
sustainability

Article

Sustainable Performance of Low-Carbon Energy
Infrastructure Investment on Regional Development:
Evidence from China

Tzu-Yu Lin and Sheng-Hsiung Chiu *

Accounting School, Nanfang College of Sun Yat-Sen University, Guangzhou 510275, China;
linzy@mail.nfu.edu.cn
* Correspondence: qiusx@mail.nfu.edu.cn; Tel.: +86-13924098245

Received: 20 September 2018; Accepted: 3 December 2018; Published: 6 December 2018
����������
�������

Abstract: In the 13th Five-Year Plan, the Chinese government declared that one of the sustainable
policy priorities is improving the energy supply composition in order to reduce greenhouse gas
emissions. In accordance with the Plan, the Guangdong government subsequently planned to invest
in low-carbon energy infrastructure from 2016 to 2020. Using data from Guangdong province and
other regions in China for 2007–2016, we propose a two-stage network data envelopment analysis
(Network DEA) model to examine the sustainable performance of the Chinese regional/provincial
economic system. We postulated that the less sustainable performance of Chinese regional economic
systems may be attributed to lower energy productivity performance. However, we found that
increased governmental and industrial spending on electricity mix improvement by building new
low-carbon power plants created momentum in Guangdong’s economic growth, which experienced
an annual rise of roughly 1.16%. Finally, the results from the two-stage Network DEA model
showed that Guangdong fared better than other provinces with respect to sustainable performance.
Investment in low-carbon energy infrastructure is not only a measure to combat CO2 emission, but
could act as the driving force of regional economic systems.

Keywords: sustainable development goals; economic impact analysis; regional economic system;
two-stage Network DEA; leontief input-output model; 13th Five-Year Plan

1. Introduction

One of the inherent administrative objectives of governments is to promote social development
while facilitating economic prosperity. For this task, the infrastructure investment budget is a typical
financial instrument used by regulators as the exogenous force to stimulate demand in intermediate
and final goods, so that additional transactions accelerate economic growth. Among the many
resources required to support economic development, energy is always indispensable. In this sector,
the overdependence on fossil fuels had gone unchallenged until recent years [1]. As climate change
worsens and extreme weather conditions threaten the living environment of all species on the planet,
sustainable development has become a priority on every government’s agenda. Consequently, the
trend of revolutionizing traditional fossil fuel combustion power plants in order to curb CO2 emissions
is essential to long-term sustainability policies worldwide.

According to the statistics from International Energy Agency [2], greenhouse gas (GHG) emissions
from fuel combustion power plants was approximately 32.294 billion metric tons in 2015, of which
China was responsible for 28% (approximately 9.041 billion metric tons). As China experienced
unprecedented growth after it opened up its markets to the world, its economic growth has gradually
caused the country to become the world’s largest GHG emitter [3]. In the hope of decelerating global
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warming and alleviating consequent economic loss, China, as a member of the global markets, is
expected to take on more responsibility for environmental protection. China has since implemented a
large number of energy policies to improve the efficiency of the energy industry and to mitigate CO2

emission (e.g., Formulating the plan for total amount control of pollutant emission) [4,5]. For example,
in its 11th Five-year Plan (from 2006 to 2010) and the subsequent 12th Five-year Plan (from 2011 to
2015), China aimed to decrease its energy consumption intensity in terms of per unit gross domestic
product (GDP) by 20% and 16%, respectively [6]. China has long been involved in renewable energy
investment, reaching a 10-year increasing trend from 2006 to 2015 [7]. The Chinese government has
evidently supported renewable energy development directly through national and regional policies.

In the 13th Five-Year Plan, China has carefully laid out its economic policy for 2016 to 2020; the
awareness of environmental protection was also embedded in the main theme. As of 2015, under
the Paris Agreement, China has committed to increase the share of non-fossil fuel in primary energy
consumption to around 20% between 2020 and 2030 in its first Nationally Determined Contribution
(NDC) [8]. This step signified further modification in China’s energy industry. To improve the
efficiency of the energy system and industry, without potential economic growth, has been a challenge
to the sustainable development of China. Thus, it is critical to evaluate the impacts of such policies,
considering all factors such as energy supply, economic, and environmental efficiency. With this
information, policy makers can optimize the allocation of limited resources in order to achieve
sustainable development goals (SDGs).

Various indicators, e.g., per capita energy consumption, energy productivity, and CO2 emission
intensity, have been widely used to identify the severity of CO2 emission in different aspects of
sustainability [6]. However, these measures, which are usually two-dimensional for practical reasons,
fail to incorporate the many façades of the performance assessment, such as scale differentiation.
Thus, to form sensible inferences about sustainability under a single evaluation framework, we started
with widely-used data envelopment analysis (DEA) [9–11], and its extended version, the network
data envelopment analysis (Network DEA), to evaluate the impact of government spending on
sustainability. The interaction mechanism of the Network DEA model provided an operational
framework to decompose an organization into several sub-units. Network DEA is a powerful
management tool that depicts an efficient frontier by decision-making units (DMUs), and can be
used for determining suitable resource allocation. Median DMU can provide benchmarking [8]. From
the Network DEA model, we can obtain a comprehensive performance score, which contains all the
available information, such as inputs, intermediate measures, and output. This score can then be used
to identify best-performing DMUs and to form guidelines for other units to follow in order to improve
its performance in the future [12,13].

In this paper, we propose a modified two-stage Network DEA model for sustainable performance
evaluation. We considered energy use and energy productivity together as a series-connection
process, with the consumption of various types of energies as the intermediate measure, linked to
consecutive stages/processes in the model. In particular, energy use efficiency was used to determine
whether the energy system of a given region has gradually transformed to low-carbon, as part of the
government’s investment was to induce efficiency improvement away from fossil fuel consumption.
Energy productivity efficiency was used to evaluate the maximum possible economic benefit (in terms
of GDP) and CO2 abatement performance of the region, given energy consumption from previous stage.

The policy impact on the regional sustainable performance was also assessed in this study.
Following the guidelines of the 13th Five-Year Plan of the central government, Guangdong Province
has set schemes for energy diversification in order to reduce GHG emissions from fossil fuel combustion
power plants. The Guangdong government has planned to increase the capacity of the low-carbon
energy infrastructure, including nuclear, solar, and wind power, to meet increasing demand for clean
energy. The investment in low-carbon energy infrastructure in Guangdong may offer the opportunity
to align national or regional growth interests with environmental protection against CO2 emissions.
Therefore, it is important for policy makers to understand these policy impacts in order to ensure the
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implemented measures will attain the expected efficiency and effectiveness. To assess the influence
of the regional energy industry and the investment in low-carbon energy infrastructure on regional
economic growth, we used the Leontief input-output (I-O) model with data from Guangdong in
2016–2020. Our research could be viewed as a preliminary evaluation of policy planning for the energy
supply revolution.

Due to the simplicity of the Leontief I-O model in the setup of the inter-sectoral relationship within
a given regional economy, it is commonly used for impact analysis in a variety of areas, especially for
assessments of energy infrastructure investment [14–18]. Yet, the limitations caused by the transmission
network, regional economic activities, and energy demand must be carefully considered under
the energy system. Nakano et al. [19] built a regional I-O model to calculate the economic and
environmental effects of the construction of a biomass power plant, and Sugino et al. [20] measured
the impacts of adopting low-carbon energy technologies. Varela-Vázquez and Sánchez-Carreria [21]
demonstrated that the introduction of offshore wind power could promote the growth of Spanish
economy. Okkonen and Lehtonen [22] found that the establishment of a bio-oil production system
could benefit regional economies in Finland.

Generally, with respect to the sustainable development goals, the government should consider
how to invest in low-carbon infrastructure in a win-win strategy for both the economy and the
environment. Therefore, the government should review its sustainable performance not only from
the traditional economic standpoint, but an environmental one as well. It would also be interesting to
compare the results with other homogeneous organizations. We first analyzed the regional sustainable
performance using data from 2007 to 2016 for Guangdong. Second, we investigated the economic
impact of certain sustainability policies (i.e., low-carbon energy infrastructure investment) on regional
economic system and its CO2 abatement potential. Finally, we conducted a scenario analysis to identify
the influence of the policy on the sustainable performance score of Guangdong, to determine impacts
on sustainable development.

The reminder of this paper is organized as follows. In Section 2, we introduce the current status
and future plan of the energy sector in Guangdong province in China. We develop a sustainable
performance model in Section 3. An overview of the Network DEA and Leontief I-O models employed
in this paper are presented in Section 4. The empirical results are discussed in Section 5. A summary
of the main findings and some concluding remarks are presented in the final section.

2. Current Status of Guangdong’s Social and Economic Environment in China

Guangdong province in China has long benefited from early industrialization and urbanization,
due to its advantageous geographic location and open policy. It has contributed the most to the national
gross domestic product, ranked 1 among all 31 provinces and special administrative regions (SARs)
in China. In the past decade, around 11% of the national GDP has been attributed to Guangdong.
Guangdong has played a vital role in boosting the Chinese economy.

Table 1 presents the trend in annual gross domestic product (GDP) in China and Guangdong.
In 2016, the GDP of Guangdong was 79,512 billion RMB. However, the regional economic performance
slowed down after 2012 in contrast to its rapid increase between 2007 and 2011, with an average annual
growth rate almost reaching 13.8% (Table 1). Seeing that the unprecedented growth of Guangdong’s
economy had come to an end, the administrative priority shifted toward finding avenues to sustain
stable economic momentum. With limited budget, the government would have to make the best choice
among various policy instruments.

From Table 2, we can see that as the regional economy grew quickly, the energy consumption
of Guangdong also increased, reflecting the production expansion. The annual compound growth
rate of energy consumption between 2012 and 2016 was a fraction (3.51%) of GDP growth (8.6%).
The energy consumption per unit of GDP (i.e., energy intensity) had gradually fallen; however, in
2016, it was 0.386, meaning that the energy-saving policy was in effect. However, greenhouse gas
emissions have increased over the years, triggering concerns about environmental protection. In the
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past decade, the share of electricity in energy consumption ranged from 49.3% to 52.7%, suggesting
that with adequate low-carbon electricity supply, it is possible to mitigate the pollution in Guangdong.
In the 13th Five-Year Plan of Guangdong, investment plans for new renewable energy infrastructure
were laid out in the hope of improving the energy portfolio to reduce GHG emissions. We aimed to
evaluate the economic impact of the investment during the Plan’s proposed period from 2016 to 2020.

Table 1. Annual statistics of regional gross domestic product (GDP) in Guangdong province in China.

Year China’s GDP Guangdong’s GDP (%) Rank

2007 270,232 31,777 (11.76) 1
2008 319,516 36,797 (11.52) 1
2009 349,081 39,493 (11.31) 1
2010 413,030 46,036 (11.15) 1
2011 489,301 53,246 (10.88) 1
2012 540,367 57,148 (10.58) 1
2013 595,244 62,475 (10.50) 1
2014 643,974 67,810 (10.53) 1
2015 689,052 72,813 (10.57) 1
2016 743,586 79,512 (10.69) 1

2007–2011 16.00% 13.8%
2012–2016 8.31% 8.6%

Source: National Bureau of Statistics of the People’s Republic of China [23]; Note: The table in parentheses provides
the share of national gross domestic product; Monetary unit: Billion RMB.

Table 2. Annual statistics of energy indicators in Guangdong province in China.

Year Guangdong GDP Energy Consumption Energy Intensity Electricity Ratio

2007 31,777 21,427 0.674 49.3%
2008 36,797 22,672 0.616 48.5%
2009 39,493 23,943 0.606 46.3%
2010 46,036 24,595 0.534 50.4%
2011 53,246 26,224 0.492 51.5%
2012 57,148 26,764 0.468 52.2%
2013 62,475 27,666 0.443 51.0%
2014 67,810 28,670 0.423 53.5%
2015 72,813 29,387 0.404 52.2%
2016 79,512 30,730 0.386 52.7%

2007–2011 13.8% 5.18%
2012–2016 8.6% 3.51%

Source: Statistical Yearbook of Guangdong Province in 2017 [24]; Note: Energy intensity = Energy
consumption/Guangdong’s GDP; Electricity ratio = electricity consumption/energy consumption; Monetary
unit: Billion RMB; Energy measurement unit: 10,000 tons of standard coal equivalent (SCE).

3. Sustainable Performance Model Development Based on Network DEA and I-O Model

It is important for the government to have a clear idea about the impact of policy on sustainability
in order to fine-tune and improve the efficiency of the implemented schemes. There have been a
number of studies analyzing energy, economic, and environmental efficiency in the unity analytical
framework using the DEA model, considering multiple inputs and outputs at national level [25–27].
In managerial practice, more insights into sustainable performance can be found in the Network
DEA model, which is known for its abundance of information [28]. Though Network DEA has
become more prominent in performance evaluation, with applications in various fields [29–32], few
studies have used the Network DEA approach for regional sustainable performance evaluation [33,34].
Wu et al. [27] proposed a DEA model to estimated energy usage efficiency, CO2 emission efficiency,
and economic-environmental efficiency for Asia-Pacific Economic Cooperation (APEC) economies, in
which a group of specific variables, including population, total primary energy consumption, GDP, and
CO2 emission, were used. Our sustainable performance evaluation was motivated by the multi-stage
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DEA framework with the input-output specification for performance score calculated separately as
proposed by Wu et al [26], with a modification to the serial connection of the two-stage Network DEA
model: the consumption of various energy types has been treated as intermediate variables from
the previous stage to the following stage. Because infrastructure investment in the energy industry
signals the effort to strengthen energy supply and/or grid systems in response to the increase in
energy demand in a regional economic system, it was also included as one of the inputs to evaluate
energy use efficiency. The framework of our modified two-stage network DEA model, for sustainable
performance evaluation at the regional/provincial level in China, is illustrated in Figure 1, showing
the two-stage process with a connection between the energy use stage and the energy productive stage.
Previous studies have highlighted several crucial variables associated with sustainable performance,
such as population, capital, energy consumption, GDP, and CO2 emission, which were used as the
input, intermediate, and output variables in our network DEA model. Note that the production or
value-added approach could also be seen as a common variable selection process presented in the
sustainable performance model we propose.
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Figure 1. Two-stage sustainable performance evaluation model.

In this model, energy use process occurs when energy demand is satisfied in a given region,
involving the consumption of various types of energy, which was treated as the outputs of energy
use. Population and investment in the energy industry were treated as two inputs. The energy
productivity process was where regional economic activities and the corresponding environmental
issues occurred. Population has been identified as one of the most important factors of regional energy
use evaluation. Public investment in the energy industry was used as a proxy for the effort in energy
system improvement given the increase in energy demand as the regional economy expanded. The
consumption of different types of energy, such as coal, oil, natural gas, and electricity, represent crucial
productive factors for regional economic system. To evaluate sustainable development, we used GDP
and CO2 emission as the desirable and undesirable output, respectively, to represent the double-sided
issue of economic growth and environmental protection.

The proposed sustainable performance model was used for ex-post analysis of government
efforts on regional sustainable development. We incorporated an economic model in the model design
in response to this sustainability theme. The Leontief input-output model, constructed by the interrelationship
among industries/sectors and the final demand under a given economic system, is commonly used to
evaluate the maximum economic gain due to a certain policy in the short-term [35,36]. Lee and Yoo [15]
developed a variation of the standard demand-driven Leontief I-O model to consider the outputs from
four transportation industries as one final demand source driving the growth of the Korean economy.
In this paper, we introduced two conceptual procedures of the economic analysis model, as illustrated
in Figure 2, to depict a clearer picture of the effect of low-carbon energy infrastructures investment on
the economic development of Guangdong, China.

The input-output table is the key component of the Leontief I-O model. To compensate for the
lack of the official input-output table for Guangdong in 2017, we constructed a two-stage conceptual
process of the economic analysis model. As shown in Figure 2, in order to estimate the input (technical)
coefficients for Guangdong’s 2017 input-output table, we adopted the mechanical adjustment
methodology, i.e., the RAS method proposed by Stone and Brown [37]. In procedure-1, using changes
in technical coefficients in the same industrial structure in Guangdong’s economy between 2007 and
2012 as parameters of industrial technological coefficients, we estimated technological coefficients of
each sector in 2017 in the input-output table. Then, in procedure-2, the estimated 2017 technological
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coefficients were used to build Guangdong’s input-output model, depicting a possible scenario of
industrial production and service activities in Guangdong. This conceptual framework built from
the systematic procedure offered a possible solution to the missing data issue, and allowed further
research on the economic growth of Guangdong’s economy with the investment in modern energy
infrastructure during the 13th Five-Year Plan.
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The proposed sustainable performance network DEA with Leontief I-O model can be divided into
three steps as demonstrated in Figure 3. First, the network DEA was used to evaluate the sustainable
performance at the regional level in China from 2007 to 2016 as the benchmark scenario. Second,
the Guangdong’s input-output model was constructed, where the low-carbon energy infrastructures
investment was introduced into the model as an exogenous factor to obtain the desirable economic
potential (GDP). Along with the variation of regional GDP obtained from the Leontief I-O model,
potential CO2 reduction was also estimated from low-carbon energy infrastructure investment. Both
that were treated as the outcome of the PSP scenario that we proposed, and used to replace the data of
desirable and undesirable output in the energy productivity stage of specific DMU (i.e., Guangdong
province) and further feed into the network DEA model. Third, network DEA was applied to determine
the sustainable performance score of given regions to assess the benefits from Guangdong’s sustainable
policy in the prospect of energy use and productivity efficiency.
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4. Methodology

4.1. Proposed Two-Stage Network DEA Model of Regional Sustainable Performance Evaluation

The original two-stage Network DEA model was introduced by Färe and Grosskopf [38] with
intermediate measures in the performance evaluation. The Network DEA approach decomposes the
overall performance of the production system into several sub-processes or divisional stages associated
with intermediate variables. The identification of inefficient sources is emphasized, which enables the



Sustainability 2018, 10, 4657 7 of 21

decision-maker to make policy recommendations. Kao [39] focused on the type of internal network
structure of DMU to reinforce the generalized application of the Network DEA model. Kao identified
three kinds of internal network structure: serial, parallel, and hybrid (parallel-serial) connection, and
suggested that the overall efficiency of DMU could be estimated by the weighted average of efficiency
of all sub-DMUs, making it easier to identify the characteristics of sub-DMUs with higher weights. Tone
and Tsutsui [40] proposed the network slack-based measure (NSBM), which addresses intermediate
measures directly in the objective function for assigning an efficiency score. The performance score
calculation by the SBM approach was based on the slacks of each variable. It was possible to identify
the adjustments in the input and output simultaneously to identify inefficient DMUs.

The sustainable performance model we propose, with a serial connection between energy use and
energy productivity process, is illustrated in Figure 1. The regional/provincial sustainable system was
treated as a DMU and was decomposed into energy use and energy productivity processes. These
network structures with serial connections in this empirical study were modified into a general network
DEA. In the energy use stage, a regional sustainable system consumed m inputs (e.g., population and
investment in energy industry) to create s desirable output ZEUD (e.g., electricity consumption) and k
undesirable output ZEUUD (e.g., coal, oil, and natural gas consumption). In the energy productivity
stage, s desirable output ZEUD (e.g., electricity consumption) and k undesirable output ZEUUD from
the energy use stage were used to satisfy the energy need for economic activities, and u desirable
output YEPD (e.g., regional GDP) and its by-product v with undesirable output YEPUD (e.g., CO2

emission) were produced. The objective function of overall sustainable performance based on the
NSBM approach is defined in Equation (1) as follows:

ESP
0 = min

w1

(
1− 1

m

m
∑

i=1

sEU−
io
XEU

io

)
+w2

(
1− 1

v

q
∑

q=1

sEP−
qo

Y
EPUD
qo

)

w2

(
1+ 1

u

r
∑

r=1

sEP+
ro

Y
EPD
ro

)
n
∑

j=1
λjXEU

ij = XEU
io − sEU−

io , i = 1, . . . , m,

n
∑

j=1
λjZ

EUD
bj = ZEUD

bo ,

n
∑

j=1
λjZ

EUUD
gj = ZEUUD

go ,

n
∑

j=1
λj = 1,

λj ≥ 0, j = 1, 2, 3, . . . , n,

sEU−
io ≥ 0,



Energy utilization stage

n
∑

j=1
λjZ

EUD
bj =

n
∑

j=1
ηjZ

EPD
bj , b = 1, . . . , s

n
∑

j=1
λjZ

EUUD
gj =

n
∑

j=1
ηjZ

EPUD
gj , g = 1, . . . , k

linkage activities

n
∑

j=1
ηjZ

EPD
bj =ZEPD

bo , b = 1, . . . , s

n
∑

j=1
ηjZ

EPUD
gj =ZEPUD

go , g = 1, . . . , k

n
∑

j=1
λjYEP

rj = YEP
ro + sEP+

ro , r = 1, . . . , u,

n
∑

j=1
ηj = 1,

ηj ≥ 0, j = 1, 2, 3, . . . , n,
sEP+

ro ≥ 0



Energy productivity stage

(1)



Sustainability 2018, 10, 4657 8 of 21

where the superscripts EU and EP denoted the energy use stage and energy productivity stage,
respectively, and Z indicates the intermediate output. With regard to the free linking constraints
imposed on this model, we assumed that the output of the previous stage was the same as the input
of the following stage. Moreover, the weight for each stage is user-specified in order to observe the
specific sustainable performance of each region. In our setting, each stage’s weight was set to 0.5.

4.2. General Leontief Framework for Input-Output Analysis

The input-output (I-O) model introduced by Leontief [41] is used to measure the economic effects
of exogenous social, environmental, and economic factors, and has been widely applied in academic,
industrial, and governmental economic analysis [42]. The three crucial factors in the basic Leontief
I-O model are: economic output, input coefficient, and final demand of each sectors within a specific
economic system. The Leontief I-O model can be classified into the demand-side I-O model and
the supply-side I-O model [43]. We adopted this model to estimate the maximum economic gain of
exogenous energy policy—the investment in renewable energy infrastructure—in Guangdong in the
short-term from 2016 to 2020. According to the framework of the demand-side Leontief I-O model,
total gross output in sector i, denoted by Xi, can be expressed as:

Xi =
N

∑
j=1

Zij + Fi =
N

∑
j=1

αijXj + Fi (2)

where Zij is the intermediate input produced by sector i for producing the final product of sector j; αij
is the input coefficient indicating direct consumption effect, i.e., the quantitative relationship between
the intermediate input and the final product from sector j, under the assumption of constant technical
efficiency, as shown in Equation (3).

αij = Zij/Xj (3)

We rewrote Equation (2) in matrix form:

X = AX + F = (I − A)−1F = BF (4)

where A is a n × n direct input coefficient matrix defined as technical coefficient above; I is an n × n
identity matrix; F is a 1 × n final demand matrix, (I − A)−1; B is called the Leontief inverse matrix
or input-output matrix; and B =

[
bij
]

is also a n × n input coefficient matrix that combines the direct
and indirect input coefficients to form the complete consumption coefficient matrix. The multipliers
in the Leontief inverse matrix are also the core of the demand-side Leontief I-O model, depicting the
relationship between the final demand and the total gross output. Deviations from final demand were
treated as an exogenous impact on the inter-sectoral structure. When the final demand on a specific
sector/industry changed as the exogenous shock occurred, we then observed the changes in total gross
output of the economic system from the Leontief I-O model.

The goal of the analysis of the linkage effect was to quantify the causation power among sectors
by the input and output activities under a given economic system [15]. The linkage effect of each
sector was separated into backward and forward linkage effects. The sensitivity coefficient (SC) is
the standardized forward linkage effects, whereas the influence coefficient (IC) is the standardized
backward effect. IC and SC were calculated using Equations (5) and (6), respectively.

ICj =

n
∑

i=1
bij

n
∑

i=1

n
∑

j=1
bij

(5)
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SCi =

n
∑

j=1
bij

n
∑

i=1

n
∑

j=1
bij

(6)

Since the value-added (GDP) output in each sector was also an important indicator to evaluate
the macro and micro economic effects of economic policies, it was captured in Equation (7) as follows:

∆GDP = avj(I − A)−1∆F (7)

where avj is the value-added coefficient of each sector, measured by vj/xj from the input-output table;
vj is the economic value-added of sector j; and xj is the gross output/input of sector j.

4.3. General RAS Method

Though Guangdong’s input-output table is updated every five years, its regional inter-industrial
structure can change drastically within that time frame. As demonstrated in Table 2, the annual growth
rate of Guangdong’s GDP slowed from 13.8% to 8.6%, suggesting some structural change within.
Therefore, the 2012 Guangdong’s input-output table may not be suitable for estimating the potential
economic impacts of low-carbon energy infrastructure investment over the 13th Five-Year period.
The traditional method may involve using time-series data estimation to construct Guangdong’s
input-output table with forecasted values; however, we opted for the RAS method to extract more
information from the 2012 Guangdong input-output table and to simulate the dynamic change in
the inter-industrial structure in Guangdong for the past 5 years. The RAS method proposed by
Bacharch [44] is a biproportional method for adjustment. With recursive iteration estimation obtained
from the RAS method, it was possible to identify the adjustment parameters in order to obtain the
synchronized input-output table using known data from the intermediate inputs and output (demand)
from the 2012 Guangdong’s input-output table. In this paper, we adopted the original recursive
iteration estimation proposed by Stone and Brown [37]. An extensive collection of studies explored
other algorithms in the RAS method [45–48] and may be of interest for future research.

To gain insights into the dynamic change in the inter-industrial structure in Guangdong, we used
its 2012 and 2007 input-output table [49], denoted A1 and A0, respectively. The input coefficient matrix
of A1 was a1

ij and the input coefficient matrix of A0 was a0
ij. To demonstrate the mechanical adjustment

procedure, the original RAS method was used, as shown in Equation (8):

(A0 : A1) = ∑
i

∑
j

{
a1

ij × ln
[

a1
ij

a0
ij

]}
∑
j

a1
ij = u1

i

∑
i

a1
ij = v1

j

(8)

where u1
i and v1

j are the two constrained conditions, u1
i is the intermediate output (demand) of A1, and

v1
j is the intermediate input of A1. Equation (8) can be rewritten as:

A1 = rA0s (9)

where r and s are the two adjustment vectors by sector, and were crucial parameters to predict future
input coefficient matrix. Note that there was an underlying assumption that the dynamic change in
the following five years (2016–2020) would be similar to that of the previous five years (2007–2012).
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5. Empirical Results

As stated above, governments today are concerned with sustainable performance in addition
to the traditional economic gain. We also wanted to know whether the environmental outcome had
actually met the expectations of the implemented sustainability policy. We used the two-stage Network
DEA model and Leontief I-O model to evaluate the sustainable performance of regional economic
system in China and the impacts of sustainable policy: the effects of low-carbon energy infrastructure
investment on the sustainability performance of Guangdong.

5.1. Data Collection

We used the two-stage Network DEA model to evaluate the sustainable performance at the
regional/provincial level in China for the period between 2007 and 2016 as the benchmark scenario.
Given data availability, we excluded Tibet from this study. The sustainable performance model was
the same as shown in Figure 1, where the inputs of the energy use process were the population of each
region/province and the amount of investment in the energy industry. The intermediate variables
employed as links between energy use and the productivity process were the amounts of coal, oil,
natural gas, and electricity consumption. The desirable output of energy productivity process was the
regional GDP. The undesirable output was CO2 emissions.

The data on the amount of regional population and regional GDP were collected from the China
Statistical Yearbook [23]. The data for the amounts of energy consumption were drawn from the China
Energy Statistical Yearbook. The data on CO2 emission were calculated from the regional consumption
of coal, oil, natural, and electricity and their corresponding CO2 emission coefficients according to
the Intergovernmental Panel on Climate Change (IPCC) Guideline for National Greenhouse Gas
Inventories [50], as shown in Equation (10):

CO2,it = Eit × NCVi × CEFi × COFi × (44/12) (10)

where it denotes the CO2 emission from each type of energy, such as coal, crude oil, natural gas, and
electricity in year t; Eit denotes the total consumption of each type of energy in year t; NCVi denotes
the net calorific value of each type of energy; CEFi denotes the carbon emission factor of each type of
energy; and COFi denotes the carbon oxidation factor of each type of energy. The constant values of 44
and 12 are the molecular weights of CO2 and carbon, respectively. A summary of the statistics of the
variables in the two-stage Network DEA model are reported in Table 3.

The input-output analysis was used to identify the importance of the energy sector of the
regional economy. There were two sets of the original input-output data from Ministry of Statistics of
Guangdong [51] in the past decade: Guangdong’s 42 industrial sectors’ input-output table for 2007 (i.e.,
Guangdong 2007) and Guangdong’s 42 industrial sectors’ input-output table for 2012 (i.e., Guangdong
2012). However, both datasets were inadequate for assessing the economic impact of modern energy
infrastructure investment on the development of Guangdong’s economy over the period of 2016 to
2020, due to the omission of technological progress and the changes in sector classification. For the
economic analysis using the Leontief I-O model, we matched and adjusted for different definitions of
industrial sectors in the two input-output tables from the Ministry of Statistics of Guangdong [50], and
constructed a modified I-O table structure of 41 industrial sectors for use in this paper, including the
Electricity and Heat Production sector, as illustrated in code 23 in Table 4.

To proceed, we first obtained the influence coefficient and sensitivity coefficient of the 41 sectors
that we complied from Guangdong’s 2012 and 2007 official input-output tables in order to understand
the inter-sectoral relations of the regional economic system. The RAS method was used to capture the
dynamic technological inter-industrial changes in Guangdong between 2007 and 2012, which were
used, in turn, to estimate Guangdong’s 2017 input coefficient matrix with 41 sectors, and finally to
build a Leontief I-O model to assess the economic effect of modern renewable energy infrastructure
investment on Guangdong’s economy during 2016 to 2020.
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Table 3. Summary statistics of variables by region/province in China from 2007 to 2016.

Region

Input Intermediate Output

Population Investment Coal Oil Natural Gas Electricity GDP CO2

10 Thousand People 100 Million RMB Ton Ton 10 Thousand Liters 10 Thousand KWH 100 Million RMB Ton

Beijing 1996.800 182.567 22,527,400.000 21,019,210.000 938,810.000 8,424,930.000 17,117.511 181,088,187.148
(176.062) (42.980) (8,144,338.030) (1,406,057.136) (374,529.775) (1,178,514.123) (5,341.145) (5,144,546.993)

Tianjin 1368.400 534.029 54,674,440.000 20,695,940.000 352,550.000 6,801,730.000 11,751.176 221,444,433.928
(159.903) (114.718) (6,083,832.002) (4,609,550.433) (205,379.590) (1,221,020.672) (4,433.681) (34,329,312.980)

Hebei
7230.100 1103.123 357,184,250.000 25,360,420.000 411,380.000 28,212,150.000 23,808.046 984,739,390.945
(186.666) (464.364) (37,479,721.435) (3,770,530.528) (213,594.849) (5,018,572.991) (6,541.122) (122,250,404.627)

Shanxi
3563.300 1775.885 354,207,960.000 7,182,880.000 355,220.000 15,996,210.000 10,449.304 793,033,761.643
(110.504) (585.494) (37,493,893.681) (1,066,514.926) (223,814.421) (2,275,709.246) (2,714.036) (86,410,770.415)

Inner Mongolia 2480.900 2003.137 322,683,730.000 12,511,010.000 397,560.000 18,832,950.000 13,721.839 763,769,354.288
(29.909) (456.746) (71,629,769.634) (1,220,220.570) (65,157.761) (5,562,189.929) (4,328.195) (167,204,419.298)

Liaoning 4364.200 858.558 200,405,060.000 84,096,010.000 437,360.000 17,805,890.000 21,233.149 770,684,182.469
(33.859) (240.710) (15,265,430.628) (7,448,153.691) (267,279.792) (2,687,418.574) (6,353.871) (72,943,985.861)

Jilin
2743.900 657.888 102,525,440.000 15,583,460.000 190,620.000 5,959,710.000 10,585.466 280,277,095.062
(8.800) (133.420) (12,066,302.601) (1,104,421.078) (54,040.125) (775,861.967) (3,462.742) (29,663,908.816)

Heilongjiang 3825.500 838.181 128,373,230.000 30,608,100.000 330,860.000 7,835,330.000 12,061.160 384,019,973.012
(11.712) (186.006) (14,296,532.257) (2,588,812.438) (28,531.978) (937,128.687) (3,184.450) (37,708,942.229)

Shanghai 2312.100 186.219 60,428,910.000 42,768,710.000 557,890.000 13,024,070.000 19,684.166 343,600,283.467
(130.366) (55.722) (5,333,567.051) (4,220,540.898) (203,115.996) (1,360,568.614) (5,087.374) (23,737,868.596)

Jiangsu 7885.700 808.996 279,041,860.000 48,896,830.000 1,039,510.000 42,654,010.000 50,839.808 981,533,365.622
(93.386) (439.196) (40,508,779.816) (8,341,023.638) (441,153.419) (9,060,547.353) (17,447.307) (170,795,448.373)

Zhejiang 5416.500 639.351 142,550,980.000 46,214,280.000 481,870.000 30,518,700.000 32,598.073 612,834,611.644
(147.881) (232.199) (5,798,076.897) (4,375,484.721) (269,356.645) (5,763,081.294) (9,664.690) (63,230,421.722)

Anhui
6075.000 601.565 149,112,480.000 12,878,910.000 214,770.000 12,788,540.000 15,763.877 405,083,343.433
(83.678) (139.314) (22,051,653.947) (3,796,916.125) (126,533.105) (3,568,296.121) (5,928.578) (76,976,844.384)

Fujian 3737.100 716.952 80,815,550.000 22,844,210.000 308,560.000 14,996,180.000 18,502.180 326,151,628.502
(86.871) (202.430) (9,746,363.544) (8,158,510.151) (200,653.733) (3,521,071.249) (6,705.824) (63,379,097.240)

Jiangxi 4487.600 343.611 73,748,250.000 11,252,770.000 93,030.000 8,304,880.000 11,987.704 231,063,224.202
(72.405) (156.431) (11,163,237.556) (2,678,718.097) (70,061.291) (2,331,130.645) (4,400.083) (45,465,078.665)

Shandong 9648.000 1461.921 409,360,780.000 104,487,530.000 589,860.000 37,806,800.000 47,083.558 1,347,375,721.773
(190.089) (754.014) (35,456,371.372) (33,093,184.555) (234,218.873) (9,509,190.618) (14,428.068) (231,972,457.530)

Henan
9433.600 926.242 268,196,020.000 20,008,940.000 617,060.000 25,308,490.000 27,673.764 742,409,778.795
(51.870) (290.302) (15,866,822.976) (4,010,546.664) (210,638.021) (4,411,426.693) (8,627.477) (67,311,057.980)
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Table 3. Cont.

Region

Input Intermediate Output

Population Investment Coal Oil Natural Gas Electricity GDP CO2

10 Thousand People 100 Million RMB Ton Ton 10 Thousand Liters 10 Thousand KWH 100 Million RMB Ton

Hubei
5774.700 520.834 134,865,390.000 25,958,820.000 268,480.000 14,186,600.000 20,586.036 430,264,358.615
(62.978) (111.700) (20,704,281.072) (3,533,544.618) (116,808.046) (2,772,574.025) (8,066.172) (53,314,224.162)

Hunan
6597.900 578.847 122,481,620.000 17,654,390.000 169,370.000 12,415,210.000 20,402.861 368,785,805.931
(169.403) (157.656) (8,219,367.450) (3,732,954.960) (79,693.023) (2,319,554.758) (7,698.484) (37,981,173.703)

Guangdong 10,443.900 1016.805 163,868,340.000 78,171,850.000 1,075,460.000 44,573,210.000 54,829.964 855,454,550.878
(426.032) (254.919) (20,324,592.181) (7,163,435.469) (408,472.053) (7,989,652.744) (16,347.414) (111,487,762.733)

Guangxi 4748.400 479.835 69,926,480.000 16,552,320.000 45,030.000 10,789,890.000 12,017.294 255,900,177.425
(82.984) (168.614) (11,497,664.868) (7,215,349.369) (40,261.232) (2,471,009.689) (4,351.910) (59,295,730.780)

Hainan
882.200 94.164 7,986,260.000 12,075,750.000 380,500.000 1,966,890.000 2628.838 72,210,476.749
(24.430) (46.318) (2,454,656.965) (1,606,233.048) (104,843.248) (636,891.544) (984.972) (14,601,731.132)

Chongqing 2928.900 421.878 62,445,270.000 5,841,600.000 662,980.000 7,015,200.000 10,685.007 193,815,138.778
(78.522) (168.880) (8,759,688.467) (1,654,853.755) (168,404.637) (1,717,098.954) (4,449.668) (30,348,763.433)

Sichuan
8133.400 1221.456 122,907,760.000 20,595,740.000 1,498,440.000 16,900,630.000 21,731.623 441,459,698.878
(69.164) (388.936) (11,666,878.116) (7,368,906.167) (258,234.197) (3,500,520.086) (7,846.493) (55,323,624.542)

Guizhou
3529.200 521.880 124,673,690.000 5,368,940.000 77,690.000 9,640,820.000 6714.709 308,861,361.239
(52.845) (127.909) (13,952,152.847) (1,825,047.422) (45,228.566) (2,183,817.775) (3,097.322) (43,972,809.911)

Yunan
4643.400 947.516 98,963,380.000 8,537,200.000 50,380.000 11,828,500.000 9611.565 294,582,008.467
(86.324) (240.995) (10,521,106.145) (1,652,341.757) (12,167.151) (2,916,176.610) (3,580.489) (31,726,749.665)

Shaanxi
3752.900 1278.879 148,320,870.000 27,768,430.000 656,070.000 9,967,220.000 12,964.797 437,232,521.100
(33.591) (456.312) (45,832,665.442) (3,159,812.895) (167,720.350) (2,467,767.890) (4,912.218) (109,665,166.063)

Gansu
2573.900 699.707 64,024,910.000 18,384,620.000 188,620.000 9,053,040.000 5120.788 240,311,865.550
(21.610) (291.928) (9,929,429.943) (1,586,933.531) (59,940.244) (1,891,256.020) (1,682.396) (36,228,007.238)

Qinghai 570.900 289.703 17,587,990.000 2,625,700.000 336,370.000 5,258,990.000 1722.657 83,558,740.378
(14.487) (157.904) (3,806,611.260) (536,494.331) (100,292.351) (1,635,777.053) (635.506) (21,144,212.320)

Ningxia 643.100 434.124 73,194,640.000 4,815,970.000 167,010.000 6,780,660.000 2101.952 197,474,724.839
(21.860) (202.525) (21,250,960.643) (2,044,341.160) (46,097.179) (1,867,699.044) (777.156) (57,656,884.283)

Xinjiang 2233.200 1545.016 122,132,540.000 30,328,870.000 1,060,200.000 12,009,970.000 6822.805 420,471,954.966
(97.948) (825.965) (52,175,559.053) (4,292,359.834) (360,442.059) (7,272,511.121) (2,348.782) (162,487,032.111)

Note: Standard deviation is provided in the parentheses.
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Table 4. The 41 industrial sectors of Guangdong province in China.

Code Name Code Name

1 Agriculture 22 Waste Product
2 Coal and Lignite Mining 23 Electricity and Heat Production
3 Oil and Gas Mining 24 Gas Production
4 Gold and Uranium Mining 25 Water Production
5 Other Mining 26 Construction
6 Food, Beverage, and Tobacco 27 Transportation and Post
7 Textiles 28 Information and Computing
8 Apparat and Leather 29 Wholesale and Retail
9 Wood and Furniture 30 Accommodation
10 Pulp, Paper, and Paper 31 Financial Service
11 Petroleum Processing 32 Real Estate
12 Chemical 33 Lease Service
13 Non-metallic Mineral 34 Scientific Technology
14 Basic Metal Processing 35 Equipment Repair
15 Metal Product 36 Environment Management
16 General Equipment 37 Household Service
17 Transportation Equipment 38 Education
18 Electronic Machinery 39 Health Service
19 Communication Machinery 40 Sport and Entertainment
20 Instrument Machinery 41 Public Management
21 Other Manufacturing

Source: The input-output table (Ministry of Statistics of Guangdong, China [50]).

5.2. Sustainable Performance Analysis of Regional/ProvincialEconomic System

One of our research objectives was to evaluate the sustainable performance of regional/provincial
economies. This information could be a crucial measure to guide the government through the current
process regional/provincial sustainable development. Table 5 demonstrates the 30 regions/provinces
(i.e., DMUs) and their sustainable performance scores from 2007 to 2016. Note that a performance
score of 1 means that the region/province was efficient in the performance evaluation of regional
sustainable development, and its efforts were greater than in other regions/provinces. The average
of the sustainable performance score was roughly 0.876 in 2007–2016, and in 2011, 2014, and 2016,
the annual performance score was above average. We also observed that most regions/provinces
improved their sustainability performance. Thirteen regions/provinces were identified as efficient
DMUs for last decade: Beijing, Shanxi, Shanghai, Jiangsu, Zhejiang, Henan, Guangdong, Guangxi,
Hainan, Chongqing, Guizhou, Qinghai, and Ningxia. Note that Hebei showed a drastic decline
after 2014. The sustainable performance of Heilongjiang, Anhui, Sichuan, Shaanxi, and Gansu was
significantly lower than the average score and other regions/province in the long term. Figure 4 shows
the sustainable performance score for all regions/provinces. The score can be further decomposed into
energy use and energy productive performance score. From Figure 4, we can infer that, in general,
a lower sustainable performance may be associated with lower energy productivity performance in a
region. There were at least seven regions that showed this pattern. The above findings indicate that a
low-carbon energy/electricity supply mix was essential for improving sustainability and supporting
economic growth on both the national and regional levels.
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Table 5. Sustainable performance of 30 regions/provinces in China from 2007 to 2016.

Region 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2007–2016

Beijing 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Tianjin 0.745 0.771 0.805 0.806 0.846 0.862 0.783 0.948 0.880 0.915 0.836
Hebei 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.741 0.670 0.941
Shanxi 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Inner Mongolia 0.995 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
Liaoning 0.609 0.530 0.607 0.576 0.630 0.595 0.593 0.618 0.702 1.000 0.646

Jilin 0.707 0.638 0.645 0.622 0.725 0.712 0.776 0.762 0.914 0.917 0.742
Heilongjiang 0.577 0.554 0.540 0.554 0.590 0.609 0.610 0.616 0.703 0.612 0.597

Shanghai 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Jiangsu 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Zhejiang 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Anhui 0.797 0.757 0.818 0.898 1.000 0.836 0.757 0.767 0.744 0.799 0.817
Fujian 1.000 1.000 1.000 0.732 0.803 0.809 0.801 0.809 0.934 1.000 0.889
Jiangxi 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.924 0.992

Shandong 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Henan 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Hubei 0.730 0.712 0.717 0.775 0.735 0.821 0.934 0.864 0.929 0.867 0.808
Hunan 0.786 0.846 0.883 0.878 0.861 0.844 0.840 0.826 0.848 0.849 0.846

Guangdong 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Guangxi 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Hainan 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Chongqing 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Sichuan 1.000 0.677 0.615 0.674 1.000 0.704 0.647 0.583 0.568 0.565 0.703
Guizhou 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Yunan 0.998 1.000 0.815 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.981
Shaanxi 0.517 0.528 0.543 0.515 0.490 0.491 0.444 0.454 0.553 0.511 0.505
Gansu 0.479 0.508 0.504 0.511 0.514 0.490 0.509 0.486 0.549 0.584 0.513

Qinghai 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Ningxia 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Xinjiang 0.384 0.425 0.318 0.313 0.293 0.315 0.311 0.424 0.998 0.996 0.478

Avg. 0.878 0.865 0.860 0.862 0.883 0.870 0.867 0.872 0.902 0.907 0.876
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5.3.1. Importance of Energy Sector on Guangdong’s Economic System

The influence coefficient represents the relation between a final product and its intermediate
input: the increased output of some goods would increase the amount of intermediate goods needed
from other sectors. The increase in demand of a certain sector could have a pulling effect by boosting
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the final gross output of the economy. The sensitivity coefficient indicates the degree of a sector
that is increasing their output as the intermediate goods that satisfying an increase in demand from
other sectors. The influence coefficient and sensitivity coefficient of each sector in Guangdong were
measured using Equations (5) and (6), respectively, as demonstrated in Table 6. In 2012, the influence
coefficient of Electricity and Heat Production (one of the energy sectors) was relatively low (0.864),
while its sensitivity coefficient was relatively large (2.162).

Table 6. Summary of crucial parameters on all sectors in Guangdong economic system.

Sector

Income
Effect

Influence
Coefficient

Sensitivity
Coefficient

EVA
Coefficient

RAS
Parameter

2007 2012 2007 2012 2007 2012 2007 2012 s r

Agriculture 0.050 0.049 0.722 0.705 1.004 1.029 0.601 0.611 0.777 0.841
Coal and Lignite Mining 0.000 0.000 0.354 0.341 0.768 0.893 0.000 0.000 0.000 1.092

Oil and Gas Mining 0.021 0.016 0.606 0.506 1.791 1.101 0.703 0.844 0.646 0.537
Gold and Uranium Mining 0.185 0.225 0.979 0.970 0.996 0.850 0.373 0.339 1.363 0.461

Other Mining 0.130 0.192 1.120 0.959 0.462 0.498 0.274 0.365 0.986 1.130
Food, Beverage, and Tobacco 0.085 0.078 1.005 1.017 0.773 1.154 0.255 0.253 0.866 1.868

Textiles 0.160 0.160 1.123 1.138 1.030 0.820 0.266 0.236 1.395 0.606
Apparat and Leather 0.130 0.117 1.040 1.125 0.581 0.616 0.333 0.270 1.280 1.122
Wood and Furniture 0.129 0.139 1.188 1.157 0.574 0.531 0.221 0.237 1.129 0.816

Pulp, Paper, and Paper 0.137 0.160 1.230 1.317 1.310 0.902 0.232 0.199 1.300 0.611
Petroleum Processing 0.049 0.043 0.995 0.880 1.548 1.489 0.112 0.211 1.317 0.942

Chemical 0.163 0.135 1.196 1.189 3.267 3.296 0.242 0.230 1.184 0.847
Non-metallic Mineral 0.241 0.260 1.127 1.069 0.807 0.741 0.246 0.247 1.024 1.004

Basic Metal Processing 0.169 0.228 1.383 1.354 2.299 2.827 0.133 0.171 0.784 1.617
Metal Product 0.177 0.222 1.325 1.302 1.565 0.846 0.216 0.226 1.011 0.524

General Equipment 0.144 0.141 1.348 1.323 0.931 0.950 0.230 0.225 1.030 1.217
Transportation Equipment 0.117 0.103 1.385 1.296 0.897 0.886 0.213 0.233 1.083 0.819

Electronic Machinery 0.130 0.143 1.434 1.359 1.347 1.049 0.183 0.206 1.006 0.632
Communication Machinery 0.118 0.091 1.589 1.448 3.023 4.109 0.160 0.206 0.653 1.635

Instrument Machinery 0.113 0.119 1.503 1.289 0.825 0.456 0.192 0.273 0.951 0.313
Other Manufacturing 0.146 0.140 1.261 1.313 0.502 0.385 0.252 0.230 1.073 0.163

Waste Product 0.049 0.119 0.689 1.334 0.791 1.412 0.586 0.209 1.665 1.260
Electricity and Heat Production - - 0.951 0.864 2.081 2.162 0.300 0.263 1.198 0.807

Gas Production 0.042 0.053 1.474 1.407 1.392 0.981 0.138 0.185 2.040 0.396
Water Production 0.217 0.360 0.733 1.034 0.418 0.503 0.543 0.290 2.020 0.685

Construction 0.295 0.159 1.200 1.225 0.401 0.440 0.239 0.216 1.106 2.450
Transportation and Post 0.042 0.110 0.889 0.953 1.152 1.461 0.470 0.388 1.251 1.174

Information and Computing 0.060 0.075 0.847 0.818 0.644 0.543 0.559 0.538 0.894 0.795
Wholesale and Retail 0.025 0.053 0.613 0.689 0.804 1.177 0.722 0.590 1.415 1.932

Accommodation 0.138 0.105 0.892 0.880 0.651 0.732 0.380 0.417 0.817 1.115
Financial Service 0.023 0.050 0.648 0.724 1.469 1.227 0.612 0.557 1.420 0.711

Real Estate 0.019 0.025 0.528 0.557 0.714 0.639 0.809 0.733 1.358 0.758
Lease Service 0.083 0.044 0.880 0.898 0.999 1.182 0.499 0.481 1.190 0.999

Scientific Technology 0.103 0.187 0.875 1.300 0.370 0.397 0.443 0.199 1.545 3.093
Equipment Repair 0.070 0.085 1.128 0.903 0.422 0.381 0.424 0.447 0.723 0.193

Environment Management 0.042 0.077 0.703 0.699 0.381 0.349 0.655 0.565 1.566 0.413
Household Service 0.057 0.129 0.785 0.736 0.515 0.533 0.569 0.552 1.174 1.164

Education 0.048 0.061 0.670 0.610 0.363 0.375 0.707 0.691 1.189 4.070
Health Service 0.100 0.076 0.983 0.878 0.374 0.341 0.452 0.514 0.914 0.014

Sport and Entertainment 0.088 0.059 0.856 0.798 0.400 0.382 0.538 0.527 1.136 0.786
Public Management 0.081 0.069 0.742 0.638 0.356 0.356 0.599 0.664 0.904 9.128

Note: EVA coefficient represents the economic value-added (one of the GDP calculation methodologies) coefficient
of each sector in Guangdong province; RAS parameter represents the dynamic change of input coefficient of each
sectors in Guangdong province between 2007 and 2012.

Logically, when demand in other sectors rises, the Electricity and Heat Production sector must also
increase their production (electricity). When low-carbon energy is the main environmental policy, the
demand for more renewable energy capacity increases in order to satisfy the overall electricity demand.
As society has become more aware of environment-friendly options, the demand for clean energy has
continued to grow. During 2016–2020, the 13th Five-Year Plan period, Guangdong province has had
the foresight to invest in the infrastructure of modern energy systems. In addition to stabilizing the
electricity supply to meet the growing demand from the booming economy, renewable energy, such as
solar and wind, were also considered new sources of electricity supply. Through diversification of the
electricity portfolio and gradual reduction in carbon emissions associated with electricity production,
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the Guangdong government aimed to effectively reduce the emissions of low-level greenhouse gases
to meet both the local and national reduction targets.

Table 6 summarizes the economic value-added (one of the GDP calculation methodologies)
coefficient of each sector in Guangdong. The economic value-added coefficients of all sectors were
between 36% and 38%. The economic value-added coefficients of Electricity and Heat production
sector were 30.03% and 26.03% in 2007 and 2012, respectively, which was lower than the overall
average level. As output from the Electricity and Heat production sector is the intermediate good
for the rest of the sectors, the investment in renewable energy infrastructure with mass expenditures
may create direct and indirect demands for infrastructure construction in related sectors. Notably,
when compared to traditional fossil fuels with high energy conversion efficiency, the capacity factor of
renewable energy is perhaps only one-quarter, and its efficiency is also bounded by weather and/or
the size of land. Thus, a gradual downward trend in the coefficient of the economic value-added
coefficient in the Electricity and Heat production sector would be expected.

Gold and Uranium Mining, Non-Metallic Mineral, Construction, Water Production, and Scientific
Technology ranked higher in the sectoral income impacts of the investment in the energy sector (i.e.,
Electricity and Heat Production sector), as demonstrated in the first two columns of Table 6. It could be
inferred from the results that the low-carbon infrastructure investment of Guangdong would increase
the final demand for the Electricity and Heat production sector, which, in turn, would translate into
economic benefits for other related industries resulting from increased output.

5.3.2. Estimated Economic Impact of Low-Carbon Energy Infrastructures Investment

The 2017 Guangdong Implementation Plan for Energy Structure Adjustment during the 13th
Five-Year Plan laid out the addition of new power plants during the period of 2016–2020, with a
planned capacity of 36,000 MW, to meet the growth in energy demand due to rapid industrialization
and urbanization, as well as to transform its energy portfolio in order to reduce GHG emissions. As
shown in Table 7, power supply would be transformed to low-carbon energy such as natural gas,
nuclear, and renewable energies in the future, with only some exceptions for previously approved
coal-fired power plants. The capacity investment in nuclear and renewable energy would exceed more
than half of 36,000 MW to simultaneously improve energy independence and low-carbonization.

According to the “Capital Cost Estimates for Utility Scale Electricity Generating Plants” report
published by the U.S Energy Information Administration [50], the average overnight capital cost of
an Ultra Supercritical Coal facility is $3636 USD/Kw, $1104 USD/Kw for Advanced Natural Gas
Combined Cycle, $5945 USD/Kw for Advanced Nuclear, $6628 USD/kW for Offshore Wind, and
$2671 USD/kW for Photovoltaic–Fixed. In Guangdong, generally, the overall project investment
would amount to 783 billion RMB during the 13th Five-Year Plan period, as shown in Table 6.

Table 7. The investment estimation of modern energy infrastructure in Guangdong’s sectors during
the 13th Five-Year Plan period.

The Objective of the Energy Policy: 36,000 MW

Project Capacity Capital Cost ($/kW) Capital Investment

Coal 6000 MW 3636/kW 13,089,600
Natural Gas 9000 MW 1104/kW 5,961,600

Nuclear 8000 MW 5945/kW 28,536,000

Wind Power
11,000 MW

6628/kW
30,686,700Solar Power 2671/kW

Pumped-hydro electricity 2000 MW NA NA
Total 36,000 MW 78,273,900

Note: Exchange rate 1 USD: 6 RMB. Monetary unit: 10 thousand RMB.

In this paper, we used the RAS method to evaluate the technological evolution of the overall
productivity system in Guangdong between 2007 and 2012 and, consequently, to estimate the
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inter-sectoral input coefficient matrix, representing the linkages between the Electricity and Heat
production sector and other sectors for 2016 to 2020. The estimations were then used to establish the
Leontief demand-side I-O model to evaluate the economic impact of energy infrastructure investment
in Guangdong. Using Guangdong’s 2012 input-output table, we set two constraint vectors: (1) the
intermediate demand/output (vector u, i.e., the total output minus the final demand) and (2) the
intermediate input (vector v, i.e., the total inputs minus value-added) for each sector. The RAS method
was used to adjust the elements of the 2007 Guangdong input-output table, making the row-sum and
column-sum of 2007 Guangdong’s input coefficient matrix equal to the two constraint vectors. We
finally obtained the values of vectors r and s after 21 recursive iterations for each sector. These vectors
demonstrated the estimated dynamic change in the inter-industrial structure of Guangdong’s economy,
which in turn were used to estimate the input coefficient matrix of Guangdong’s input-output table for
the future five years (2016 to 2020). The last two columns of Table 6 list the parameters of vector R and
vector S obtained from the RAS method.

Based on the Leontief I-O model, we were able to simulate the impacts of sustainability policies
in Guangdong province from 2016 to 2020. The input coefficient matrix was updated using the RAS
method in order to quantify the estimated inter-industrial structure in Guangdong. The estimated
capital expenditure on low-carbon energy infrastructure projects is demonstrated in Table 7. The
average investment amount in low-carbon energy infrastructure is seen as the variation in the final
demand on the Electricity and Heat production sector.

Changes in the total output and economic value-added (GDP) of the divisional and
macro-economic categories are shown in Table 8. The investment in the power supply infrastructure
would increase the overall economic output in Guangdong province by an average of 1.37% annually,
while the average change in GDP was approximately 1.16%. In addition, we observed that the
industrial division benefitted the most from this investment, as its total economic output and GDP
increased by an average of approximately 2.62% and 1.58%, respectively. The average change in total
economic output of the agricultural sector was 0.32%, while that of the service sector increased by an
average of approximately 0.71%. The GDP as a whole increased 0.71% on average.

Table 8. The economic analysis of low-carbon energy infrastructure in Guangdong’s sectors during the
13th Five-Year Plan period (2016–2020).

Progressing Sustainable Policy Scenario Final Demand Division/Macro-Economic Total Gross Output GDP

Low-carbon energy infrastructure 78,273,900

Agriculture (1) 0.32% 0.32%

Industrial (2–26) 2.62% 1.58%

Service (27–41) 0.71% 0.71%

Regional Economic 1.37% 1.16%

Note: The parentheses represent the serial number of each sectors in Table 3. Monetary Unit: 10,000 RMB.

5.4. Influence of Low-Carbon Energy Infrastructure Investment on the Sustainable Performance of Guangdong

In this research, we worked to identify the impact of reform policy on the sustainable performance
evaluation at the regional/provincial level by using comparative analysis between two scenarios:
(1) the business-as-usual (BAU) scenario, where no policy effect was considered; the possible
sustainable performance of each region/province was estimated based on the outcome from the
last column of Table 5 (i.e., benchmark scenario) assuming the present trend continued. (2) In the
progressive-sustainable-policy (PSP) scenario, we re-evaluated the possible sustainable performance
of each region/province as if the low-carbon energy infrastructure investment occurred, with greater
low-carbon electricity capacity, thus greatly benefitting economic growth and CO2 reduction, based on
the estimation from Table 8 using the Leontief model. As shown in Table 9, compared with the BAU
scenario, the PSP scenario showed that low-carbon energy infrastructure investment in Guangdong
would strengthen its sustainability, as its sustainable performance score in PSP is higher than other
regions/provinces (DMUs) who scored below 1. Although Guangdong’s performance score remained
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1 across the three scenarios, it could be inferred that, if Guangdong chose to not invest in low-carbon
development, then its performance score could be, when comparing to other DMUs who had continued
their efforts in sustainability, much lower than 1. We could then say that the investment in low-carbon
energy infrastructure helped maintain the sustainable performance of Guangdong, providing economic
momentum and environmental protection. This confirmed the efficacy of investment in low-carbon
energy supply.

Table 9. Sustainable performance of 30 regions/provinces in China under three scenarios.

Region Benchmark Scenario Business as Usual Scenario Progressive Sustainable Policy Scenario

Beijing 1.000 1.000 1.000
Tianjin 0.836 0.926 0.926
Hebei 0.941 0.567 0.542
Shanxi 1.000 1.000 1.000

Inner Mongolia 0.999 1.000 1.000
Liaoning 0.646 1.000 1.000

Jilin 0.742 0.926 0.925
Heilongjiang 0.597 0.600 0.610

Shanghai 1.000 1.000 1.000
Jiangsu 1.000 1.000 1.000

Zhejiang 1.000 1.000 0.954
Anhui 0.817 0.761 0.741
Fujian 0.889 1.000 1.000
Jiangxi 0.992 0.947 0.960

Shandong 1.000 1.000 1.000
Henan 1.000 1.000 1.000
Hubei 0.808 0.928 0.943
Hunan 0.846 0.848 0.846

Guangdong 1.000 1.000 1.000
Guangxi 1.000 1.000 1.000
Hainan 1.000 1.000 1.000

Chongqing 1.000 1.000 1.000
Sichuan 0.703 0.550 0.504
Guizhou 1.000 1.000 1.000

Yunan 0.981 1.000 1.000
Shaanxi 0.505 0.487 0.499
Gansu 0.513 0.569 0.564

Qinghai 1.000 1.000 1.000
Ningxia 1.000 1.000 1.000
Xinjiang 0.478 1.000 1.000
Average 0.876 0.904 0.901

SD 0.174 0.168 0.172

Together with the performance score, we looked into the possible economic effect and CO2

abatement when electricity usage rose under a low-carbon energy supply portfolio, which had a
lower emission coefficient. The CO2 emissions were considerably reduced. Finally, we substituted
the investment in the energy sector, energy usage, GDP, and CO2 emissions in Guangdong with the
estimates from the previous section and its PSP scenario parameters, while controlling other DMUs
parameters as if in the BAU scenario. Then, we re-ran our two-stage Network DEA model to determine
if Guangdong’s performance score had changed or maintained its competitive position in China.
Guangdong retained its perfect score throughout our tests, confirming its competitive advantage
among others in sustainable development, and concluding our analysis.

6. Conclusions

This paper proposed a two-stage Network DEA model to measure the sustainable performance of
regional/provincial economies in China. In our setup, both undesirable intermediates and outputs
were incorporated in the model specifications. Sustainable performance was decomposed into energy
use and productivity performance, in order to incorporate more valuable information into the model.
Guangdong’s low-carbon energy infrastructure investment was treated as the progressive sustainable
policy, which was also embedded in the Leontief I-O model to evaluate its economic and environmental
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impacts. Finally, we used the two-stage Network DEA model to provide inferences about policy efficacy
by comparing the BAU and PSP scenarios. Our main conclusions and policy suggestions are as follows.

First, 13 regions/provinces were evaluated for their sustainable performance during 2007–2016.
Heilongjiang, Anhui, Sichuan, Shaanxi, and Gansu had sustainable performance scores that were
significantly below average in the long-term. By decomposing the sustainable performance into energy
use and productivity performance, it could be inferred that low-carbon electricity could support both
economic growth and GHG emissions control.

Second, in the process of regional economic growth, the demand for energy resources cannot
be overlooked. One of the advantages of the Leontief input-output model is its ability to assess the
possible maximum economic benefits in the short-term. As we demonstrated, the energy infrastructure
investment increased the final demand of other related manufacturing sectors, whose services were
required for the completion of infrastructure construction. On average, the GDP of Guangdong
province would change by approximately 1.16% annually, combined with the accumulative, divisional
economic impact on other sectors, such as agriculture, industrial, and service. The GDP stimulation of
the agricultural division would increase to 0.32% on average, and would create about a 1.58% change
in the GDP of the industrial division on average, which would boost the GDP of the services sector by
about 0.71% on average.

Third, Guangdong province still appeared to be more efficient than other regions/provinces in
terms of its sustainable performance, as it had included sustainable development as an objective in
its policy. We then confirmed that investment in low-carbon energy infrastructure could not only
serve as an exogenous driving force of the regional economy, but could also minimize the pressure of
CO2 emissions.

In summary, this study proposed a two-stage Network DEA model to evaluate the sustainable
performance of regions/provinces in China. The results could serve as a general guideline for
policy makers to prioritize energy production efficiency. We confirmed that the low-carbon energy
infrastructure investment proposed by Guangdong would maintain its competitive advantage in terms
of sustainable development compared to other regions/provinces. We suggest that future studies
could consider using the variables selection procedure for sustainable performance evaluation at the
regional level in China to improve the discriminative ability of the DEA model, as well as to gain more
insight into policy directives. Finally, if provided with more information about capital expenditure on
different types of low-carbon power plants in the input-output analysis, the evaluation precision could
be higher.
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