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Abstract: Intervening in the built environment is a key way for land-use and transport planning and
related policies to promote low-carbon development and low-carbon travel. It is of significance to
explore and recognize the actual impact of the neighborhood built environment on travel-related CO2

emissions. This study calculated the CO2 emissions from four purposes of trips, which were within
the urban region, using Travel O-D Point Intelligent Query System (TIQS) and 1239 residents’ travel
survey questionnaires from 15 neighborhoods in Guangzhou. It measured the direct and indirect
effects of built environments on CO2 emissions from different purposes of trips by developing
structural equation models (SEMs). The results showed that for different purposes of trips, the
effects of the neighborhood built environments on CO2 emissions were inconsistent. Almost all built
environment elements had significant total effects on CO2 emissions, which were mainly indirect
effects through mediators such as car ownership and trip distance, then affecting CO2 emissions
indirectly. Most of the direct effects of neighborhood built environments on CO2 emissions were not
significant, especially those from non-commuting trips. These findings suggest that in the process of
formulating low-carbon oriented land-use and transport planning and policies, the indirect effects of
the built environments should not be ignored, and the differences of the effects of the neighborhood
built environments among different purposes of the trip should be fully considered.

Keywords: built environment; CO2 emissions; indirect effect; different purposes of trips; structural
equation model (SEM)

1. Introduction

The transportation sector is the world’s second largest unsustainable energy user and contributor
to carbon emissions, contributing 23.31% of global carbon dioxide (CO2) emissions in 2014 [1].
Regarded as the most difficult sector in which to achieve carbon reduction, it has the fastest growth
rate of CO2 emissions and its global share is projected to rise to 30–50% by 2050 [2–4]. China surpassed
the United States in 2007 and became the country with the largest total CO2 emissions in the world [5].
Over the past two decades, China’s urban development patterns have continued along the path of
suburbanization and decentralized development, characteristic of the U.S.’s urban spread in the second
half of the twentieth century. In the process of rapid urban expansion, the spread pattern of low density,
decentralized development, and segregation of land-use has appeared in the urban fringe areas, which
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has greatly increased the distance of residents’ travel and the use of cars [6,7]. In this context, private
car ownership in China has expanded rapidly, with 123.39 million in 2014, and the average annual
growth rate was as high as 23.26% from 1985 to 2014. With the continuous development of the economy
and more private cars, China’s carbon emissions from transportation will continue to grow [8].

Although the transportation sector is a large and diverse sector that includes air, land, and water
transport, and the movement of both passengers and freight, people’s daily travel by passenger
vehicles is the primary source of CO2 emissions [9]. Over the past two to three decades, numerous
studies have examined the relationship between the built environment and travel behavior [10–13],
focusing on trip frequencies, trip lengths, mode choices or modal splits, and person miles traveled
(PMT), vehicle miles traveled (VMT), or vehicle hours traveled (VHT) [14,15]. However, little attention
has been paid to travel-related carbon emissions, which can also be regarded as a travel behavior
or an outcome of travel behavior [16,17]. Macro-level studies on CO2 emissions from transport
have mainly explored the influencing factors based on the aggregate data of country, region, or city,
using decomposition methods [18–21], scenario analysis [22–24], panel data models [8], and Data
Envelopment Analysis (DEA) models [25–27]. They have seldom examined the effects of urban forms or
built environments on transport-related CO2 emissions. Most studies on the neighborhood/local level
have used questionnaires and disaggregate methods to investigate the impact of socio-demographics
and built environments on residents’ travel behavior and its related CO2 emissions. Some research
has focused on quantifying the effects of residents’ socio-demographic attributes on travel-related
CO2 emissions and neglected to analyze the effects of built environment factors [28–31]. Others have
primarily measured the direct effects of the built environment on travel-related CO2 emissions with
case studies of cities in North America, Europe, and Oceania [28,32–34], but ignored the indirect
effects of the built environment, which ultimately affects CO2 emissions through intermediary factors.
Furthermore, they did not examine the differences in the effects of the built environments on CO2

emissions in terms of different purposes of trips [17,35,36].
In this paper, taking Guangzhou as an example, we measured the direct and indirect effects of

neighborhood built environments on CO2 emissions from four purposes of trips based on survey data
and structural equation modeling. It aimed to address the following two research questions: (1) How
does the neighborhood built environment affect the travel-related CO2 emissions of residents? For
example, do they affect CO2 emissions directly or indirectly by affecting other mediating variables?;
(2) For different purposes of trips, are there any differences in the effects of neighborhood built
environment elements on CO2 emissions?

The rest of this paper is organized as follows. Section 2 introduces the methodology and data
used in the analysis. Section 3 examines the estimation results of the models and analyzes the direct
and indirect effects of neighborhood built environments on travel-related CO2 emissions. Section 4
summarizes the primary conclusions and policy implications of the study.

2. Methodology and Data

2.1. Study Area and Neighborhoods Surveyed

This paper takes Guangzhou as the study area. It is the largest city in southern China and covers
an area of 3647.43 km2 and includes 2055 neighborhoods. Its total population was 14.04 million in
2016. In order to select the survey neighborhoods, we first used GIS technology to measure the built
environment for all these 2055 neighborhoods, including the following six criteria: the distance to city
public centers (DTC), residential density (RD), land-use mix (LUM), bus stop density (BSD), metro
station density (MSD), and road network density (RND). Specifically, the distance to city public centers
was measured through the average Euclidean distance from the center of the neighborhood to 16 urban
public centers of different types. The residential density was calculated by dividing the neighborhood
population by the area of the neighborhood. The land-use mix was calculated by methods similar to
those used in previous studies [37,38] with 13 types of points of interest (POIs). The bus stop density
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and the metro station density were obtained by estimating the bus stop vector data and the metro
station vector data, respectively, using the kernel density method. The road network density was
measured by the method of line density with the road network vector data. And then, to ensure the
statistical significance of the model fit, we specifically chose neighborhoods with large differences in the
built environment to conduct the survey. Eventually, 15 neighborhoods from 7 districts were selected.
They are Fuli (FL), Wuyang (WY), Yijingcuiyuan (YJCY), Guangdahuayuan (GDHY), Fangcaoyuan
(FCY), Junjinghuayuan (JJHY), Zhonghaikangcheng (ZHKC), Huiqiaoxincheng (HQXC), Fulicheng
(FLC), Jinbi (JB), Wankehuayuan (WKHY), Luoxixincheng (LXXC), Lijianghuayuan (LJHY), Qifuxincun
(QFXC), and Dongyi (DY) (Figure 1a). In the scatter plot and the fitting curve between the built
environment elements of these neighborhoods, almost all their confidence ellipses have a larger area,
which indicates that there are significant differences in the built environment elements between the
surveyed neighborhoods (Figure 1b).
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Figure 1. (a) The spatial distribution of the neighborhoods surveyed; (b) the scatter plots and fitting
curves between built environment elements.

2.2. Survey Data

A pre-survey exercise was conducted in March 2015. After feedback and refinement, the formal
survey began in May 2015 and lasted until July. The objects of our survey were residents aged 16 and
above and below 60 years of age living in each neighborhood. We surveyed the respondents in the
public spaces of the neighborhoods, using a face-to-face and random interception approach. A total of
1345 questionnaires were collected, of which, 1239 were valid (Table 1).

The residents’ socio-demographic data and travel information were collected by a survey (Table 2).
We obtained 1239, 726, 702, and 712 trip OD pairs of commuting trips, social trips, recreational trips,
and daily shopping trips, respectively, with the specific address of their origins and destinations such
as the name of the neighborhood, building, bus stop, and so forth. We performed spatial coding and
vectorization of these OD pairs (a total of 3379 pairs) and used Travel O-D Point Intelligent Query
System (TIQS) which was developed by us based on the Baidu map LBS (Location Based Service) open
platform to calculate trip distance, travel time and other detailed travel information.
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Table 1. The sample distribution and built environment characteristics of the neighborhoods surveyed.

Neighborhood District Sample Distance to City Public Centers Land-Use Mix Residential Density Bus Stop Density Metro Station Density Road Network Density

km - Person/km2 Unit/km2 Unit/km2 km/km2

Fuli Liwan 63 7.37 0.54 11,4489 8.91 0.68 8.93
Wuyang Yuexiu 88 4.96 0.57 39,885 6.28 1.05 7.63

Yijingcuiyuan Haizhu 75 7.23 0.48 24,695 6.89 0.23 6.99
Guangdahuayuan Haizhu 102 8.04 0.18 32,147 6.09 0.36 7.97

Fangcaoyuan Tianhe 39 5.93 0.35 63,200 7.72 0.67 7.28
Junjinghuayuan Tianhe 109 9.34 0.36 13,827 4.85 0.36 6.43

Zhonghaikangcheng Tianhe 69 10.71 0.27 17,580 4.56 0.21 5.86
Huiqiaoxincheng Baiyun 121 9.49 0.47 56,825 8.07 0.02 8.68

Fulicheng Baiyun 41 14.05 0.27 10,343 5.70 0.00 4.78
Jinbi Huangpu 89 13.36 0.40 63,149 4.75 0.10 5.38

Wankehuayuan Huangpu 34 17.12 0.25 29,717 4.45 0.29 4.48
Luoxixincheng Panyu 109 11.00 0.25 13,938 5.15 0.25 4.81
Lijianghuayuan Panyu 95 12.13 0.41 9989 5.32 0.21 4.42

Qifuxincun Panyu 159 19.64 0.25 6980 1.38 0.00 2.83
Dongyi Panyu 46 24.46 0.57 20,503 3.52 0.12 4.31

Total 1239 11.66 0.37 34,484 5.58 0.30 6.05
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Table 2. The distribution of socio-demographic attributes for the sample population.

Variable Level Number of Samples Percent

Gender
0 for male 694 56.01%

1 for female 545 43.99%

Age

1 represents age 16–24 137 11.06%
2 represents age 25–34 605 48.83%
3 represents age 35–44 426 34.38%
4 represents age 45–60 71 5.73%

Household size

1 represents 1 people 39 3.15%
2 represents 2 people 140 11.30%
3 represents 3 people 429 34.62%
4 represents 4 people 355 28.65%

5 represents ≥ 5 people 276 22.28%

Any child under 16 0 for no 414 33.41%
1 for yes 825 66.59%

Education

1 represents senior high school and below 151 12.19%
2 represents junior college 357 28.81%

3 represents bachelor degree 551 44.47%
4 represents master degree or above 180 14.53%

Hukou
0 for other cities 584 47.13%
1 for Guangzhou 655 52.87%

Household monthly
incomes per capita

1 represents income ≤ 3999 RMB 129 10.41%
2 represents income 4000–5999 RMB 221 17.84%
3 represents income 6000–7999 RMB 208 16.79%
4 represents income 8000–9999 RMB 202 16.30%

5 represents income 10,000–14,999 RMB 208 16.79%
6 represents income ≥15,000 RMB 271 21.87%

Car ownership 0 for no 488 39.39%
1 for yes 751 60.61%

Bicycle ownership 0 for no 429 34.62%
1 for yes 810 65.38%

2.3. Calculation of Travel-Related CO2 Emissions

In order to examine the relationship between the built environment and CO2 emissions from
travel, this paper measures the CO2 emissions based on trip distance, like the methods proposed
by existing studies in the field of travel research [28,35,36,39,40], which is different from studies of
transportation engineering and energy sciences that mainly focus on accurate calculation of emission
factors and CO2 emissions through experimental methods, and studies of other disciplines such as
environmental science that estimate CO2 emissions based on the energy use. Moreover, based on
the application of Travel O-D Point Intelligent Query System, we have data on all segments of each
trip, which allows us to exclude the non-motorized trip distance from the total trip distance and
make the calculation of CO2 emissions relatively more accurate than most previous related studies.
The calculation formula of CO2 emissions for each trip is as follows:

TCi = MTDi × EFm, (1)

MTDi = TDi − NTDi, (2)

where TCi denotes the CO2 emissions for trip i, TDi denotes the total trip distance for residents that
travel from O point to D point during trip i, and NTDi is the non-motorized trip distance during this
trip. We use Travel O-D Point Intelligent Query System to calculate the TDi and NTDi by entering
the space coordinates of the trip OD point. MTDi is the motorized trip distance for trip i, which is
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calculated by TDi and NTDi. EFm is the emissions factor for the motorized travel mode m in the related
trip, which can be found in Table 3.

Table 3. The specific energy consumption and CO2 emissions factor for motorized travel modes.

Motorized Travel
Modes

Final Energy Consumption
(l/100 km, KWh/km) Capacity (Persons) Primary Energy

Consumption (MJ/Pkm) CO2 (g/Pkm)

Passenger car 11.0 1.3 0.84 233.1
Urban bus 35.0 40 0.35 26.0

Coach 30.0 44.0 0.27 20.3
Metro 5.0 216 0.26 20.9

Note: According to the research of Entwicklungsbank on China’s transportation CO2 emissions [41]. MJ is an
abbreviation of the unit of heat for megajoule. Pkm refers to person kilometer.

2.4. Structural Equation Model (SEM)

Structural equation model (SEM) is often used to explore the complex relationship between the
built environment and the travel behavior [17,42,43]. It can effectively solve the endogenous problem
between variables and can examine the direct, indirect, and total effects of exogenous variables
on endogenous variables, as well as between endogenous variables [44–46]. Therefore, this paper
measures the direct and indirect effects of neighborhood built environments on the travel-related
CO2 emissions of residents through constructing four SEMs for four purposes of trips and examines
whether the influence mechanism has differences in these different purposes of trips.

The SEMs were constructed according to the following conceptual framework: set the socio-
demographics and built environments as exogenous variables, and car ownership, trip distance, and
travel-related CO2 emissions as endogenous variables. Among them, taking into account that car
ownership and trip distance are likely to have significant effects on travel-related CO2 emissions, and
these effects are not independent because they may also be affected by residents’ socio-demographics
and neighborhood built environments [43,44,47], we set these two variables as mediating variables
(Figure 2).
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Figure 2. The conceptual framework for the structural equation models construction.

Since the variables estimated in this paper were observed variables rather than latent variables,
the SEMs without latent variables constructed in this paper can be expressed as follows [44,48]:

y = By + Γx + ζ, (3)

where y is the NY × 1 vector of endogenous variables, x is the NX × 1 vector of exogenous variables,
B is the NY × NX matrix of coefficients representing the direct effects of endogenous variables on
other endogenous variables, Γ is the NY × NX matrix of coefficients representing the direct effects of
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exogenous variables on endogenous variables, and ζ is the NY × 1 vector of errors in the equation.
The ordered categorical variables in socio-demographic attributes, such as Age, Household size,
Education, and Household monthly incomes per capita, were introduced directly into the models
as continuous variables. The models were estimated using Amos 21.0 (IBM, Armonk, NY, USA).
This paper used the Bollen-Stine bootstrap estimation method and the number of bootstraps was set to
2000, considering that the data of variables was not multivariate normal distribution [49,50].

We revised the SEMs according to the Modification Indices (M.I.) provided by Amos 21.0. The links
between the variables and the covariance between errors that can improve the model fit were added in
a revised model [51]. Meanwhile, the links that were not statistically significant (p > 0.1) were removed
from the models. The models were re-estimated after each modification, until the table of M.I. no longer
prompted that the model needed to be modified, and the significance level of each link was above 10%.
The ratios of sample size to the number of observed variables in the SEMs constructed for commuting
trips, social trips, recreational trips, and daily shopping trips are 1239/17 (≈73), 726/17 (≈43), 702/17
(≈41) and 712/17 (≈42), respectively, which are much greater than the large sample reference value
(15). Therefore, the sample size can be considered to be large enough to meet the model construction
and statistical requirements [52].

3. Results and Discussion

3.1. Goodness-of-Fit for SEMs

Based on the above conceptual framework, four SEM models were constructed and fitted for
commuting trips, social trips, recreational trips, and daily shopping trips, respectively. All the
goodness-of-fit indices for SEMs in Table 4 shows that the models fit well with the data.

Table 4. The model fit indices for the structural equation models.

Model Fit Indices Reference
Value

Model-Based Value

Commuting Social Recreational Daily Shopping

Chi-square (χ2) 55.940 63.407 70.981 54.887
Degrees of freedom (df) 68 73 72 73

Bollen-Stine bootstrap p-value >0.05 0.861 0.755 0.493 0.929
Goodness of Fit Index (GFI) >0.9 0.992 0.990 0.988 0.991

Adjusted Goodness of Fit Index (AGFI) >0.9 0.981 0.979 0.975 0.981
Comparative Fit Index (CFI) >0.9 1.000 1.000 1.000 1.000

Normed Fit Index (NFI) >0.9 0.990 0.988 0.986 0.989
Non-Normed Fit Index (NNFI) >0.9 1.004 1.003 1.000 1.007

Root Mean Square Error of Approximation (RMSEA) <0.05 0.000 0.000 0.000 0.000

Figure 3 shows the SEM path relationship between residents’ socio-demographics, the
neighborhood built environments, car ownership, trip distance, and travel-related CO2 emissions
for the four purposes of the trips. Although the path relationship between the variables in these
models was similar, there were still some differences: for the different purpose of trips, the factors and
mechanisms that affect the travel-related CO2 emissions of residents are likely to be different, which
difference needs to be measured and explored separately.

Table 5 shows the direct effects, indirect effects, and total effects of six neighborhood built
environment variables on car ownership, trip distance, and travel-related CO2 emissions. Since the
effects of socio-demographic attributes have been explored comprehensively and richly in existing
studies, this paper focused on examining the direct effects and indirect effects of neighborhood built
environments on the travel-related CO2 emissions of residents, aiming at providing a scientific basis for
land-use planning, transport planning, residential district planning, and related policy development.
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Table 5. The standardized total, direct, and indirect effects of variables on endogenous variables.

Endogenous Variables Effect
Commuting Social Recreational Daily Shopping

CAR TD TC CAR TD TC CAR TD TC CAR TD TC

Distance to city public centers
Total −0.240 *** 0.374 *** 0.094 ** −0.339 *** 0.231 *** 0.029 −0.335 *** 0.274 *** 0.056 −0.307 *** 0.028 ** −0.051 ***

Direct −0.240 *** 0.374 *** - −0.339 *** 0.231 *** - −0.335 *** 0.237 *** - −0.307 *** - -
Indirect - - 0.094 ** - - 0.029 - 0.037 *** 0.056 - 0.028 ** −0.051 ***

Residential density
Total 0.175 *** −0.134 ** −0.008 0.221 *** - 0.054 *** 0.217 *** −0.119 ** −0.005 0.193 *** −0.018 ** 0.032 ***

Direct 0.175 *** −0.134** - 0.221 *** - - 0.217 *** −0.095 * - 0.193 *** - -
Indirect - - −0.008 - - 0.054 *** - −0.024 *** −0.005 - −0.018 ** 0.032 ***

Land-use mix
Total - - −0.077 ** - - - - - - - - -

Direct - - −0.077 ** - - - - - - - - -
Indirect - - - - - - - - - - - -

Bus stop density
Total −0.318 *** 0.416 *** 0.311 *** −0.432 *** - −0.105 *** −0.419 *** 0.399 *** 0.100 * −0.388 *** −0.184 *** −0.176 ***

Direct −0.318 *** 0.416 *** 0.222 *** −0.432 *** - - −0.419 *** 0.352 *** - −0.388 *** −0.219 *** -
Indirect - - 0.090 * - - −0.105 *** - 0.047 *** 0.100 * - 0.036 ** −0.176 ***

Metro station density
Total −0.152 *** - −0.045 *** −0.192 *** - −0.047 *** −0.201 *** 0.022 *** −0.042 *** −0.190 *** −0.125 *** −0.104 ***

Direct −0.152 *** - - −0.192 *** - - −0.201 *** - - −0.190 *** −0.143 *** -
Indirect - - −0.045 *** - - −0.047 *** - 0.022 *** −0.042 *** - 0.017 ** −0.104 ***

Road network density
Total - −0.313 *** −0.274 *** - −0.175 *** −0.085 *** - −0.399 *** −0.137 * - - -

Direct - −0.313 *** −0.136 * - −0.175 *** - - −0.399 *** 0.077 ** - - -
Indirect - - −0.138 *** - - −0.085 *** - - −0.214 *** - - -

Car ownership
Total - - 0.296 *** - - 0.244 *** - −0.111 *** 0.211 *** - −0.092 ** 0.165 ***

Direct - - 0.296 *** - - 0.244 *** - −0.111 *** 0.271 *** - −0.092 ** 0.212 ***
Indirect - - - - - - - - −0.059 *** - - −0.047 **

Trip distance
Total - - 0.441 *** - - 0.485 *** - - 0.536 *** - - 0.508 ***

Direct - - 0.441 *** - - 0.485 *** - - 0.536 *** - - 0.508 ***
Indirect - - - - - - - - - - - -

Note: links that are not included in the model are indicated by ‘-’. CAR refers to car ownership; TD refers to trip distance; TC refers to travel-related CO2 emissions. *** Significant at the
0.01 level; ** Significant at the 0.05 level; * Significant at the 0.1 level.
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3.2. The Interaction between Car Ownership, Trip Distance, and Travel-Related CO2 Emissions

The path diagram (Figure 3) and model results (Table 5) show that, for different purposes of trips,
the relationship between car ownership and trip distance was different. For example, car ownership
had an impact on trip distance for recreational and daily shopping trips but had no significant impact
on trip distance for commuting and social trips. This effect of the car ownership would further
indirectly affect the CO2 emissions. In general, both car ownership and trip distance have a significant
positive direct effect and total effect on CO2 emissions from trips (significant level was 1%), which
meant residents with cars or those traveling longer distances emit more CO2. Specifically, the effects of
car ownership on travel-related CO2 emissions were the largest for commuting trips and the smallest
for daily shopping trips, while the effects of trip distance on travel-related CO2 emissions were the
largest for recreational trips and the smallest for commuting trips. This indicated that residents tended
to use high-carbon modes for recreational trips but tended to use low-carbon modes for commuting
trips, and residents with cars tended to emit more CO2 during commuting trips than during other
trips. This showed that the relationship between car ownership, trip distance, and travel-related CO2

emissions would become very complex if we specifically explore them for different purposes of trips.

3.3. The Direct Effects of Neighborhood Built Environments on Travel-Related CO2 Emissions

Overall, half of the neighborhood built environment elements that we studied had no significant
direct effect on CO2 emissions from commuting trips, while almost all of the elements had no significant
effect on CO2 emissions from other purposes of trips. In other words, the neighborhood built
environments produced more pronounced effects for commuting trips than for other purposes of trips.
For commuting trips, the land-use mix, bus stop density, and road network density had a significant
level of 5%, 1%, and 10% of the direct effect on travel-related CO2 emissions, respectively, while they
had no significant direct effect for social and daily shopping trips. Moreover, for recreational trips, the
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road network density had the opposite effect. This shows that the impact of the built environment on
carbon emissions for different purposes of trips is not consistent. Some built environment elements
may have a direct effect for some purposes of trips but have no significant direct effect for other
purposes of trips, and some may even have the opposite effect for different purposes of trips.

Specifically, the standardized coefficient of the direct effect of the land-use mix and road network
density on CO2 emissions from commuting trips were −0.077 and −0.136, respectively, which meant
that the more diversified the neighborhood land-use, and the denser the neighborhood road network,
the less CO2 the residents emit during commuting trips. However, bus stop density had a significant
direct effect on CO2 emissions from commuting trips, which indicated that providing high-density bus
services did not necessarily encourage residents to choose low-carbon modes for commuting trips,
especially in cities like Guangzhou, where the supply of buses is already very high. As can also be seen
from Table 1, there is no obvious difference in the bus stop density of the neighborhoods located in
different locations. Therefore, for the neighborhoods with an adequate supply of bus services, attempts
to add more bus stops or bus lines to reduce the residents’ CO2 emissions from commuting would
probably not achieve the intended effect.

Although the vast majority of built environment elements have no direct impact on CO2 emissions
from other purposes of trips, it does not imply that planning intervention for the built environment
is useless. If the direct effect is concerned only, the policy implications of the study are likely to be
biased, because the actual impact (called the total effects) of the built environment may come from the
indirect effect.

3.4. The Indirect Effects of Neighborhood Built Environments on Travel-Related CO2 Emissions

Indirect effects are a major source of the impact of neighborhood built environments on
travel-related CO2 emissions, which come from intermediary variables such as car ownership and
trip distance. From Table 5, we can see that the variables of distance to city public centers and metro
station density had significant indirect effects on CO2 emissions from commuting trips, and for CO2

emissions from other purposes, many built environment variables also had significant indirect effects,
which made them have significant total effects on CO2 emissions.

Specifically, the distance from the neighborhood to city public centers had a positive indirect
effect and total effect on CO2 emissions from commuting trips at the significance of 5%, which came
from influencing the mediating variables of car ownership and trip distance. This indicated that
although the distance between the neighborhood and city public centers was negatively correlated
with car ownership, it was positively correlated with commuting distance (with a greater standardized
coefficient than car ownership) so that the distance to city public centers had a positive indirect effect
and total effect on CO2 emissions from commuting trips. However, for daily shopping trips, it had
a significant negative indirect effect and total effect on CO2 emissions. This implied that residents
who lived far from city public centers were likely to make their daily shopping trips in the vicinity
of their neighborhood with little CO2 emissions, especially for neighborhoods with well-developed
commercial facilities. Although residential density had no significant direct effect on CO2 emissions for
all purposes of trips, it had a significant positive indirect effect and total effect on CO2 emissions from
social trips and daily shopping trips. This implied that the effect of residential density on travel-related
CO2 emissions in Chinese cities is likely to be different from that in Western countries, most of which
usually have a significantly negative effect [28,32]. A study on the influence factors of transportation
CO2 emissions in China also demonstrated that urban population density was positively correlated
with CO2 emissions from transportation [8]. Therefore, in order to promote low-carbon travel and
achieve low-carbon development goals, increasing neighborhood residential density is not an effective
method for Chinese cities. A similar situation also occurred with bus stop density, which had a positive
indirect effect on CO2 emissions from commuting trips and recreational trips at a 10% significant
level, and its total effect on them was positive (significant level was 1% for commuting trips and 10%
for recreational trips). This result was inconsistent with that of many studies in Western countries.
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Meanwhile, for social trips and daily shopping trips, the bus stop density had a significant negative
indirect effect and total effect at a 1% significant level. This indicated that although improving the
neighborhood bus service supply did not necessarily encourage residents to emit less CO2 during
commuting and recreational trips, it helped to reduce the CO2 emissions from social trips and daily
shopping trips. Metro station density had no direct effect on CO2 emissions, but it had a significant
indirect effect on them from four purposes of trips, which mainly came from the intermediary role of
car ownership. Although both metro station density and bus stop density were negatively related to
car ownership, the bus stop density often had a positive correlation with trip distance, for example,
during commuting trips and social trips, as bus travel was likely to result in longer trip distances.
Therefore, increasing the neighborhood’s subway service is more effective than increasing the bus
service in promoting low-carbon travel, which is consistent with an existing study on Guangzhou [53].
Meanwhile, road network density had negative indirect and total effects on CO2 emissions from
commuting, social, and recreational trips. Its indirect effects resulted from the mediating effect of trip
distance, which indicated that the denser the neighborhood road network, the shorter the residents’
trip distance would be, resulting in smaller emissions of CO2. Land-use mix only had a direct effect
on CO2 emissions from commuting trips but had no significant indirect effect on emissions from
commuting trips and other purposes of trips.

4. Conclusions and Policy Implications

This paper used neighborhood survey data and the Travel O-D Point Intelligent Query System
to calculate residents’ CO2 emissions from commuting trips, social trips, recreational trips, and daily
shopping trips and measured the direct and indirect effects of neighborhood built environments
on them by building structural equation models. It drew the following conclusions and planning
implications: first, most of the neighborhood built environment elements had a significant total effect
on CO2 emissions, which mainly came from an indirect effect through affecting the mediators, such as
car ownership or trip distance, and then indirectly affecting the travel-related CO2 emissions. Therefore,
it would probably underestimate the effects of neighborhood built environments on travel-related
CO2 emissions and thus, mislead land-use and transport planning and its related policy development
if only their direct effects were considered and their indirect effects were ignored. Second, the
effects of neighborhood built environments on CO2 emissions from different purposes of trips were
not consistent. Low-carbon oriented land-use and transport planning needed to fully consider the
difference of the effects of the built environment on CO2 emissions for different trip purposes [54].
Third, narrowing the distance between neighborhoods and city public centers is an effective way to
reduce CO2 emissions from commuting. At the same time, the commercial facilities in neighborhoods
far from city public centers should also be improved, which would be beneficial for reducing the
CO2 emissions from daily shopping. Meanwhile, the neighborhood’s residential density should be
controlled at a livable level instead of blindly increasing its density, which has little effect on shaping the
low-carbon land-use pattern. The diversification of neighborhood land-use is worth advocating. It will
be helpful to reduce travel-related CO2 emissions, especially for reducing emissions from commuting
trips [55,56]. For neighborhoods with a higher density of bus stops, further addition of bus stops
may not effectively reduce the CO2 emissions from commuting trips and recreational trips. Instead,
increasing the number of metro stations around the neighborhood and its road network density,
abandoning the large blocks and wide roads, and building a good non-motorized travel environment
will play a greater role in promoting residents’ low-carbon travel and travel behavior changes.

Author Contributions: W.Y. developed the main ideas of the study, gathered the data, performed the models
construction and estimation, and wrote the manuscript. S.W. and X.Z. contributed to the conceptual framework of
this paper, played an important role in interpreting of the results and participated in revising the manuscript and
proofreading the article. All authors read and approved the final manuscript.

Acknowledgments: This work was supported by the National Natural Science Foundation of China (41701169,
41601151), the Philosophy and Social Sciences Planning Project of Guangdong Province (GD17YSH01), the



Sustainability 2018, 10, 1372 12 of 14

Natural Science Foundation of Guangdong Province (2016A030310149) and the Pearl River S&T Nova Program
of Guangzhou.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. IEA (International Energy Agency). CO2 Emissions from Fuel Combustion; IEA: Paris, France, 2016.
2. Fuglestvedt, J.; Berntsen, T.; Myhre, G.; Rypdal, K.; Skeie, R.B. Climate forcing from the transport sectors.

Proc. Natl. Acad. Sci. USA 2008, 105, 454–458. [CrossRef] [PubMed]
3. Marsden, G.; Rye, T. The governance of transport and climate change. J. Transp. Geogr. 2010, 18, 669–678.

[CrossRef]
4. Brand, C.; Tran, M.; Anable, J. The UK transport carbon model: An integrated life cycle approach to explore

low carbon futures. Energy Policy 2012, 41, 107–124. [CrossRef]
5. IEA (International Energy Agency). CO2 Emissions From Fuel Combustion Highlights 2010; IEA: Paris, France,

2010.
6. Zhao, P.; Lü, B.; Roo, G.D. Impact of the jobs-housing balance on urban commuting in Beijing in the

transformation era. J. Transp. Geogr. 2011, 19, 59–69. [CrossRef]
7. Zhao, P. Sustainable urban expansion and transportation in a growing megacity: Consequences of urban

sprawl for mobility on the urban fringe of Beijing. Habit. Int. 2010, 34, 236–243. [CrossRef]
8. Yang, W.; Li, T.; Cao, X. Examining the impacts of socio-economic factors, urban form and transportation

development on CO2 emissions from transportation in china: A panel data analysis of China’s provinces.
Habit. Int. 2015, 49, 212–220. [CrossRef]

9. Handy, S.L.; Krizek, K.J. The role of travel behavior research in reducing the carbon footprint: From the US
perspective. In Proceedings of the Triennial Meeting of the International Association of Travel Behavior
Research, Jaipur, India, 13–18 December 2009.

10. Crane, R. The influence of urban form on travel: An interpretive review. J. Plan. Lit. 2000, 15, 3–23. [CrossRef]
11. Handy, S.L.; Boarnet, M.G.; Ewing, R.; Killingsworth, R.E. How the built environment affects physical

activity: Views from urban planning. Am. J. Prev. Med. 2002, 23, 64–73. [CrossRef]
12. Handy, S.; Cao, X.; Mokhtarian, P. Correlation or causality between the built environment and travel

behavior? Evidence from Northern California. Transp. Res. Part D Transp. Environ. 2005, 10, 427–444.
[CrossRef]

13. Boarnet, M.G. A broader context for land use and travel behavior, and a research agenda. J. Am. Plan. Assoc.
2011, 77, 197–213. [CrossRef]

14. Ewing, R.; Cervero, R. Travel and the built environment. J. Am. Plan. Assoc. 2010, 76, 265–294. [CrossRef]
15. Ewing, R.; Cervero, R. Travel and the built environment: A synthesis. Transp. Res. Record J. Transp. Res. Board

2001, 1780, 87–114. [CrossRef]
16. Cao, X.J. Land use and transportation in China. Transp. Res. Part D Transp. Environ. 2017, 52 Pt B, 423–427.

[CrossRef]
17. Cao, X.; Yang, W. Examining the effects of the built environment and residential self-selection on commuting

trips and the related CO2 emissions: An empirical study in Guangzhou, China. Transp. Res. Part D
Transp. Environ. 2017, 52 Pt B, 480–494. [CrossRef]

18. Lakshmanan, T.R.; Han, X. Factors underlying transportation CO2 emissions in the USA: A decomposition
analysis. Transp. Res. Part D Transp. Environ. 1997, 2, 1–15. [CrossRef]

19. Timilsina, G.R.; Shrestha, A. Transport sector CO2 emissions growth in Asia: Underlying factors and policy
options. Energy Policy 2009, 37, 4523–4539. [CrossRef]

20. Wang, W.W.; Zhang, M.; Zhou, M. Using LMDI method to analyze transport sector CO2 emissions in China.
Energy 2011, 36, 5909–5915. [CrossRef]

21. Lu, I.J.; Lin, S.J.; Lewis, C. Decomposition and decoupling effects of carbon dioxide emission from highway
transportation in Taiwan, Germany, Japan and South Korea. Energy Policy 2007, 35, 3226–3235. [CrossRef]

22. Bueno, G. Analysis of scenarios for the reduction of energy consumption and GHG emissions in transport in
the Basque country. Renew. Sustain. Energy Rev. 2012, 16, 1988–1998. [CrossRef]

http://dx.doi.org/10.1073/pnas.0702958104
http://www.ncbi.nlm.nih.gov/pubmed/18180450
http://dx.doi.org/10.1016/j.jtrangeo.2009.09.014
http://dx.doi.org/10.1016/j.enpol.2010.08.019
http://dx.doi.org/10.1016/j.jtrangeo.2009.09.008
http://dx.doi.org/10.1016/j.habitatint.2009.09.008
http://dx.doi.org/10.1016/j.habitatint.2015.05.030
http://dx.doi.org/10.1177/08854120022092890
http://dx.doi.org/10.1016/S0749-3797(02)00475-0
http://dx.doi.org/10.1016/j.trd.2005.05.002
http://dx.doi.org/10.1080/01944363.2011.593483
http://dx.doi.org/10.1080/01944361003766766
http://dx.doi.org/10.3141/1780-10
http://dx.doi.org/10.1016/j.trd.2017.02.007
http://dx.doi.org/10.1016/j.trd.2017.02.003
http://dx.doi.org/10.1016/S1361-9209(96)00011-9
http://dx.doi.org/10.1016/j.enpol.2009.06.009
http://dx.doi.org/10.1016/j.energy.2011.08.031
http://dx.doi.org/10.1016/j.enpol.2006.11.003
http://dx.doi.org/10.1016/j.rser.2012.01.004


Sustainability 2018, 10, 1372 13 of 14

23. He, D.; Liu, H.; He, K.; Meng, F.; Jiang, Y.; Wang, M.; Zhou, J.; Calthorpe, P.; Guo, J.; Yao, Z. Energy use of,
and CO2 emissions from China’s urban passenger transportation sector: Carbon mitigation scenarios upon
the transportation mode choices. Transp. Res. Part A Policy Pract. 2013, 53, 53–67. [CrossRef]

24. Matsuhashi, K.; Ariga, T. Estimation of passenger car CO2 emissions with urban population density scenarios
for low carbon transportation in Japan. IATSS Res. 2016, 39, 117–120. [CrossRef]

25. Zhou, G.; Chung, W.; Zhang, X. A study of carbon dioxide emissions performance of China’s transport sector.
Energy 2013, 50, 302–314. [CrossRef]

26. Cui, Q.; Li, Y. An empirical study on the influencing factors of transportation carbon efficiency: Evidences
from fifteen countries. Appl. Energy 2015, 141, 209–217. [CrossRef]

27. Lin, W.; Chen, B.; Xie, L.; Pan, H. Estimating energy consumption of transport modes in China using DEA.
Sustainability 2015, 7, 4225–4239. [CrossRef]

28. Barla, P.; Miranda-Moreno, L.F.; Lee-Gosselin, M. Urban travel CO2 emissions and land use: A case study for
Quebec City. Transp. Res. Part D-Transp. Environ. 2011, 16, 423–428. [CrossRef]

29. Ko, J.; Park, D.; Lim, H.; Hwang, I.C. Who produces the most CO2 emissions for trips in the Seoul metropolis
area? Transp. Res. Part D Transp. Environ. 2011, 16, 358–364. [CrossRef]

30. Brand, C.; Goodman, A.; Rutter, H.; Song, Y.; Ogilvie, D. Associations of individual, household and
environmental characteristics with carbon dioxide emissions from motorised passenger travel. Appl. Energy
2013, 104, 158–169. [CrossRef] [PubMed]

31. Brand, C. “Hockey sticks” made of carbon unequal distribution of greenhouse gas emissions from personal
travel in the United Kingdom. Transp. Res. Rec. 2009, 2139, 88–96. [CrossRef]

32. Zahabi, S.A.H.; Miranda-Moreno, L.; Patterson, Z.; Barla, P.; Harding, C. Transportation greenhouse gas
emissions and its relationship with urban form, transit accessibility and emerging green technologies: A
Montreal case study. Procedia Soc. Behav. Sci. 2012, 54, 966–978. [CrossRef]

33. Hong, J.; Goodchild, A. Land use policies and transport emissions: Modeling the impact of trip speed,
vehicle characteristics and residential location. Transp. Res. Part D Transp. Environ. 2014, 26, 47–51. [CrossRef]

34. Hong, J. Non-linear influences of the built environment on transportation emissions: Focusing on densities.
J. Transp. Land Use 2015, 10, 229–240. [CrossRef]

35. Ma, J.; Liu, Z.; Chai, Y. The impact of urban form on CO2 emission from work and non-work trips: The case
of Beijing, China. Habit. Int. 2015, 47, 1–10. [CrossRef]

36. Liu, Z.; Ma, J.; Chai, Y. Neighborhood-scale urban form, travel behavior, and CO2 emissions in Beijing:
Implications for low-carbon urban planning. Urban Geogr. 2017, 38, 381–400. [CrossRef]

37. Frank, L.D.; Andresen, M.A.; Schmid, T.L. Obesity relationships with community design, physical activity,
and time spent in cars. Am. J. Prev. Med. 2004, 27, 87–96. [CrossRef] [PubMed]

38. Moniruzzaman, M.; Páez, A.; Habib, K.M.N.; Morency, C. Mode use and trip length of seniors in montreal.
J. Transp. Geogr. 2013, 30, 89–99. [CrossRef]

39. Aguiléra, A.; Voisin, M. Urban form, commuting patterns and CO2 emissions: What differences between the
municipality’s residents and its jobs? Transp. Res. Part A Policy Pract. 2014, 69, 243–251. [CrossRef]

40. Wang, Y.; Yang, L.; Han, S.; Li, C.; Ramachandra, T.V. Urban CO2 emissions in Xi’an and Bangalore by
commuters: Implications for controlling urban transportation carbon dioxide emissions in developing
countries. Mitig. Adapt. Strateg. Glob. Chang. 2017, 22, 993–1019. [CrossRef]

41. Entwicklungsbank, K. Transport in China: Energy Consumption and Emissions of Different Transport Modes;
Institute for Energy and Environmental Research Heidelberg: Heidelberg, Germany, 2008.

42. Bagley, M.N.; Mokhtarian, P.L. The impact of residential neighborhood type on travel behavior: A structural
equations modeling approach. Ann. Reg. Sci. 2002, 36, 279–297. [CrossRef]

43. Van Acker, V.; Witlox, F. Car ownership as a mediating variable in car travel behaviour research using a
structural equation modelling approach to identify its dual relationship. J. Transp. Geogr. 2010, 18, 65–74.
[CrossRef]

44. Cao, X.; Mokhtarian, P.L.; Handy, S.L. Do changes in neighborhood characteristics lead to changes in travel
behavior? A structural equations modeling approach. Transportation 2007, 34, 535–556. [CrossRef]

45. Cervero, R.; Murakami, J. Effects of built environments on vehicle miles traveled: Evidence from 370 US
urbanized areas. Environ. Plan. A 2010, 42, 400–418. [CrossRef]

http://dx.doi.org/10.1016/j.tra.2013.06.004
http://dx.doi.org/10.1016/j.iatssr.2016.01.002
http://dx.doi.org/10.1016/j.energy.2012.11.045
http://dx.doi.org/10.1016/j.apenergy.2014.12.040
http://dx.doi.org/10.3390/su7044225
http://dx.doi.org/10.1016/j.trd.2011.03.005
http://dx.doi.org/10.1016/j.trd.2011.02.001
http://dx.doi.org/10.1016/j.apenergy.2012.11.001
http://www.ncbi.nlm.nih.gov/pubmed/24882922
http://dx.doi.org/10.3141/2139-11
http://dx.doi.org/10.1016/j.sbspro.2012.09.812
http://dx.doi.org/10.1016/j.trd.2013.10.011
http://dx.doi.org/10.5198/jtlu.2015.815
http://dx.doi.org/10.1016/j.habitatint.2014.12.007
http://dx.doi.org/10.1080/02723638.2016.1191796
http://dx.doi.org/10.1016/j.amepre.2004.04.011
http://www.ncbi.nlm.nih.gov/pubmed/15261894
http://dx.doi.org/10.1016/j.jtrangeo.2013.03.007
http://dx.doi.org/10.1016/j.tra.2014.07.012
http://dx.doi.org/10.1007/s11027-016-9704-1
http://dx.doi.org/10.1007/s001680200083
http://dx.doi.org/10.1016/j.jtrangeo.2009.05.006
http://dx.doi.org/10.1007/s11116-007-9132-x
http://dx.doi.org/10.1068/a4236


Sustainability 2018, 10, 1372 14 of 14

46. Aditjandra, P.T.; Cao, X.J.; Mulley, C. Understanding neighbourhood design impact on travel behaviour:
An application of structural equations model to a British metropolitan data. Transp. Res. Part A Policy Pract.
2012, 46, 22–32. [CrossRef]

47. Shen, Q.; Chen, P.; Pan, H. Factors affecting car ownership and mode choice in rail transit-supported suburbs
of a large Chinese city. Transp. Res. Part A Policy Pract. 2016, 94, 31–44. [CrossRef]

48. Lu, X.; Pas, E.I. Socio-demographics, activity participation and travel behavior. Transp. Res. Part A Policy Pract.
1999, 33, 1–18. [CrossRef]

49. Chowdhury, S.; Ceder, A. A psychological investigation on public-transport users’ intention to use routes
with transfers. Int. J. Transp. 2013, 1, 1–20. [CrossRef]

50. Ma, L.; Dill, J.; Mohr, C. The objective versus the perceived environment: What matters for bicycling?
Transportation 2014, 41, 1135–1152. [CrossRef]

51. Wu, M. Structural Equation Modeling: The Operation and Application of AMOS; Chongqing University Press:
Chongqing, China, 2010. (in Chinese)

52. Stevens, J.P. Applied Multivariate Statistics for the Social Sciences; Routledge: Abingdon, UK, 2012.
53. Yang, W.; Chen, B.Y.; Cao, X.; Li, T.; Li, P. The spatial characteristics and influencing factors of modal

accessibility gaps: A case study for Guangzhou, china. J. Transp. Geogr. 2017, 60, 21–32. [CrossRef]
54. Wang, S.; Liu, P. China’s city-level energy-related CO2 emissions: Spatio-temporal patterns and driving

forces. Appl. Energy 2017, 200, 204–214. [CrossRef]
55. Wang, S.; Liu, X.; Zhou, C.; Hu, J.; Ou, J. Examining the impacts of socioeconomic factors, urban form, and

transportation networks on CO2 emissions in China’s megacities. Appl. Energy 2017, 185, 189–200. [CrossRef]
56. Wang, S.; Fang, C.; Wang, Y.; Huang, Y.; Ma, H. Quantifying the relationship between urban development

intensity and carbon dioxide emissions using a panel data analysis. Ecol Indicators 2015, 49, 121–131.
[CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.tra.2011.09.001
http://dx.doi.org/10.1016/j.tra.2016.08.027
http://dx.doi.org/10.1016/S0965-8564(98)00020-2
http://dx.doi.org/10.14257/ijt.2013.1.1.01
http://dx.doi.org/10.1007/s11116-014-9520-y
http://dx.doi.org/10.1016/j.jtrangeo.2017.02.005
http://dx.doi.org/10.1016/j.apenergy.2017.05.085
http://dx.doi.org/10.1016/j.apenergy.2016.10.052
http://dx.doi.org/10.1016/j.ecolind.2014.10.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology and Data 
	Study Area and Neighborhoods Surveyed 
	Survey Data 
	Calculation of Travel-Related CO2 Emissions 
	Structural Equation Model (SEM) 

	Results and Discussion 
	Goodness-of-Fit for SEMs 
	The Interaction between Car Ownership, Trip Distance, and Travel-Related CO2 Emissions 
	The Direct Effects of Neighborhood Built Environments on Travel-Related CO2 Emissions 
	The Indirect Effects of Neighborhood Built Environments on Travel-Related CO2 Emissions 

	Conclusions and Policy Implications 
	References

