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Abstract: With rapid development of the healthcare network, the location-allocation problems of
public facilities under increased integration and aggregation needs have been widely researched
in China’s developing cites. Since strategic formulation involves multiple conflicting objectives
and stakeholders, this paper presents a practicable hierarchical location-allocation model from the
perspective of supply and demand to characterize the trade-off between social, economical and
environmental factors. Due to the difficulties of rationally describing and the efficient calculation of
location-allocation problems as a typical Non-deterministic Polynomial-Hard (NP-hard) problem
with uncertainty, there are three crucial challenges for this study: (1) combining continuous location
model with discrete potential positions; (2) introducing reasonable multiple conflicting objectives;
(3) adapting and modifying appropriate meta-heuristic algorithms. First, we set up a hierarchical
programming model, which incorporates four objective functions based on the actual backgrounds.
Second, a bi-level multi-objective particle swarm optimization (BLMOPSO) algorithm is designed to
deal with the binary location decision and capacity adjustment simultaneously. Finally, a realistic
case study contains sixteen patient points with maximum of six open treatment units is tested to
validate the availability and applicability of the whole approach. The results demonstrate that the
proposed model is suitable to be applied as an extensive planning tool for decision makers (DMs) to
generate policies and strategies in healthcare and design other facility projects.

Keywords: healthcare facility; location-allocation problem; multiple objective optimization;
bi-level programming; particle swarm optimization (PSO)

1. Introduction

Sustainable urbanization has been raising living standards and enhancing household income
tremendously. China’s government makes efforts to invest abundant funds to ensure healthcare
insurance, and require health cost reductions to 30% by the end of 2018 [1]. On the basis of rural
revitalization policy in China, the demand for rational and available healthcare facility planning has
attracted widespread attention. One of the most crucial issues is to achieve high healthcare service
quality in developing cities or rural areas, which contributes to a comprehensive understanding of
the development process overall within the whole healthcare system. With the worldwide trend of
tremendous population growth, diseases increasing and environmental degradation, healthcare facility
location problems (HCFLPs) have become increasingly noticeable in human society [2,3]. Unreasonable
and unconsidered healthcare facility (HCF) location will impede economic growth, as well as increase
morbidity and mortality. In some developing cities, the treatment technology and medical equipment
of most hospitals may not satisfy the rigid demand due to the lagging economy. Therefore, completing
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the basic healthcare services in rural and remote regions should be prioritized. As a vital element in
strategic management, optimizing HCF location plays a significant role in decision making for private
and public organizations such as schools, warehouses and retail stores [2]. Selecting appropriate
positions is not only able to improve the service accessibility for patients, but also simultaneously
enhance the service quality [4].

Furthermore, most scholars have been focusing on location assignment for health system
but ignoring the significance of improving capacity. It is obvious that different stakeholders
(i.e., suppliers and customers) have their preferential objectives in facility location problems (FLPs) [5].
Local governments generally expect to expand the scope of services to acquire higher social benefits,
while the patients pursue greater capacity of each facility to obtain a better treatment environment.
Thus, keeping the capacity in balance becomes a novel tendency in FLPs, which promotes availability
gradually. Moreover, when generating healthcare planning strategy, decision-makers (DMs) will
take numerous factors into account, such as travel distance, construction and management cost,
transportation convenience, and capacity constraints [6–9]. Since these objectives often conflict with
each other, a multiple objective decision making (MODM) approach is introduced to solve such
a complex planning problem.

As the strategy horizon moves forward constantly, an uncertain environment needs to be taken
into account for long-range planning [8]. In a realistic world, the decision making process in a medical
system involves a degree of uncertainty [10]. For instance, there is probability between medical demand
and cost, which leads to distinct optimal solutions. Combined with the aforementioned objectives,
the computational procedure of this Non-deterministic Polynomial-Hard (NP-hard) problem becomes
extraordinary sophisticated and diverse. To solve this problem, particle swarm optimization (PSO)
algorithm is introduced to find optimal solutions due to its fast convergence and effective search
ability [11]. The PSO algorithm has been proved to successfully find optimal solutions under complex
continuous search spaces. Although it does not guarantee optimality, it is appropriate for the current
application [12].

In general, this study aims to find applicable location-allocation solutions in uncertain
environment, which plays a critical role to ensure access to public facilities and personal demands.
Bi-level multiple objective programming is introduced to determine location and capacity distribution
concurrently. In addition, a modified PSO algorithm is utilized to equilibrate the trade-off between
complicated and multidimensional objectives. The eventual optimal results are reflected as two aspects:
introduce new facilities and upgrade existing capacities.

The remainder of this paper is organized as follows: Section 2 analyzes the current researches and
Section 3 describes the main problems in healthcare system. In Section 4, the modeling process and
algorithm application are introduced in detail. Following this, Section 5 provides a numerical example
to validate the availability and applicability of our approach. Finally, Section 6 gives the conclusions
and future research directions.

2. Literature Review

Research in healthcare strategic planning involves various aspects like location and capacity
allocation. Plenty of scholars make efforts to do independent but complementary research on healthcare
systems. The literature we have reviewed can be classified in four parts: (1) healthcare facility location
problems; (2) MODM methods; (3) uncertainty analysis; (4) meta-heuristic algorithms.

2.1. Healthcare Facility Location Problems

In the field of healthcare, illogical HCF location decisions have multiple negative effects on society
rather than one single effect [2]. An inaccessible HCF is more likely to increase the risk of morbidity
and mortality, as well as provoke public discontent. Therefore, facility location-allocation modeling
has become crucial. The hierarchical components of healthcare facilities in urban and rural regions
are organized quite different. The delivery system of developing cities is relatively independent and
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have informal institutions compared with the national standard. According to the National Bureau
of Statistics, the local Sanitary Bureau in China, and a literature summary, the healthcare system in
developing cities is composed of three hierarchies: primary, middle and high [13,14]. The primary
healthcare is a village-based management that cures the basic minor ailments in village regions,
including Village Clinics, Healthy Centre and District Clinics. The Community Health Care Centre,
Matemity and Child Care Centre, and Sanitation Station set up in townships provide middle healthcare
to satisfy most residents in a township. Furthermore, the high-level system is able to conduct more
comprehensive treatment for patients with serious illness. These facilities can be defined as General
Hospitals, Chinese Medicine Hospitals and Specialized Hospitals. The three levels of public healthcare
system in rural areas are summarized in Figure 1.

Figure 1. Healthcare facility hierarchy in rural areas.

Previous research discovered that the poor location, inadequate supply or excessive capacity can
aggravate the cost burden [9]. Thus, four well known location-allocation models have been studied:
the p-median location problem, p-center location problem, set covering location problem, and maximal
covering location problem [2,15–20]. Hakimi [17] firstly proposed the concept of p-median to minimize
the total transport distance and cost between the demand points and selected facilities with fixed
quantity. The p-center problem, also known as the minmax problem, is raised to minimize any
demand points served by the nearest facility. Toregas et al. [20] introduced the set covering problem
aiming to minimize the total facility number or allocation costs to cover all of the demand points.
Church and Revelle [15] presented the maximal covering problem which focused on satisfying as many
demand points as possible on the premise of constant facility number. In another study, the continue
facility location problem, known as multi-source Weber problems, have also been well studied in
FLPs. Venkateshan et al. [21] considered the continuous Euclidean space as an essential element when
addressing the trade-off between multiple stakeholders in a Weber problem. Drezner et al. [22] denoted
the most common objective in a classic Weber problem is to minimize the weighted sum of Euclidean
distance between facility and demand points. Uno et al [23] regarded the uncertainty and vagueness as
other important factors in a Weber problem when they find an optimal facility location with weighted
distance. Unlike the discrete location models, this type of optimal model can select any location within
a path or area as a candidate point [18]. In summary, DMs should choose specific location model with
different sources constrained.

2.2. Multiple Objective Decision Making (MODM) Methods

In reality, numerous approaches have been utilized to solve FLPs (Table 1). Multiple objective
optimization as a representative branch in mathematical programming, can be adapted to all kinds of
location problems. There is a tendency that a growing number of decision makers prefer to pursuing
multiple objectives in a realistic world. For instance, Farahani et al. [24] determined that the location
of HCFs should consider both cost minimization and service availability maximization objectives to
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serve the patients efficiently. Ye and Kim [25] reduced the construction cost and maximized service
coverage to ensure the total demands within limited facility capability. Syam and Côté [26] regarded
the treatment cost and the facility size as equally momentous targets for non-profit service organization.
Schuldt et al. [27] uncovered the consumers with distinct complication rates to affect hospital choice by
their preferences. Whatever the purpose they contribute to, the ultimate result is to obtain the supreme
social-economical-environmental benefits. Therefore, a MODM approach is introduced to balance
tradeoffs between multiple objectives effectively. This method can provide a set of pareto solutions
understood as parallel scenarios (i.e., spatial distribution and capacity allocation) by comparing
the value of each objective. All pareto solutions are superior to the rest of the solutions when all
objectives are considered but are inferior to others in only one or more objectives [28,29]. As a result,
DMs can select proper scenarios from the pareto plans based on their preference to support their
further decisions. Moreover, based on practical consideration, heterogeneous participants affect the
determination in HCFLPs [9]. That is to say, choosing an appropriate facility location is depended on
not only governments’ strategies but also patients’ behavior. Consequently, it is suitable to combine
MODM method with multilevel programming to undertake planning research.

Table 1. Methods in healthcare facility location problems (HCFLPs).

Authors Major Approach Problem Type

Karatas et al. [6], etc. Multi-objective optimization Facility location

Czerwiński et al. [16], etc. Mixed-integer linear programming
Healthcare location-allocation

Ye et al. [25], etc GIS integration

Schuldt et al [30], etc. Multilevel programming

Hospital network planning
Schuldt et al. [27] Conjoint analysis

Mestre et al. [8] Uncertainty modelling

Syam and Côté [26], etc. Integer programming

2.3. Uncertainty Analysis

The location-allocation strategy cannot ignore uncertain elements [31]. Although the traditional
deterministic location model can process the statistical and empirical data sufficiently, it falls short in the
handling capacity under probabilistic or probable situations. Zarrinpoor et al. [31] proved that environmental
uncertainty such as economic structure upgrade, climate change and population migration, will definitely
influence human behavior and lead to random demands. Mestre et al. [8] discovered that there are few
stochastic location models for a healthcare system focus on uncertainty analysis, and they considered
different uncertainty assumptions in real-world applications. In a healthcare system, the treatment demand
is seriously impacted by resident population and incidence rate, which make requirements for doctors or
sickbeds more flexible. Furthermore, some indescribable or ambiguous information such as satisfaction
degree, service quality and operating cost, will also lead to distinction in allocation schemes. Accordingly,
considering both fuzzy and stochastic factors has the advantage of simulating actual scenarios.

2.4. Meta-Heuristic Algorithm

Establishing HCF location model requires multiple objective and constraint functions, as well
as intricate binary variables. For example, the continuous coordinate will generate numerous
possible solutions due to its alterable values. HCFLP is studied as a NP-hard problem, requiring
a tremendous amount of calculation as the scale of problem increase [2], especially under the strategic
background of healthcare planning. The existing exact algorithms often calculate the location
model beyond an acceptable time, and lose accuracy when they encounter a considerably large
number of instances. In order to efficiently solve such complex problems generated from multiple
objective programming and other computational issues, meta-heuristic algorithm such as a genetic
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algorithm [16], Lagrangian relaxation [32], simulated annealing [2], and PSO [33] have been widely
studied in recent years.

3. Problems Description and Framework

3.1. Challenge Description

According to the literature review, we have summarized three main challenges to overcome:
(1) selecting befitting location model; (2) searching available multiple objectives; (3) employing
an effective intelligence algorithm.

Challenge 1. Location model:

Currently, the most popular facility location models can be definitely divided into two categories:
discrete location model and continuous model. The discrete model ordinarily selects appropriate
geographic position within limited candidate locations, while the continuous model allows the
facilities constructed anywhere in the feasible areas [34]. With reference to Ahmadi-Javid et al. and
Güneş et al. [2,19], the covering-based models are representatively suitable for healthcare facilities.
Moreover, the location models that we studied belongs to the type of binary integer programming [35].
This kind of variable can act as a control switch determining whether the healthcare units can be set up
in a potential position. In this paper, with previous status analysis, two types of models are combined
to provide a universally applicable theory. It is noteworthy that if a constrained position can be shrunk
to some tiny point, the continuous variables can be discretized.

Challenge 2. Multiple objectives:

The objectives in HCFLPs may often be conflicting due to external and internal factors.
Table 2 summarized the most frequent factors bases on the literature we studied. Obviously, most
of scholars pay more attention to travel distance and facility costs, which belong to the component
of social and economic benefit. An increasing number of customers concentrate on service quality
when they choose a hospital. Although most optimal goals focus on balancing the trade-off amongst
the previous aspects, to the best of our knowledge, few scholars attach importance to the essentiality
of environmental factors. In addition, healthcare capacity (i.e,. number of beds) has indirectly
impacted on patients’ consumption behavior in the service industry [36]. That is to say, the facility
capacity should also be regarded as object variables rather than just constraining the condition.
Consequently, this study utilizes the MODM method to establish a bi-level structural model based
on the economic–social–environmental perspective. For each hierarchy, the upper-level addresses the
HCF location-allocation problem while the lower-level adjusts the capacity scale.

Table 2. Impact factors of HCFLPs.

Authors Factors Type Factors Name Total Cite

Güneş et al. [5], etc.

social

travel distance/time 11
Schuldt et al. [27] service quality 4

Zhang et al. [36], etc. expected waiting time 2
Vidyarthi and Jayaswal [3] traffic congestion 1

Current et al. [7], etc.

economic

facility cost 7
Jia et al. [4], etc. capacity 6

Güneş and Nickel [9], etc. travel cost 3
Ye and Kim [25], etc. facility amount 2

Syam at al. [26] operate cost 1
Brimberg et al. [18] service costs 1

Jia et al. [4], etc.
environmental

geographic accessibility 3
Zarrinpoor et al. [31] disruption risk 1
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Challenge 3. Optimization algorithm:

The MODM approach will provide decision makers with a set of non-dominated points,
also known as pareto solutions [37]. For the solutions on a non-dominated frontier, none of the objective
function values can be improved without degrading one or more of the other objective function values.
Moreover, for any given multi-objective problem, the challenge is to find a representative subset of
pareto optimal solutions. Many HCFLPs involve a set of non-dominated points that may include
a very large number of feasible points. To solve this problem, the PSO algorithm is capable of
searching the practical equilibrium between the conflicting objectives in an uncertain environment.
This meta-heuristic algorithm can dynamically alter the HCF location and capacity, even meet the
worst-case scenario [8].

3.2. Research Framework

The framework of healthcare facility location-allocation optimization for developing cities in
China can be shown in Figure 2.

Figure 2. Framework of healthcare facility location-allocation optimization for developing cities in
China. BLMOPSO, bi-level multi-objective particle swarm optimization.
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4. Materials and Methods

4.1. MODM Programming

Due to the conflict relationship among the objectives, this research proposes a bi-level multiple
objective programming from the perspective of suppliers and customers. On one hand, the upper-level
(i.e., dominant layer) integrates continuous and discrete location models to determine the potential
location of HCF, improving service quality, reducing facility costs, and promoting environmental benefits.
On another hand, the lower-level (i.e., the subordinate layer) determines the capacity requirement
according to the optimal locations. Equation (1) describes the integrated mathematical model.

minF1 ∶ S =
I
∑
i

J
∑
j
(Pij × dij × xij)

minF2 ∶ L = (α1 ×
TA
∑
ta

φta ×
√

(xe − ATta
e )2 + (xn − ATta

n )2

+α2 ×
QA
∑
qa

ϕqa ×
√

(xe − AQqa
e )2 + (xn − AQqa

n )2)× yj

s.t.
J
∑
j

xij = 1;∀i ∈ I
J
∑
j

yj = 1xe ∈ R+xn ∈ R+xij ∈ {0, 1};∀i

∈ I;∀j ∈ J

yj ∈ {0, 1};∀j ∈ JmaxG1 ∶ S =
J
∑
j
( kj

∑I
i dij

)× yj

minG2 ∶ C =
J
∑
j=1

((BP × BA × k j + RP × RA × k j)× yj

+((k j − ECj)× (η̃1 + SP × AV + (1− SP)× AV′))× zj)
s.t.zj ∈ {0, 1};∀j ∈ Jk j ≥

I
∑
i
(Pij × xij);∀j ∈ J

J
∑
j

k j ≥ TPk j ∈ R+

(1)

where the first two objectives F1 ∶ S and F2 ∶ L represent the social and environmental benefits, which
are established from the perspective of customers. The objectives of G1 ∶ S and G2 ∶ C based on the
suppliers’ angle pursue social and economic benefits respectively. The detailed description of each
function is stated below.

4.1.1. Upper-Level Programming: Objective Functions

HCFs act as public service facilities, providing an applicable and comfortable environment for
patients. The medical demand expects to be assigned to the closest open facility, as well as a peaceful
recovery condition [39]. Hence, this research considers two conflicting objectives on the upper-level to
realize location optimization: (1) minimize the anticipant travel distance to reach HCF; (2) minimize
the detrimental effect to provide a tranquil medical environment.

The most common optimization criteria are the travel distance and travel time, which are
dominated by the “cost” of the patient’s arrival at the hospital [40]. The patients usually expect
to seek the nearest hospital with an eligible department. In the current study, the Euclidean distance
has been widely used to measure social impact as it is constant over time [19]. It is a straight line
between the patients’ individual addresses and potential facility sites. Moreover, the patient demand
and disease incidence in a practical sense are not accurate variables. They are uncertain and are
probabilistically influenced by external and physiological factors. According to Jia et al. [4] and
Wei et al. [41], the stochastic treatment demand is given as follows:

Pij = Ri ×Prij × ξ̃ (2)
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Prij =
kj
dij

∑J
j(

kj
dij

)
(3)

dij =
⎧⎪⎪⎨⎪⎪⎩

√
(xe − Fi

e)2 + (xn − Fi
n)2

, xij = 1
0, xij ≠ 1

(4)

where Pij = customer demand (i.e., patient number); Ri = residents’ number at site i; Prij = probability
of a patient travelling to a facility j; ξ̃ = disease incidence, which is a random variable; k j = facility
capacity (i.e., number of sickbeds); dij = Euclidean distance (dominated in kilometers in this paper)
between resident site i and facility j; xe and xe = candidate facility location, which represent the
coordinate of east longitude and north latitude; Fi

e and Fi
n = coordinate of patient site; xij = 1 means

demand i is assigned to facility j.
Therefore, the first objective for social benefit can be described by Equation (5), which minimizes

the overall travel distance for all patients:

min F1 ∶ S =
I
∑

i

J

∑
j
(Pij × dij × xij) (5)

where F1 ∶ S = service objective, considering the total travel distance in an uncertain environment.
The value of ξ̃ is set as uniform distribution.

In the view of the location criteria, the public HCFs are supposed to be built in a relatively
quiet environment to provide favorable conditions for local patients. Tumultuous surroundings
such as a vegetable market, commercial centre and construction site will no doubt impede recovery.
Moreover, the location of HCFs should be adjacent to a convenient arterial road in cased of unexpected
emergencies. Congested traffic cannot ensure a timely rescue, which probably increase the morbidity
and mortality of the sick. Thereby, it is necessary to provide a better therapeutic environment for
patients’ care and incorporate it into the optimal model.

minF2 ∶ L = (α1 ×
TA
∑
ta

φta ×
√

(xe − ATta
e )2 + (xn − ATta

n )2 + α2 ×
QA
∑
qa

ϕqa ×
√

(xe − AQqa
e )2 + (xn − AQqa

n )2)× yj (6)

where F2 ∶ L = location objective, considering the environment elements; α1 and α2 = weight for
two types of condition; φta = weight for traffic advantage area; ATta

e and ATta
n = coordinate of traffic

advantage area; ϕqa = weight for quiet area; AQqa
e and AQqa

n = coordinate of quiet area; yj= 1 represents
a new facility will be built at site j.

4.1.2. Upper-Level Programming: Constraints

First, we assume each demand point is served by just one facility in the cities with a dispersed
distribution of population.

J

∑
j

xij = 1;∀i ∈ I (7)

xij ∈ {0, 1}; ∀i ∈ I; ∀j ∈ J (8)

Second, the binary decision variable represents whether the facility should be located at site.
In order to decrease the building costs, this research assumes only one new facility will be set up.

J

∑
j

yj = 1 (9)

yj ∈ {0, 1};∀j ∈ J (10)
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At last, it is clear that the optimal location should be positive.

xe ∈ R+; xn ∈ R+ (11)

4.1.3. Lower-Level Programming: Objective Functions

Other than the location-allocation assignment, the performance of a healthcare system likewise
relies on the capacity of these facilities [25]. Decision making for capacity is promoted by perspective
on resource constraints [9]. Thereby, adjusting the capacity structure (i.e., number of sickbeds) plays
a significant role in providing an effective medical service. An eligible facility is supposed to have
adequate capacity to satisfy medical demand as well as guarantee the fundamental requirements.
On the one hand, superabundant doctors and sickbeds will result in resource waste. On the other
hand, if the facility service exceed the threshold limit, the patients will feel discontented when meeting
service delays, reduced diagnosis time, etc. Consequently, low-level programming modifies the facility
capability involving two contradictory objectives: (1) maximize the capacity quality for patients;
(2) minimize the total cost for governments.

Abundant capacity ensures a healthcare system’s service quality and provides reasonable
distribution of public funding [41,42]. The general criterion of measuring capacity is to estimate
the number of sickbeds [9]. Furthermore, local governments expect to assign as many patients as
possible to improve service quality. Thus, the service capacity is profoundly affected by the decision
variables on the upper-level programming.

max G1 ∶ S =
J

∑
j

⎛
⎝

k j

∑I
i dij

⎞
⎠× yj (12)

where G1 ∶ S = social objective, considering the facility capacity.
In addition, developing cites with a lagging economy and restricted healthcare resources not

only need accessibility in a healthcare system, but also pursue the minimum financial budget for
government. Landa-Torres et al. [43] found that constructing and managing a new public facility is
linearly dependent on capacity. Güneş and Nickel [9] believed that facility capacity can be regarded
as decision variables associated with building cost in an optimal model. If too many sickbeds are
allocated, the maintenance charge will go up, whereas deficient capacity is unable to meet a satisfactory
standard [25]. Choosing the proper quantity of sickbeds is crucial to guarantee the optimal capacity
and minimize the total costs. Therefore, the second objective on the lower level is to reducing the total
costs, including building costs, expansion costs and operating costs [29,42].

min G2 ∶ C =
J
∑
j=1

((BP × BA × k j + RP × RA × k j)× yj+ ((k j − ECj)× (η̃1 + SP × AV + (1− SP)× AV′))× zj) (13)

where G2 ∶ C = economic objective, considering removal, expansion and operations management;
BP = building price; BA = unit building area; k j = facility capacity (i.e., number of sickbed); RP = rental
price; RA = unit rental area; ECj = existing capacity; η̃1 = sickbed price, which is considered as
fuzzy variables; SP = proportion of senior doctor to patient; AV = average wage of senior doctor;
AV′ = average wage of ordinary doctor; zj = 1 represents k j ≥ ECj. In addition, the unit of price used in
this paper is the CNY, and the unit of acreage is square meters.

4.1.4. Lower-Level Programming: Constraints

First, the expansion costs in Equation (13) will be calculated when the prospective sickbeds exceed
the existing capacity.

zj ∈ {0, 1};∀j ∈ J (14)
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Second, the number of sickbed for each hospital should satisfy overall patients in covered
residential areas [43].

k j ≥
I
∑

i
(Pij × xij);∀j ∈ J (15)

Third, the total capacity should be able to accommodate all of the patients.

J

∑
j

k j ≥ TP (16)

where TP = total patients.
At last, the capacitance range of each hospital should not be negative.

k j ∈ R+ (17)

4.2. Particle Swarm Optimization (PSO) Algorithm for Healthcare Facility Location Problems (HCFLPs)

4.2.1. Bi-Level Multi-Objective Particle Swarm Optimization (BLMOPSO)

PSO is an evolutionary computation algorithm inspired by the food-seeking behavior of birds and
social co-operation of fish, initially developed by Kennedy and Eberhart [44]. It has been resoundingly
utilized to solve complicated problems with multiple objectives. Due to merits of a simple control
structure and few variables, the PSO is able to produce effective results within a short time to determine
appropriate locations. It can search sets of pareto solutions in a complex and stochastic environment to
provide various scenarios for decision making. With reference to [45,46], many works based on PSO
have been modifying this meta-heuristic algorithm. For instance, Ye et al. [47] adjusted the topologies
to control the searching mechanism and maintain optimal diversity. Peng et al. [48] modified the
inertia weight to balance both the exploration and exploitation ability of PSO. Wang et al. [49] revised
the searching mechanism by considering the individual’s neighborhood to adjust the velocity of
the particles. The adjustments of these researchers can be classified into three aspects: parameters,
topologies and searching strategies. For detail, the inertia weights and constriction factors enhance
both global and local search, and the acceleration coefficients are able to achieve better stability.
Furthermore, the topology structure leads to variants of the algorithm, which ensures the diversity
of the optimal solutions. At the same time, the hybridized PSO aims to implement the target of
exploration and exploitation by integrating different character of other algorithms. The conventional
variants or specializations are summarized in Table 3.

Table 3. Conventional adjustments on particle swarm optimization (PSO).

Authors Area of Modification Detail Description

Ratnaweera et al. [50] Linear varying inertia weight Control the individual velocity

Naka et al. [51] Nonlinear inertia weight Ensure the velocity toward the lowest
dynamic range

Clerc and Kennedy [52] Constriction Factor Adjust the updating of the whole velocity

Xing and Xiao [53] Acceleration Coefficients Generate stochastic influence on velocity of
different groups

Wang et al. [49] Topologies Exchange the cooperative information
amongst each particle

Li et al. [54], Niknam et al. [55],
Mandloi and Bhatia [56] Hybrid Technique

Integrate others intelligent algorithms such as
Genetic Algorithm (GA), Simulated Annealing

(SA) and Ant Colony Optimization (ACO)
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In order to avoid premature convergence and increase the diversity of the optimal results,
modifying the topology structure is an appropriate measure and has been widely used in the
development of PSO. Prakash et al. [57] introduced a fitness predator optimizer to provide more
optimal in multi-objective programming. Marinakis [58] developed an expanding neighborhood
topology PSO algorithm to solve a discrete location routing problem. Therefore, this paper proposes
the BLMOPSO, modifying two aspects (i.e., parameter function and topology structure), to increase the
global searching ability based on the characteristic of a master–slave equilibrium optimization model.
The particle updating mechanism is described in Figure 3, which enhances accuracy and robustness
while reducing computation time. The optimal results can be divided into two sets of non-dominated
solutions for heterogeneous agents (i.e., government and patient) respectively to provide diverse
strategies in HCFLPs.

Figure 3. Bi-level-based update process.

4.2.2. Overall Procedure of the Proposed Algorithm

The procedure of the proposed algorithm is shown in Figure 4 including 10 steps.

1. Set the parameters in the upper-level programming, including swarm size, particle position and
velocity, iterations, inertia weights, acceleration coefficients and random variables ξ̃.

2. Update the control parameters and compute the fitness values of two upper-level objectives.
3. Estimate and replace the upper-level pareto solutions.
4. Obtain the pbests, gbests, lbests, nbests through the aforementioned approach.
5. Set the similar type of parameters as step 1 on the lower level, and generate fuzzy variables η̃

based on confidence levels α.
6. Renewal the correlative parameters on the lower level.
7. Compute the fitness values by incorporating solutions from upper level.
8. Obtain the pbests

′ , gbests
′ , lbests

′ , nbests
′ on the lower level.

9. Check the lower level termination: if the algorithm acquires the best solution or met the maximum
iteration, stop the lower level program. Otherwise, go back to Step 6.

10. Check the BLMOPSO termination: if the algorithm gains the appropriate Pareto solutions or met
the maximum iteration, then stop the BLMOPSO procedure. Otherwise, go back to Step 2.



Sustainability 2018, 10, 4580 12 of 22

Figure 4. Flow chart of the bi-level multi-objective particle swarm optimization (BLMOPSO) algorithm.

4.2.3. Solution Representation

The particle swarm contains a range of particles with multiple dimensions, and each of them represents
a potential optimal solution. Accordingly, the potential solutions on the upper level are xe and xn (i.e., HCF

location) combining the coordinates of latitude and longitude, while kj = (k1, k2, ..., kJ)T
are the sickbed

number on behalf of facility capacity obtained by the lower level.

4.2.4. Parameter Setting

On the basis of Kennedy and Eberhart, and Gan et al. [59], initializing the control parameters is the
critical step to ensure desired algorithmic outcome. The indispensable variables are set up as follows:
first, Set s (s = 1, 2, ..., S) particles with h (h = 1, 2, ..., H) dimension. Second, restrict inertia weight
in [ωmin, ωmax], personal acceleration coefficient in [cp

minp
max], and global acceleration coefficient in

[cg
ming

max]. Third, initialize the local best acceleration constant cl , and near neighbor best acceleration

constant cn. Last, generate the velocity
→
v sh within the range of [vminmax], and position

→
x sh within the

allowed coordinate scope. Notably, all content types of parameters in the lower level are set to the
same in the upper level.

4.2.5. Particle Evaluation

The proposed technique requires the algorithm tocompare and analyze the fitness value iteratively
to obtain the pareto solutions. Thus, it is necessary to utilizing appropriate method to evaluated the
entire particle in each iteration. According to [59], the evaluation process is depicted in detail as follows:
First, putting

→
x sh(τ) into objective functions F1 ∶ S, F2 ∶ L, G1 ∶ S and G2 ∶ E, and calculating the fitness

values Fitness(→x sh) respectively. Second, using the pareto archived evolution strategy procedure and
test procedure (refer to [59]) to obtain the pbests, which represents the effect of personal experiences.
For each group, employing the same approach can select the lbests to expand local searching ability.
Third, applying the roulette to acquire the gbests, which represents the social component. Fourth,

computing the local fitness value
∑∣Fitness(→x dh)−Fitness(→x sh)∣

∣→x dh
→
x sh∣

(∣→xdh
→
x sh∣ is the Euclidean distance between

particle and its dth neighbor) in each group, and regard the maximum as the nbests to increase particle
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diversity. After several iteration calculations, the final results can provide DMs with a set of preferential
and appropriate solutions.

4.2.6. Particle Updating

In order to improve the convergence of the algorithm, Zhang et al. [60] introduced a time-variant
adjustment strategy for the major parameters, which is given as follows. The inertia weight ω affects
the current velocity of a particle by controlling the influence of previous velocity. The growing value
of ω assists the swarm to broaden its exploration, and the decrease value of ω motivates it to enhance
its exploitation. Thus, the earlier stage of iteration should maintain a large liner weight to ensure the
particle searching thoroughly. When the majority of solution spaces have been explored, the inertia
weight needs to be slowed down in order to find a better result. According to this renewed mechanism,
the ω for iteration τ is updated by the following:

ω(τ) = (ωmax−min × τ

τmaxmin ) (18)

where ω is restricted in range [ωminmax], and τmax is the maximum iteration.
The acceleration coefficients cp and cg have momentous influence on searching ability. The lager

cp facilitates emanative search while the small cg improves partially converge. The two parameters are
updated by the following:

cp(τ) = ⎛
⎝c

max−min
p

p × (τmax())
τmax + cmin

p

⎞
⎠ (19)

cg(τ) = ⎛
⎝c

max−min
g

g × τ

τmax+min
p

⎞
⎠ (20)

where cp and cg are limited in the interval to avoid premature convergence as well.
In order to make the optimal solution become more diverse, a variant topology structure

is developed by adding two novel cognitive experiences, which decrease the effect of the social
collaboration process. The velocity and position are updated by the following:

→
v sh(τ + 1) = ω(τ)→v sh(τ)+ cp(τ)ur[ψpsh −

→
x sh(τ)]+ cg(τ)ur[ψgsh −

→
x sh(τ)]+

clur[ψlsh −
→
x sh(τ)]+ cnun[ψlsh −

→
x sh(τ)] (21)

→
x sh(τ + 1) = →x sh(τ)+→v sh(τ + 1) (22)

The velocity update function of a particle is composed of five parts. The first three parts
ω(τ)→v sh(τ), cp(τ)ur[ψpsh −

→
x sh(τ)] and cnun[ψlsh −

→
x sh(τ)] are the traditional direction memories,

which represent the original experience, the personal experience and mutual cooperation experience,
respectively. The new part clur[ψlsh −

→
x sh(τ)] called the local cognitive indicates a pareto solution

generated by an adjacent subswarm of a particle. Moreover, the neighbor cognitive cnun[ψlsh −
→
x sh(τ)]

represents the major variety comparing a particle with its neighbors.

5. Case Study

In order to verify the effectiveness of the proposed optimal model, we use computational
experiments based on the depressed region of Mao County, which is located in the northwest of
Sichuan province. The test aims to illustrate how the proposed model can be applied to support
healthcare planners in location and allocation decisions in an uncertain environment.
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5.1. Study Area

Mao County has a per capita GDP of 30046 CNY in 2017, and is a remote region with poor
economic development accessibility. The detailed location of study area is shown in Figure 5. In our
investigations, this developing region needs to provide sufficient healthcare facilities to the large
scattered residents. What is more, there are 5 middle healthcare units and sixteen patient areas located
in the township, which are presented in Figure 6A. The total sickbed number of existing hospitals
is 527, which does not satisfy the total requirements for nearly 800 (i.e., TP = 800). Furthermore,
the transportation advantage areas and environmentally tranquil areas around the existing hospitals
are marked in Figure 6B.

Figure 5. Location of study area.

Figure 6. (A) Healthcare facility and patient areas; (B) Environmental elements in Mao County.
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5.2. Date Acquisition and Processing

The numerical data about population, medical demand, healthcare information, etc., are obtained
from two types of organization, i.e. governmental agencies and academic institutions. According to
our field investigation in local governments, the map data referring to residential distribution and
healthcare network are retrieved from Statistical Bureau, Health and Family Planning Bureau and
Land Source Bureau. In order to obtain the weights for environmental elements, the authors have
contacted five experienced experts from the Center for Rural Construction Integrated Management
(CRCIM) in Sichuan Agriculture University. The experts selected four essential areas respectively
from each environmental type (Figure 6B), and gave the comprehensive weights (Table 4) based on
the method of the analytic hierarchy process (AHP) [61]. Moreover, they proposed the morbidity of
patient is generated by a uniform distribution ξ̃ ∼ U(0.1, 0.7), and the uncertain sickbed price using
a triangular fuzzy number η̃ = (3500, 4000, 4500) with a confidence level of 90%.

Table 4. The weights for environmental factors.

Environmental Type

α1 α2
0.34 0.66

Transportation Advantage Area

φ1 φ2 φ3 φ4
0.13 0.18 0.37 0.32

Environmentally Tranquil Area

ϕ1 ϕ2 ϕ3 ϕ4
0.11 0.31 0.36 0.22

5.3. Case Solution

The BLMOPSO algorithm was conducted on a Windows 10 personal computer with 8 GB of RAM
running at 2.8 GHz on an Intel Core i7 processor. The control parameters on each level were set as
follows: iteration τ = 30, swarm size s = 20, inertia weight in [0.1,0.9], personal and global acceleration
coefficient in, local and near neighbor best acceleration constant cl = cn = 0.2.

Since operating one iteration on the upper-level needs 30 iterations on the lower-level,
the performance period grows exponentially. After 900 iterations in total, the pareto solutions were
generated within average 7 minutes. The seven solutions on the upper level are demonstrated in
Table 5, indicating the position and patient allocation scheme when constructing a new HCF. Notably,
each location solution has a group of capacity scenarios on the lower level. Due to the space limitation,
this research picked one of the capacity optimal solutions corresponding to an allocation scheme,
which is shown in Table 6.

Table 5. The pareto solutions on the upper level.

No. N E
Patient Area

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 31○41′35.05” 103○51′28.77” 2 4 2 1 3 3 3 3 4 4 5 5 5 5 6 5
2 31○41′37.09” 103○51′23.34” 2 4 2 1 1 3 3 3 4 4 5 5 5 5 6 5
3 31○41′40.18” 103○51′33.00” 2 4 2 1 3 3 3 3 4 4 5 5 5 5 6 5
4 31○41′39.32” 103○51′37.63” 2 4 2 1 1 3 3 3 4 4 5 5 5 5 6 5
5 31○40′59.34” 103○51′26.53” 2 4 2 1 3 3 3 3 4 4 5 5 5 5 6 5
6 31○41′53.40” 103○51′44.01” 2 4 2 1 3 3 3 3 4 4 5 5 5 5 6 5
7 31○41′35.52” 103○51′35.94” 2 4 2 1 3 3 3 3 4 4 5 5 5 5 6 5
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Table 6. The pareto solutions relating to No.1 on the lower level.

No.
Number of Sickbed

1 2 3 4 5 6

Original - 200 120 107 60 40

1 289 +289 394 +194 319 +199 34 −73 102 +42 318 +278
2 133 +133 500 +300 212 +92 144 +37 402 +342 105 +65
3 433 +433 341 +141 447 +327 261 +154 417 +357 396 +356
4 309 +309 432 +232 429 +309 329 +222 384 +324 246 +206
5 174 +174 305 +105 264 +144 255 +148 214 +154 233 +193
6 377 +377 401 +201 438 +318 305 +198 393 +333 306 +266
7 56 +56 489 +289 335 +215 349 +242 242 +182 58 +18
8 190 +190 394 +194 383 +263 313 +206 302 +242 229 +189
9 32 +32 365 +165 370 +250 396 +289 69 +9 66 +26

5.4. Analytic Results

With respect to alternative decision making, Figure 7A provides all of optimal solutions for
governments to choose their preferences. That is to say, looking for to high service quality may
situate the location far away from arterial road or quiet districts and, vice versa, pursuing a suitable
medical environment could aggravate the travel burden. Furthermore, on the basis of primary results
summarized in the tables as above, the location distributions of HCFs are illustrated in Figure 7B.

Figure 7. (A) Optimal location scheme; (B) spatial distribution.

Figure 8 displays the capacity allocation for one of the options selected in Table 6. Obviously,
availability and accessibility can be promoted by adding more sickbeds, but also cause the construction
costs to rise. On the contrary, controlling the facility capacity can ease the financial pressure, but it may
delay the best treatment for patients as well. Within this context, DMs should find a tradeoff among
such conflicting objectives under different situations.
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Figure 8. Capacity allocation.

5.5. Comparative Analysis

This research compares the BLMPPSO with basic PSO in HCFLPs to validate its efficiency.
Due to the complexity of multiple objective optimization compared to single objective programming,
we studied four metrics of performance proposed in Gan et al. [40] to further illustrate the exploration
and exploitation ability of the algorithm. Table 7 describes the iterative process of the pareto solutions,
which discloses the diversity of the results. Table 8 collects different types of indicator value, and shows
that the proposed algorithm performs better in all directions.

Table 7. Iterative process of the pareto solutions.

Iteration The Average
Distance The Distribution The Extent The Set

Convergence
The Solution

Amount

1 0.0568 0.3333 3.8649 0.3333 3
2 0.0547 0.6000 5.6127 0.6000 5
3 0.0547 0.6000 5.6127 1.0000 5
4 0.0409 0.5000 5.8634 0.7500 4
5 0.0409 0.5000 5.8634 1.0000 4
6 0.0762 0.6000 5.8634 0.8000 5
7 0.0762 0.6000 5.8634 1.0000 5
8 0.0762 0.6000 5.8634 1.0000 5

10 0.0762 0.6000 5.8634 1.0000 5
12 0.0762 0.6000 5.8634 1.0000 5
15 0.0762 0.6000 5.8634 1.0000 5
18 0.0762 0.6000 5.8634 1.0000 5
20 0.0762 0.6000 5.8634 1.0000 5
22 0.0922 0.6667 5.8634 0.6667 6
23 0.0922 0.6667 5.8634 1.0000 6
24 0.0922 0.6667 5.8634 1.0000 6
25 0.0922 0.6667 5.8634 1.0000 6
26 0.0425 0.7143 5.8634 0.8571 7
27 0.0425 0.7143 5.8634 1.0000 7
28 0.0425 0.7143 5.8634 1.0000 7
29 0.0425 0.7143 5.8634 1.0000 7
30 0.0425 0.7143 5.8634 1.0000 7



Sustainability 2018, 10, 4580 18 of 22

Table 8. Comparison of BLMOPSO and basic PSO.

Algorithm Type Iteration The average
Distance The Distribution The Extent The set

Convergence
The Solution

Amount

BLMOPSO 30 0.0425 0.7143 5.8634 1.0000 7
Basic PSO 30 0.1712 0.5000 5.3036 1.0000 4

5.6. Stability Analysis

The eventual optimal solutions are acquired based on 30 tests in order to avoid accidental events.
Although the experience is likely to generate other potential situations, the authors select one of
the results that occurred most frequently. The test statistics are recorded in Table 9. In addition,
the performance metric of “the extent” can test the stability of the results as well. Thus, the authors
compared and calculated the error rates amongst the pareto solutions which with the same solution
amount. Table 10 shows that most of error rates are no more than 5%. According to these two tables,
the solutions obtained in this study are credible and reasonable.

Table 9. Frequency of the pareto solution.

Solution Amount Occurrence Amount Percentage

7 12 33.33%
8 4 16.67%
6 3 16.67%
5 3 13.33%
10 2 6.67%

others 4 13.33%
total 30 100.00%

Table 10. Error rate of the pareto solution.

No. Solution Amount The Extent Error Rate

Original 7 5.8634 -

1 7 5.7702 −0.0932 −1.59%
2 7 5.9289 0.0655 1.12%
3 7 5.9289 0.0655 1.12%
4 7 5.7494 −0.1140 −1.94%
5 7 5.4991 −0.3643 −6.21%
6 7 5.9435 0.0801 1.37%
7 7 6.1374 0.2740 4.67%
8 7 5.5974 −0.2660 −4.54%
9 7 −0.1889 −0.1889 −3.22%
10 7 5.6943 −0.1691 −2.88%
11 7 6.2093 0.3459 5.90%

6. Conclusions and Future Research

This study presents a location-allocation optimal model for China’s healthcare system to enhance
availability and accessibility by using bi-level multiple objective programming in an uncertain
environment. The upper level considers the conflicts of social and environmental factors on location
decision, while the lower level adjusts the facility capacity, including service quality and financial
costs simultaneously. Since-facility spatial distribution is a complex and time-consuming problem,
and an ameliorated BLMOPSO algorithm is designed to improve the accuracy of the results. In order to
verify the applicability and versatility of the proposed model, an extensive computational experiment
has been carried out by using the data obtained from a field investigation. It balances the tradeoffs
among the four conflicting optimal targets, analyzes the efficiency of location decisions, and estimates
the requirement for capacity increase. Moreover, the optimal pareto solutions illustrate that the
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DMs’ preference has a significant bearing on the spatial and capacity assignment of patient areas to
healthcare units.

The characteristic contributions of this paper are: (1) the hierarchical programming carries out the
location and capacity assignment to maintain a balance between supply and demand; (2) the proposed
model considers uncertainty associated with medical demand and costs to simulate possible realization;
(3) BLMOPSO is designed to efficiently tackle such a NP-hard problem by means of improving the global
search and reducing the probability of falling into premature convergence; (4) the optimal results pave the
way for the practical application in healthcare network design, and also can be popularized in other types
of public facilities such as schools, warehouses and police stations.

The current research is original, and will be needed for future work in at least two aspects. On one
hand, choosing an appropriate location depends on not only the external environment but also internal
factors such as competition among hospitals, classes of patients and diagnostic cost. On the other
hand, the optimal objectives of urban and rural areas may differ and should be adjusted according to
regional conditions.
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