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Abstract: While studies have examined the association between weather variables and acute diarrhea
in a city, region, or country, less evidence is available on the temperature effect across countries.
The objective of this study is to elucidate the nonlinear and lagged association between ambient
temperature and acute diarrhea in Hong Kong, Taiwan, and Japan. We collected weekly surveillance
statistics on acute diarrhea with the corresponding meteorological data from 12 regions of Hong Kong,
Taiwan, and Japan during 2012–2016. Firstly, we fitted the region-specific counts of acute diarrhea in
a distributed lag nonlinear model (DLNM) which accounts for the non-linearity and lagged effect
of temperature. Secondly, we applied meta-analysis to pool estimates across 12 regions. A total
of 5,992,082 acute diarrhea cases were identified. We found that (1) the pooled overall cumulative
relationship between the relative risk (RR) of acute diarrhea and temperature was the greatest
(RR = 1.216; 95% CI: 1.083, 1.364) at 11 ◦C; (2) a pooled predictor-specific summary association at
lower temperatures (12 ◦C or 25th percentile) began immediately and vanished after four weeks.
Predictions and error analysis for new onsets of acute diarrhea in 2017 were evaluated. An early
warning system based on the information of temperature variation was suggested for acute diarrhea
control management.

Keywords: acute diarrhea; temperature; distributed lag nonlinear model (DLNM); prediction

1. Introduction

According to the estimates from Global Burden of Disease 2015 Study, diarrhea was responsible
for more than 1.31 million deaths around the world in 2015 [1]. Although the burden of acute infectious
diarrhea is greatest in low-income countries, it is a common cause of outpatient visits and hospital
admissions in high-income countries [2].

The Asia Pacific region is home to more than half of the world’s population and is regarded as
one of the most vulnerable areas under the influence of extreme weather. As the impact of extreme
weather events (either heat waves or cold waves) becomes more intense, we expect meteorological
factors might affect the timing and intensity of infectious diseases in these areas [3].

Prior studies have shown local weather factors like temperature [4,5], relative humidity [4],
and rainfall [6] to be linked to diarrhea-associated morbidity. Global climatic factors like the Indian
Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO) are also considered to influence the
transmission of infectious gastroenteritis [7]. Elucidation of the relationship between weather/climatic
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factors and infectious diarrhea is important for disease control and prevention. For example, if we
expect a cold temperature effect on infectious diarrhea, an early warning system based on temperature
forecast could be implemented.

Ambient temperature may be important in the spread of infectious diarrhea [8–10]. However, the
study area of the previous studies focused on a city [8,9], region, or country [10]. In addition, few studies
considered the nonlinearity and lagged effect of temperature [11]. Meta-analysis within a distributed
lag nonlinear model (DLNM) [12] provides a useful framework to quantify the temperature-morbidity
association for acute diarrhea in different regions. The objective of this study is to elucidate the
nonlinear and lagged association between temperature and acute diarrhea in Hong Kong, Taiwan,
and Japan. With a better understanding of the effect that ambient temperature may have on acute
diarrhea in different countries, integrated surveillance of acute diarrhea among these countries will
facility early warning and timely disease control [13].

2. Materials and Methods

2.1. Data

Acute diarrhea (AD) surveillance datasets during 2012–2016 were obtained from the Department
of Health in Hong Kong (http://www.dh.gov.hk/eindex.html), Taiwan Centers for Disease Control
(TCDC) (http://www.cdc.gov.tw/rwd/english), and National Institute of Infectious Diseases (NIID)
in Japan (https://www.niid.go.jp/niid/en/). The weekly consultation rate (per 1000 consultations) of
AD is reported by general practitioners in Hong Kong. In Taiwan, TCDC collects emergency visits
for AD (defined by the International Classification of Diseases, Ninth Revision, Clinical Modification,
ICD-9-CM) weekly from the surveillance system. Infectious gastroenteritis counts are updated from
NIID every week by prefecture.

We divided the study areas into 12 regions: one in Hong Kong, three (southern, central,
and northern regions) in Taiwan, and eight (Kyushu, Shikoku, Chugoku, Kansai, Chubu, Kanto,
Tohoku, and Hokkaido) in Japan. To obtain the estimated weekly count of AD in Hong Kong from
the consultation rate of AD, we assumed the confirmation rate of AD among the total inhabitants
(around 7,000,000) in Hong Kong was 0.01. For the other 11 regions, the corresponding region-specific
total population of 2016 was specified as the denominator to estimate the approximate weekly incidence
rate for every region. The study period was from week 31 of 2012 to week 52 of 2016 (total 231 weeks).
The corresponding weekly meteorological data, including mean temperature (degrees Celsius, ), mean
wind speed (meters per second, m/s), mean visibility (kilometers, km) and mean relative humidity (%)
of the 12 regions were estimated from the National Climatic Data Center (NCDC) of the National
Oceanic and the National Oceanic and Atmospheric Administration (NOAA, http://www.noaa.gov/).
For each region, the weather station located closest to the maximum population center of the region
was chosen. Weather information from a total of 12 stations was analyzed.

2.2. Statistical Analysis

To capture the nonlinear and delayed relationship between temperature and AD, we used
DLNM [12] to examine their association. Firstly, we specified a generalized linear model
(quasi-Poisson family) to the time series of AD counts for each region. The region-specific model is
defined as (1):

log[E(Yt)]

= α+ log(Yt−1) + cb + ns(rh, df) + ns(ws, df) + ns(v, df) + ns(time, df) + offset(pop)
(1)

where E(Yt) indicates the expected weekly AD counts in week t, cb denotes the cross-basis matrix
for weekly mean temperature with 3 degrees of freedom (df) [10] and a maximum lag time of up to
7 weeks (the lowest quasi-likelihood Akaike Information Criteria value), ns(rh, df) means the natural
cubic spline of relative humidity with degrees of freedom = 3 [10], ns(ws, df) denotes the natural cubic
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spline of wind speed with df = 3, and ns(v, df) represents the natural cubic spline of visibility with
df = 3. The natural cubic spline of time, denotes as ns (time, df), has df = 3 to control for the effects
of seasonality and long-term trends. We also added an autoregressive term (log(Yt−1)) [14] and an
offset term (offset(pop)) to adjust for the effect of temporal autocorrelation on count and size effect
of population, respectively. Sensitivity analysis on the value of degrees of freedom and estimates of
autocorrelation (partial autocorrelation function) were conducted.

Secondly, we applied meta-analysis to pool the 12 region-specific estimates to obtain the overall
cumulative association between temperature and AD counts. We further examined the pooled
predictor-specific temperature-morbidity relationship at a lower or higher temperature. The cut
points for low and high temperatures were 12 ◦C and 25 ◦C respectively, since the corresponding 25,
50, and 75 percentiles of temperature in the whole study areas were 12 ◦C, 20 ◦C, and 25 ◦C.

Finally, to assess the accuracy of our model, we used real weekly cases of 2017 for validation.
For each region, mean absolute errors (MAE) (2) and root mean squared errors (RMSE) (3) were applied
as performance indices:

MAE =
1

n− t + 1

n

∑
t=9
|Yt −Y∗t | (2)

RMSE =

√
1

n− t + 1

n

∑
t=9
|Yt −Y∗t |

2 (3)

where Yt is the real count of 2017 in week t and Y∗t is the predicted value in week t of 2017 according to
Equation (1). We specified t and n as 9 and 52 respectively since there were no predictions in week 1 to
week 8 of 2017 (the maximum lag equals 8 weeks in the DLNM model). All analyses were conducted
using the R software [15] version 3.3.3 with DLNM [16] and MVMETA [17] packages.

3. Results

3.1. Descriptive Statistics

We studied a total of 5,992,082 AD cases occurring between 2012 and 2016 in Hong Kong, Taiwan,
and Japan. The weekly mean temperature across the 12 regions was 18.618 ± 8.546 (◦C), the weekly
mean wind speed was 6.910 ± 2.360 (m/s), the weekly mean visibility was 9.122 ± 3.827 (km), and the
weekly mean relative humidity was 67.824 ± 9.482 (%) (Table 1). The weekly average number of AD
cases for a region was 2161 ± 2259 (patients). Overall, we observed at least 4–5 waves of AD epidemics
in regions like Shikoku during the study period, while less fluctuation of epidemics was observed in
Hong Kong, based on the time series of weekly approximate incidence rates (Figure 1).

Table 1. Mean and standard deviation of meteorological factors in 12 regions during 2012–2016.

Region Temperature (◦C)
Mean ± SD

Wind Speed (m/s)
Mean ± SD

Visibility (km)
Mean ± SD

Relative Humidity (%)
Mean ± SD

Hong Kong 24.646 ± 5.278 8.977 ± 1.668 5.872 ± 0.650 69.830 ± 8.785
Southern Taiwan 25.563 ± 3.631 6.209 ± 1.105 4.742 ± 0.881 76.092 ± 6.267
Central Taiwan 23.2627 ± 5.292 11.332 ± 3.307 5.414 ± 0.717 74.747 ± 7.192

Northern Taiwan 23.480 ± 5.164 7.532 ± 1.872 5.707 ± 0.526 70.776 ± 6.541
Kyushu 17.702 ± 7.608 5.526 ± 0.987 10.352 ± 2.059 68.276 ± 8.910
Shikoku 17.645 ± 7.285 7.669 ± 2.123 5.965 ± 0.484 66.702 ± 8.848
Chugoku 16.872 ± 8.218 6.4770 ± 1.026 12.281 ± 2.650 64.662 ± 7.231

Kansai 17.380 ± 8.169 4.686 ± 0.793 15.102 ± 2.833 62.585 ± 7.130
Chubu 16.674 ± 8.379 5.914 ± 1.067 10.676 ± 1.908 62.890 ± 8.498
Kanto 16.897 ± 7.811 5.626 ± 1.029 11.673 ± 3.151 62.484 ± 12.288

Tohoku 13.485 ± 8.303 6.124 ± 1.161 11.600 ± 2.795 68.030 ± 10.156
Hokkaido 9.806 ± 9.536 6.843 ± 1.484 9.789 ± 2.163 66.797 ± 7.915

All 12 regions 18.618 ± 8.546 6.910 ± 2.360 9.122 ± 3.827 67.824 ± 9.482
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Figure 1. Comparison of weekly incidence rates (per 100,000 population) in 12 regions: (a) Hong 
Kong, Southern Taiwan, Central Taiwan, Northern Taiwan, Kyushu, Shikoku and (b) Chugoku, 
Kansai, Chubu, Kanto, Tohoku, Hokkaido during week 31, 2012–week 52, 2016. 

The heat map of weekly approximate incidence rates (per 100,000 population) of AD by region 
(Hong Kong, Taiwan, and Japan) during week 31, 2012 to week 52, 2016 are also visualized in Figure 2. 
Overall, we observed a trend of negative slope by year, indicating an early outbreak in 
higher-latitude areas. 

 

Figure 1. Comparison of weekly incidence rates (per 100,000 population) in 12 regions: (a) Hong Kong,
Southern Taiwan, Central Taiwan, Northern Taiwan, Kyushu, Shikoku and (b) Chugoku, Kansai,
Chubu, Kanto, Tohoku, Hokkaido during week 31, 2012–week 52, 2016.

The heat map of weekly approximate incidence rates (per 100,000 population) of AD by region
(Hong Kong, Taiwan, and Japan) during week 31, 2012 to week 52, 2016 are also visualized in
Figure 2. Overall, we observed a trend of negative slope by year, indicating an early outbreak in
higher-latitude areas.
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3.2. DLNM and Meta-Analysis

The pooled overall cumulative relationship between relative risk (RR) of AD and temperature is
portrayed in Figure 3. Taking 20 ◦C (50th percentile) as the reference, we identified the highest pooled
overall RR = 1.216 (95% CI: 1.083, 1.364, red line) where temperature = 11 ◦C (vertical dashed red line).
Furthermore, the pooled predictor-specific summary association at a higher (25 ◦C) and a lower (12 ◦C)
temperature are depicted in Figure 4a,b, respectively. Setting 20 ◦C as the reference, we observed a
cold effect on AD (Figure 4b), which started immediately (for example, for one-week lag, RR = 1.054
(95% CI: 1.039, 1.069)) and disappeared after 4 weeks. In contrast, we did not identify a heat effect
when conditioning on 25 ◦C (Figure 4a). The multivariate Cochran Q tests for overall (Figure 3), heat
(Figure 4a), and cold effects (Figure 4b) were highly significant (p < 0.001). The related I2 statistics,
indicating percent of the variability due to true heterogeneity between regions, were 82.3%, 67.0%,
and 60.3%, respectively.
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Figure 4. The pooled (95% as grey area) predictor-specific temperature-morbidity association in
Hong Kong, Taiwan, and Japan, summaries at (a) higher (25 ◦C) and (b) lower (12 ◦C) temperatures
(reference at 20 ◦C).
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3.3. Prediction and Error Analysis

The predicted (red points) and the real weekly case number (blue lines) for 12 regions from
week 9 to week 52 in 2017 are depicted according to the region-specific DLNM model (Figure 5).
Overall, the trend of weekly count was captured by the model, although the degree of discrepancy was
different in each region. To assess the discrepancy, MAE and RMSE are portrayed by region in Table 2
respectively. We observed that Kanto of Japan was the region with the largest MAE (1097) and RMSE
(1591) among the 12 regions due to peaking cases at the end of 2017 in Kanto. However, the surging
trend of the epidemic can be captured by our current model.

Table 2. Mean absolute errors (MAE) and root mean squared errors (RMSE) in 2017 by region.

Region Mean Absolute Errors (MAE) Root Mean Squared Errors (RMSE)

Hong Kong 423 493
Southern Taiwan 281 411
Central Taiwan 95 125

Northern Taiwan 298 401
Kyushu 344 434
Shikoku 306 349
Chugoku 135 169

Kansai 600 791
Chubu 558 724
Kanto 1097 1591

Tohoku 168 209
Hokkaido 101 129
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4. Discussion

We examined the overall cumulative effect of temperature on 5,992,082 AD cases from Hong Kong,
Taiwan, and Japan during 2012–2016 and observed the pooled predictor-specific temperature-morbidity
association under the scenario of low (12 ◦C) and high (25 ◦C) temperatures. To the best of our knowledge,
this is the first cross-country study which elucidates the association between temperature and AD. We found
that the pooled overall cumulative relationship between relative risk (RR) of AD and temperature was the
greatest at 11 ◦C; a pooled predictor-specific summary association was observed at lower temperatures
(12 ◦C or 25th percentile) (Figure 4b), which began immediately and disappeared after four weeks.

Similar to Onozuka and Hagihara’s work in 2015 [10] which investigated temperature-morbidity
association in 47 Japanese prefectures, we identify a cold temperature effect on AD. Lower temperatures
are associated with increased viral diarrhea-like transmission and incidence of rotavirus and
norovirus [5,18–20].

In contrast, we did not observe a hot temperature effect on AD as Onozuka and Hagihara did [10].
A possible interpretation would be that inhabitants in Hong Kong and Taiwan are more adapted to hot
temperatures. Rotavirus or norovirus activity has also been found to be negatively associated with
temperature [20,21].

Based on our findings, we would suggest setting up an early warning system based on the
information of temperature variation [22]. The integration of temperature-based early warning
systems into existing action plans might facilitate timely interventions of AD during cold seasons [23].
Our results might also help health workers to predict cases and prepare for extreme cold-related
hospital admission in each region [24]. Although we observed a trend (negative slope) of weekly
incidence rate by year among the 12 regions (Figure 1), further rigorous methods to assess whether
early outbreaks start at higher latitudes are warranted.

Limitations of the present study include: (1) we adopted an intercept-only model in the meta-
regression. Due to time constraints on this exploratory study, we were not able to add factors relating
to heterogeneity of the temperature-morbidity relationship. Effect modifiers such as latitude might
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be included in multivariate meta-regression in future studies [12]; (2) other meteorological factors
like precipitation were not considered, due to missing value of rainfall information in the study areas.
Since rainfall might direct pathogen transport at higher temperatures [4], we might underestimate the
heat effect in our study; (3) we did not control for potential confounding on AD like demographics,
vulnerable subpopulations, and socioeconomic status in our model. Therefore, the interpretation of
findings should be done cautiously.

5. Conclusions

Our study reveals that the negative association between risk of AD and temperature was the
greatest at 11 ◦C in Hong Kong, Taiwan, and Japan during 2012–2016. Cold temperature effects on AD
were immediate but vanished after four weeks. An early warning system during winter seasons might
be implemented in these countries for effective acute diarrhea control management.
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