applied. When applying the SVMs and ANNs
methods, the urban land use presented a similar trend of 1.48 km2/year of change. The three methods
recorded differences regarding agricultural land use, where the ANNs method registered a rate of
4.55 km2/year, while the SVMs method obtained rates of 1.43 km2/year. The secondary vegetation
cover also presented important differences; while the SVMs method registered a rate of 2.86 km2/year,
the results of the MLC and ANNs methods presented a rate below 0.13 and 0.08 km2/year, respectively.
With regard to the forest, the methods SVMs and ANNs obtained similar annual rates of 5.78 and
6.12 km2/year; the negative rate of change is due to the loss of surface.

Figure 4. Annual rates of change according to the classification methods applied. Source. Own elaboration.

Since the SVMs method proved the best fit, the results from applying this method were used to
analyze significant transitions and land use changes in the metropolitan area.

The changes occurred in this same period due to losses and gains are shown in Table 6. The main results
show that the urban land use in the metropolitan area has increased 62 km2 since 1973. The agricultural
area and the secondary vegetation present most of the interchanges due to crop rotation, which is confirmed
when observing the losses and gains of these same land use classes.
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Table 6. Land use losses, gains and interchanges between periods with SVMs.

Period Class
Area (km2)

Total (t1) Total (t2) Steady (E) Gains (G) Losses (L) Interchanges (I) Net Change (NT) Total Change (CT)

1973–1985

Urban 6.8 19.2 6.8 12.4 0.0 0.0 12.4 12.4
Agricultural 151.1 215.1 86.6 128.5 64.5 129.0 64.0 193.0
Water body 1.1 1.4 1.0 0.4 0.0 0.1 0.3 0.4

Secondary vegetation 322.7 383.7 229.0 154.7 93.7 187.4 61.0 248.4
Forest 418.3 280.6 263.0 17.6 155.3 35.2 137.7 172.9

1985–2000

Urban 19.2 40.0 19.2 20.8 0.0 0.0 20.8 20.8
Agriculture 215.1 342.8 171.3 171.5 43.8 87.6 127.7 215.3
Water body 1.4 1.5 1.3 0.2 0.1 0.2 0.1 0.3

Secondary vegetation 383.7 243.7 185.2 58.5 198.5 116.9 140.1 257.0
Forest 280.6 272.1 227.1 45.0 53.6 90.1 8.5 98.6

2000–2015

Urban 40.0 68.8 40.0 28.9 0.0 0.0 28.9 28.9
Agricultural 342.8 211.3 182.3 29.0 160.5 58.1 131.5 189.5
Water body 1.5 1.4 1.3 0.1 0.3 0.2 0.2 0.4

Secondary vegetation 243.7 442.8 203.7 239.1 40.0 79.9 199.1 279.1
Forest 272.1 175.7 161.8 13.9 110.3 27.8 96.4 124.2

1973–2015

Urban 6.8 68.8 6.8 62.0 0.0 0.0 62.0 62.0
Agriculture 151.1 211.3 64.4 146.9 86.7 173.4 60.3 233.6
Water body 1.1 1.4 1.0 0.3 0.0 0.0 0.3 0.3

Secondary vegetation 322.7 442.8 194.2 248.6 128.5 257.0 120.1 377.1
Forest 418.3 175.7 166.4 9.3 251.9 18.5 242.7 261.1

Source: Own elaboration.
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The transitions analysis for each cover and land use is summarized in Table 7. Significant transitions
for the analyzed periods are registered particularly in the agricultural land use change to urban land use
and secondary vegetation. The increase of urban area and secondary vegetation is because the agricultural
area is being replaced. During a 42-year period, 33.1 km2 of agricultural use transformed into urban
areas and 53.3 km2 into secondary vegetation. The forest also has been affected with transitions, although
non-significant. They recorded ecological changes of 49.1 km2 to agricultural land and 195.3 km2 to
secondary vegetation.

Table 7. Significant transitions analysis.

From
Area (km2)

To
1973–1985 1985–2000 2000–2015 1973–2015

Agricultural

8.9 * 7.6 * 24.7 * 33.1 * Urban
0.0 0.1 0.1 0.0 Water body

51.3 * 29.6 133.2 53.3 Secondary vegetation
4.2 6.5 2.5 0.2 Forest

Water body

0.0 0.0 0.0 0.0 Urban
0.0 0.0 0.1 0.0 Agricultural
0.0 0.0 0.2 0.0 Secondary vegetation
0.0 0.0 0.0 0.0 Forest

Secondary vegetation

2.7 12.8 3.9 21.4 Urban
77.3 147.2 24.6 97.8 Agricultural
0.4 0.1 0.0 0.2 Water body

13.3 38.5 11.4 9.0 Forest

Forest

0.7 0.4 0.2 7.5 Urban
51.2 24.3 4.4 49.1 Agricultural
0.0 0.1 0.0 0.1 Water body

103.4 28.8 11.4 195.3 Secondary vegetation

* Significant transition. Source: Own elaboration.

The methodology applied in this study is similar to the one used by Aguayo et al. [1], Lopez and
Plata [25] and Antillón et al. [34], who applied the maximum likelihood algorithm to get the different land
use classes of the study area and analyzed LUCC through cross-tabulation method or confusion matrix.
The results of said investigations have had the same trend as obtained in the present study as regards to
urban areas replacing agricultural lands, as well as a decrease in the forest area.

According to the scientific literature, the SVMs method has been used in several studies such as those
developed by Mountrakis et al. [27]; Lu et al. [28]; and Xie et al. [29] with good results on image classification,
similar to the results obtained in this work where the SVMs method registered the best fit. Some works have
compared different supervised classification methods; for example, Pal and Mather [35] used the same three
classification methods that were applied in this study (MLC, ANNs and SVMs), obtaining the best fit results
through SVMs. On the other hand, Otukei and Blaschke [36] compared three methods of classification,
MLC, SVMs and Decision Trees (DT), and affirmed that the best results were obtained when applying
SVMs. In addition, Mondal et al. [37] compared the SVMs and MLC methods, and concluded that when
preparing land use maps, the SVMs method is more appropriate than the MLC. Finally, in a more recent
study, Wu et al. [38] compared the SVMs, ANNs and DT methods; although radial base and polynomial
functions were used for SVMs, this method obtained better results with kappa indices (0.72 and 0.79 for
each function, respectively). Both the results in the above mentioned research and in this work obtained
the best fit applying the SVMs method; therefore, the results from applying this method were used for the
LUCC analysis in the study area.

In Mexico, several studies on LUCC have been conducted to achieve a better understanding on
the dynamics and processes of land use change (e.g., [2,8,14,24,25,34,39–43]). These studies have been
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oriented to identify forest areas loss rates, unlike this research that was focused on analyzing the urban
land use during three periods with the intention of identifying the historical dynamics of urban growth
to be able to build urban growth simulation models and development of future scenarios.

Particularly, Cano et al. [44] analyzed urban land use in Hidalgo State (Mexico). From satellite
images, they identified urban growth of 72.3 km2 in a 14-year period, equivalent to an annual
growth rate of 1.8%. On the other hand, by means of digital and visual techniques classification,
Lopez and Plata [25] analyzed LUCC in the metropolitan area of Mexico City regarding urban
expansion detecting an urban growth of 202 km2 equivalent to 16% in a 10-year period. In comparison
with the present work, in the metropolitan area of Tepic-Xalisco it was possible to quantify an urban
growth of 62 km2 during a 42-year period, with an annual rate of 1.48 km2, which means a relatively
low growth regarding to the metropolitan area of Mexico City.

For the study area, the research on cover and land use analysis conducted by Nájera et al. [45] was
identified for the Mololoa River watershed, which determined natural vegetation losses of 41.67 ha/year
with deforestation rates of 0.1% and urban growth of 74.86 ha/year, which is nearly half that obtained by
this study that registered an increase of urban land of 148 ha/year (1.48 km2/year). These results may be
attributed to the difference in the boundaries set for the study areas, and to the methodology used to obtain
the different land use classes.

5. Conclusions

The validation results from the classifications developed suggest that the SVMs method gives
the best fit and offers greater certainty on the distribution and quantification of the different classes of
cover and land use obtained.

The urban land use in the metropolitan area of Tepic-Xalisco has experienced an important
increase within a period of 42 years, exceeding ten times the urban area recorded in 1973, with a rate
of 1.48 km2/year. This growth has produced significant changes in land use with transitions towards
agricultural and secondary vegetation land use. The forest cover also has been affected, since it has
experienced considerable losses of area with transformation trends towards secondary vegetation.
In addition, the agricultural land use has been replaced as a result of urban growth. This situation has
caused functional implications on ecosystems and to date losses of agricultural productive area are
present, as well as deforestation processes.

The applied methodology enabled learning about the historical dynamics and quantifying the LUCC
during a 42-year period, identifying the transitions between each land use. This information will help to
establish land planning strategies, promote management and develop land use conservation policies.
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